Review of Hydrofluoric Acid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
8.7 Hydrofluoric Acid 8.7.1 General
8.7 Hydrofluoric Acid 8.7.1 General5-6 Hydrogen fluoride (HF) is listed as a Title III Hazardous Air Pollutant. Hydrogen fluoride is produced in 2 forms, as anhydrous hydrogen fluoride and as aqueous hydrofluoric acid. The predominant form manufactured is hydrogen fluoride, a colorless liquid or gas that fumes on contact with air and is water soluble. Traditionally, hydrofluoric acid has been used to etch and polish glass. Currently, the largest use for HF is in aluminum production. Other HF uses include uranium processing, petroleum alkylation, and stainless steel pickling. Hydrofluoric acid is also used to produce fluorocarbons used in aerosol sprays and in refrigerants. Although fluorocarbons are heavily regulated due to environmental concerns, other applications for fluorocarbons include manufacturing of resins, solvents, stain removers, surfactants, and pharmaceuticals. 8.7.2 Process Description1-3,6 Hydrofluoric acid is manufactured by the reaction of acid-grade fluorspar (CaF2) with sulfuric acid (H2SO4) as shown below: → CaF2 H2SO4 CaSO4 2HF A typical HF plant is shown schematically in Figure 8.7-1. The endothermic reaction requires 30 to 60 minutes in horizontal rotary kilns externally heated to 200 to 250°C (390 to 480°F). Dry fluorspar ("spar") and a slight excess of sulfuric acid are fed continuously to the front end of a stationary prereactor or directly to the kiln by a screw conveyor. The prereactor mixes the components prior to charging to the rotary kiln. Calcium sulfate (CaSO4) is removed through an air lock at the opposite end of the kiln. The gaseous reaction products—hydrogen fluoride and excess H2SO4 from the primary reaction and silicon tetrafluoride (SiF4), sulfur dioxide (SO2), carbon dioxide (CO2), and water produced in secondary reactions—are removed from the front end of the kiln along with entrained particulate. -
Protonation of Citraconic and Glutaconic Acid In
M. Jankulovska-Petkovska, M. S. Jankulovska, V. Dimova, “Protonation of citraconic and glutaconic acid…”, Technologica Acta , vol. 12, no. 1, pp. 1–8, 2019. 1 PROTONATION OF CITRAC ONIC AND GLUTACONIC ACID IN PERCHLORIC ACID MEDIA ORIGINAL SCIENTIFIC PAPER Milena Jankulovska-Petkovska 1, Mirjana S. 2 3 Jankulovska *, Vesna Dimova DOI: 10.5281/zenodo.3267263 RECEIVED ACCEPTED 1 Ss Kliment Ohridski University, Faculty of Veterinary Medicine in Bitola, Macedonia 2019-01-22 2019-04-05 2 Ss. Cyril and Methodius University, Faculty of Agricultural Sciences and Food in Skopje, Macedonia 3 Ss Cyril and Methodius University, Faculty of Technology and Metallurgy in Skopje, Macedonia * [email protected] ABSTRACT: The protonation process of citraconic and glutaconic acid in perchloric acid media was followed us- ing the method of UV spectroscopy. The observed changes in the UV spectra of investigated acids confirmed that the protonation process in perchloric acid with concentration from 5 to 10 mol/dm 3 occurred. Glutaconic acid be- haved as weak organic base in perchloric acid media and existed in its monoprotonated form. On the other hand, citraconic acid existed in its protonated form and as protonated anhydride at higher perchloric acid concentra- tion. Using the absorbance data the thermodynamic dissociation constants were calculated applying the methods of Yates and McClelland, Bunnett and Olsen, and the “excess acidity” function method. The solvatation parame- ters m, m* and φφφ were evaluated, as well. In order to correct the medium effect the method of characteristic vector analysis was applied. The possible site where the protonation may take place was discussed using the partial atomic charge values determined according to AM1 and PM3 semiempirical methods. -
Laboratory Analysis of Organic Acids, 2018 Update: a Technical Standard of the American College of Medical Genetics and Genomics (ACMG)
© American College of Medical Genetics and Genomics ACMG TECHNICAL STANDARD Laboratory analysis of organic acids, 2018 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG) Renata C. Gallagher MD, PhD1, Laura Pollard, PhD2, Anna I. Scott, PhD3,4, Suzette Huguenin, PhD5, Stephen Goodman, MD6, Qin Sun, PhD7; on behalf of the ACMG Biochemical Genetics Subcommittee of the Laboratory Quality Assurance Committee Disclaimer: This laboratory standard is designed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to this standard is voluntary and does not necessarily assure a successful medical outcome. This standard should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient’s record the rationale for the use of a particular procedure or test, whether or not it is in conformance with this standard. They also are advised to take notice of the date any articular standard was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures. Organic acid analysis detects accumulation of organic acids in urine guidance for laboratory practices in organic acid analysis, and other body fluids and is a crucial first-tier laboratory test for a interpretation, and reporting. -
