bioRxiv preprint doi: https://doi.org/10.1101/2020.02.24.963538; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Light microscopy based approach for mapping connectivity with molecular specificity 1, 2 3 4 3 Fred Y. Shen , Margaret M. Harrington , Logan A. Walker , Hon Pong Jimmy Cheng , Edward S. 5 2, 3, 4, * Boyden , Dawen Cai Author Affiliation 1 Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA 2 Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA 3 Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA 4 LS&A, Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA 5 McGovern Institute, Media Lab, Department of Biological Engineering, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA * Correspondence to Dawen Cai (
[email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.24.963538; this version posted February 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Mapping neuroanatomy is a foundational goal towards understanding brain function. Electron microscopy (EM) has been the gold standard for connectivity analysis because nanoscale resolution is necessary to unambiguously resolve chemical and electrical synapses.