Is There an Acid Strong Enough to Dissolve Glass? – Superacids
ARTICLE Is there an acid strong enough to dissolve glass? – Superacids For anybody who watched cartoons growing up, the word unit is based on how acids behave in water, however as acid probably springs to mind images of gaping holes being very strong acids react extremely violently in water this burnt into the floor by a spill, and liquid that would dissolve scale cannot be used for the pure ‘common’ acids (nitric, anything you drop into it. The reality of the acids you hydrochloric and sulphuric) or anything stronger than them. encounter in schools, and most undergrad university Instead, a different unit, the Hammett acidity function (H0), courses is somewhat underwhelming – sure they will react is often preferred when discussing superacids. with chemicals, but, if handled safely, where’s the drama? A superacid can be defined as any compound with an People don’t realise that these extraordinarily strong acids acidity greater than 100% pure sulphuric acid, which has a do exist, they’re just rarely seen outside of research labs Hammett acidity function (H0) of −12 [1]. Modern definitions due to their extreme potency. These acids are capable of define a superacid as a medium in which the chemical dissolving almost anything – wax, rocks, metals (even potential of protons is higher than it is in pure sulphuric acid platinum), and yes, even glass. [2]. Considering that pure sulphuric acid is highly corrosive, you can be certain that anything more acidic than that is What are Superacids? going to be powerful. What are superacids? Its all in the name – super acids are intensely strong acids. -
Organic Acids and Bases
H O H C C C C O = C C H = H C O H C O H3C aspirin CHEMISTRY 2000 Topic #3: Organic Chemistry Fall 2020 Dr. Susan Findlay See Exercises in Topic 12 Measuring Strength of Acids When you hear the term “organic acid”, it usually refers to a carboxylic acid. Carboxylic acids are readily deprotonated by strong bases: .O. .O. -... H .. H C .. H + .O H C .. + O H C O .. H C O.- .. 3 .. 3 ... acid base conjugate base conjugate acid This reaction is favoured in the forward direction because the products are lower in energy than the reactants. In particular, the conjugate base (acetate; ) is much more stable than the original base (hydroxide, ). − 32 Therefore, acetate is a weaker base than hydroxide.− Therefore, acetic acid is a stronger acid than water. 2 Measuring Strength of Acids An acid’s strength depends on the stability of its conjugate base: The conjugate base of (a strong acid; = 7) is (a very weak base) − − The conjugate base of (a weak acid; = 14) is (a relatively strong base) − 2 The strength of an acid can therefore be said to be inversely related to the strength of its conjugate base (and vice versa). Why is more stable than ? − − 32 3 Measuring Strength of Acids- Consider the reaction below. Identify the acid, base, conjugate acid and conjugate base. Is this reaction product-favoured or reactant-favoured? The of is 5. The of is 14. 32 The of 2 is 0. + 3 .O. .O. H .. H H ..+ H C .. H + O C . -
[email protected] +1-703-527-3887 (International) Website
Date of Issue: 10 May 2016 SAFETY DATA SHEET 1. SUBSTANCE AND SOURCE IDENTIFICATION Product Identifier SRM Number: 3122 SRM Name: Hafnium (Hf) Standard Solution Other Means of Identification: Not applicable. Recommended Use of This Material and Restrictions of Use This Standard Reference Material (SRM) is intended for use as a primary calibration standard for the quantitative determination of hafnium. A unit of SRM 3122 consists of 50 mL of an acidified aqueous solution prepared gravimetrically to contain a known mass fraction of hafnium in a polyethylene bottle sealed in an aluminized bag. The solution contains volume fractions of nitric acid at approximately 1 % to 10 % and hydrofluoric acid at approximately 1 % to 2 %. Company Information National Institute of Standards and Technology Standard Reference Materials Program 100 Bureau Drive, Stop 2300 Gaithersburg, Maryland 20899-2300 Telephone: 301-975-2200 Emergency Telephone ChemTrec: FAX: 301-948-3730 1-800-424-9300 (North America) E-mail: [email protected] +1-703-527-3887 (International) Website: http://www.nist.gov/srm 2. HAZARDS IDENTIFICATION Classification Physical Hazard: Not classified. Health Hazard: Skin Corrosion/Irritation Category 1B Serious Eye Damage/Eye Irritation Category 1 Label Elements Symbol Signal Word DANGER Hazard Statement(s) H314 Causes severe skin burns and eye damage. Precautionary Statement(s) P260 Do not breathe fumes, mists, vapors, or spray. P264 Wash hands thoroughly after handling. P280 Wear protective gloves, protective clothing, and eye protection. P301+P330+P331 If swallowed: Rinse mouth. Do NOT induce vomiting. P303+P361+P353 If on skin (or hair): Remove immediately all contaminated clothing. Rinse skin with water. -
The Strongest Acid Christopher A
Chemistry in New Zealand October 2011 The Strongest Acid Christopher A. Reed Department of Chemistry, University of California, Riverside, California 92521, USA Article (e-mail: [email protected]) About the Author Chris Reed was born a kiwi to English parents in Auckland in 1947. He attended Dilworth School from 1956 to 1964 where his interest in chemistry was un- doubtedly stimulated by being entrusted with a key to the high school chemical stockroom. Nighttime experiments with white phosphorus led to the Headmaster administering six of the best. He obtained his BSc (1967), MSc (1st Class Hons., 1968) and PhD (1971) from The University of Auckland, doing thesis research on iridium organotransition metal chemistry with Professor Warren R. Roper FRS. This was followed by two years of postdoctoral study at Stanford Univer- sity with Professor James P. Collman working on picket fence porphyrin models for haemoglobin. In 1973 he joined the faculty of the University of Southern California, becoming Professor in 1979. After 25 years at USC, he moved to his present position of Distinguished Professor of Chemistry at UC-Riverside to build the Centre for s and p Block Chemistry. His present research interests focus on weakly coordinating anions, weakly coordinated ligands, acids, si- lylium ion chemistry, cationic catalysis and reactive cations across the periodic table. His earlier work included extensive studies in metalloporphyrin chemistry, models for dioxygen-binding copper proteins, spin-spin coupling phenomena including paramagnetic metal to ligand radical coupling, a Magnetochemi- cal alternative to the Spectrochemical Series, fullerene redox chemistry, fullerene-porphyrin supramolecular chemistry and metal-organic framework solids (MOFs). -
The Effect of Organic Acids on Base Cation Leaching from the Forest ¯Oor Under Six North American Tree Species
European Journal of Soil Science, June 2001, 52, 205±214 The effect of organic acids on base cation leaching from the forest ¯oor under six North American tree species a,c b b b a F. A. DIJKSTRA ,C.GEIBE ,S.HOLMSTROÈ M ,U.S.LUNDSTROÈ M &N.VAN BREEMEN aLaboratory of Soil Science and Geology, PO Box 37, 6700 AA Wageningen, The Netherlands, bDepartment of Chemistry and Process Technology, Mid Sweden University, 85170 Sundsvall, Sweden, and cInstitute of Ecosystem Studies, Box AB, Route 44A, Millbrook, NY 12545, USA Summary Organic acidity and its degree of neutralization in the forest ¯oor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest ¯oor under six common North American tree species. Forest ¯oor samples were analysed for exchangeable cations and forest ¯oor solutions for cations, anions, simple organic acids and acidic properties. Citric and lactic acid were the most common of the acids under all species. Malonic acid was found mainly under Tsuga canadensis (hemlock) and Fagus grandifolia (beech). The organic acids were positively correlated with dissolved organic carbon and contributed signi®cantly to the organic acidity of the solution (up to 26%). Forest ¯oor solutions under Tsuga canadensis contained the most dissolved C and the most weak acidity among the six tree species. Under Tsuga canadensis we also found signi®cant amounts of strong acidity caused by deposition of sulphuric acid from the atmosphere and by strong organic acids. Base cation exchange was the most important mechanism by which acidity was neutralized. -
Catalytic Properties of Zeolites and Synthesized Superacid Systems During the Transformation of Model Reactions of Pentanes
Advances in Engineering Research, volume 177 International Symposium on Engineering and Earth Sciences (ISEES 2018) Catalytic Properties of Zeolites and Synthesized Superacid Systems During the Transformation of Model Reactions of Pentanes Turlov s RA-B. Magomadova Marem .Kh. Heat Engineering and Hydraulics Department of Heat Engineering and Hydraulics Department of Grozny State Oil Technical University Grozny State Oil Technical University g . Grozny, Russia Grozny, Russia e - mail: [email protected] e - mail: [email protected] Madaeva A. D. Idrisova E.U. Heat Engineering and Hydraulics Department Heat Engineering and Hydraulics Department of Grozny State Oil Technical University of Grozny State Oil Technical University Grozny, Russia Grozny, Russia e - mail: ANITA [email protected] e - mail: idrisova999@mail ru Magomadova Madina. Kh. "Chemical technology of oil and gas Department of Grozny State Oil Technical University Grozny, Russia e - mail : [email protected] Abstract—Investigation of the catalytic activity and selectivity II. THE METHODOLOGY OF THE EXPERIMENT of the obtained products of various nature and composition of Before conducting the experiment, the test samples of catalysts in the course of model catalytic reactions, cracking, catalysts (zeolites, AAS and γ-Al2O3) with a fractional isomerization, disproportionation. The study of the acid sites of composition of 0.25 ÷ 40.5 mm were loaded into a quartz these catalysts and their influence on the composition of the reactor, a sample of 0.15 g., the fractional composition of reaction products and the mechanism of conversion of specific C 5 which, as the reactor is filled from the bottom of the reactor to hydrocarbons. The study of the mechanism, speed and direction of the lower part of the catalyst boundary, varies from 2.0 to 0.1 individual stages of multistage reactions implemented scientific mm; then the catalyst and quartz were filled, the fractional and industrial processes. -
Superacid Chemistry
SUPERACID CHEMISTRY SECOND EDITION George A. Olah G. K. Surya Prakash Arpad Molnar Jean Sommer SUPERACID CHEMISTRY SUPERACID CHEMISTRY SECOND EDITION George A. Olah G. K. Surya Prakash Arpad Molnar Jean Sommer Copyright # 2009 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. -
140. Sulphuric, Hydrochloric, Nitric and Phosphoric Acids
nr 2009;43(7) The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals 140. Sulphuric, hydrochloric, nitric and phosphoric acids Marianne van der Hagen Jill Järnberg arbete och hälsa | vetenskaplig skriftserie isbn 978-91-85971-14-5 issn 0346-7821 Arbete och Hälsa Arbete och Hälsa (Work and Health) is a scientific report series published by Occupational and Enviromental Medicine at Sahlgrenska Academy, University of Gothenburg. The series publishes scientific original work, review articles, criteria documents and dissertations. All articles are peer-reviewed. Arbete och Hälsa has a broad target group and welcomes articles in different areas. Instructions and templates for manuscript editing are available at http://www.amm.se/aoh Summaries in Swedish and English as well as the complete original texts from 1997 are also available online. Arbete och Hälsa Editorial Board: Editor-in-chief: Kjell Torén Tor Aasen, Bergen Kristina Alexanderson, Stockholm Co-editors: Maria Albin, Ewa Wigaeus Berit Bakke, Oslo Tornqvist, Marianne Törner, Wijnand Lars Barregård, Göteborg Eduard, Lotta Dellve och Roger Persson Jens Peter Bonde, Köpenhamn Managing editor: Cina Holmer Jörgen Eklund, Linköping Mats Eklöf, Göteborg © University of Gothenburg & authors 2009 Mats Hagberg, Göteborg Kari Heldal, Oslo Arbete och Hälsa, University of Gothenburg Kristina Jakobsson, Lund SE 405 30 Gothenburg, Sweden Malin Josephson, Uppsala Bengt Järvholm, Umeå ISBN 978-91-85971-14-5 Anette Kærgaard, Herning ISSN 0346–7821 Ann Kryger, Köpenhamn http://www.amm.se/aoh -
Laboratory Manual
International Program UAM-Boston University Laboratory Manual Organic Chemistry I 2013-2014 Departamento de Química Orgánica Ernesto Brunet Romero Ana María Martín Castro Ramón Gómez Arrayás Laboratory Manual Table of Contents ............................................................................... 1 Introduction ............................................................................... 2 Prelab preparation ............................................................................... 2 Notebook ............................................................................. 3 Safety .............................................................................. 3 Laboratory Practices and Safety Rules ............................................................. 4 Accidents and injuries ........................................................................... 5 Fires ............................................................................. 5 Chemical Wastes ............................................................................. 6 Cleaning Responsibilities ............................................................................. 6 Lab cleanliness ............................................................................. 6 Laboratory Equipment ............................................................................. 7 Proper use of glassware ............................................................................. 8 Some techniques in lab experiments Heating, cooling and stirring ............................................................................