Infinitesimal Local Study of Formal Schemes Leovigildo Alonso
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FORMAL SCHEMES and FORMAL GROUPS Contents 1. Introduction 2
FORMAL SCHEMES AND FORMAL GROUPS NEIL P. STRICKLAND Contents 1. Introduction 2 1.1. Notation and conventions 3 1.2. Even periodic ring spectra 3 2. Schemes 3 2.1. Points and sections 6 2.2. Colimits of schemes 8 2.3. Subschemes 9 2.4. Zariski spectra and geometric points 11 2.5. Nilpotents, idempotents and connectivity 12 2.6. Sheaves, modules and vector bundles 13 2.7. Faithful flatness and descent 16 2.8. Schemes of maps 22 2.9. Gradings 24 3. Non-affine schemes 25 4. Formal schemes 28 4.1. (Co)limits of formal schemes 29 4.2. Solid formal schemes 31 4.3. Formal schemes over a given base 33 4.4. Formal subschemes 35 4.5. Idempotents and formal schemes 38 4.6. Sheaves over formal schemes 39 4.7. Formal faithful flatness 40 4.8. Coalgebraic formal schemes 42 4.9. More mapping schemes 46 5. Formal curves 49 5.1. Divisors on formal curves 49 5.2. Weierstrass preparation 53 5.3. Formal differentials 56 5.4. Residues 57 6. Formal groups 59 6.1. Group objects in general categories 59 6.2. Free formal groups 63 6.3. Schemes of homomorphisms 65 6.4. Cartier duality 66 6.5. Torsors 67 7. Ordinary formal groups 69 Date: November 17, 2000. 1 2 NEIL P. STRICKLAND 7.1. Heights 70 7.2. Logarithms 72 7.3. Divisors 72 8. Formal schemes in algebraic topology 73 8.1. Even periodic ring spectra 73 8.2. Schemes associated to spaces 74 8.3. -
Quasi-Coherent Sheaves on the Moduli Stack of Formal Groups
Quasi-coherent sheaves on the Moduli Stack of Formal Groups Paul G. Goerss∗ Abstract The central aim of this monograph is to provide decomposition results for quasi-coherent sheaves on the moduli stack of formal groups. These results will be based on the geometry of the stack itself, particularly the height filtration and an analysis of the formal neighborhoods of the ge- ometric points. The main theorems are algebraic chromatic convergence results and fracture square decompositions. There is a major technical hurdle in this story, as the moduli stack of formal groups does not have the finitness properties required of an algebraic stack as usually defined. This is not a conceptual problem, but in order to be clear on this point and to write down a self-contained narrative, I have included a great deal of discussion of the geometry of the stack itself, giving various equivalent descriptions. For years I have been echoing my betters, especially Mike Hopkins, and telling anyone who would listen that the chromatic picture of stable homotopy theory is dictated and controlled by the geometry of the moduli stack Mfg of smooth, one-dimensional formal groups. Specifically, I would say that the height filtration of Mfg dictates a canonical and natural decomposition of a quasi-coherent sheaf on Mfg, and this decomposition predicts and controls the chromatic decomposition of a finite spectrum. This sounds well, and is even true, but there is no single place in the literature where I could send anyone in order for him or her to get a clear, detailed, unified, and linear rendition of this story. -
FORMAL ALGEBRAIC SPACES 0AHW Contents 1. Introduction 1 2
FORMAL ALGEBRAIC SPACES 0AHW Contents 1. Introduction 1 2. Formal schemes à la EGA 2 3. Conventions and notation 8 4. Topological rings and modules 8 5. Affine formal algebraic spaces 14 6. Countably indexed affine formal algebraic spaces 19 7. Formal algebraic spaces 20 8. The reduction 22 9. Colimits of algebraic spaces along thickenings 24 10. Completion along a closed subset 26 11. Fibre products 29 12. Separation axioms for formal algebraic spaces 30 13. Quasi-compact formal algebraic spaces 32 14. Quasi-compact and quasi-separated formal algebraic spaces 32 15. Morphisms representable by algebraic spaces 34 16. Types of formal algebraic spaces 39 17. Morphisms and continuous ring maps 44 18. Taut ring maps and representability by algebraic spaces 49 19. Adic morphisms 50 20. Morphisms of finite type 51 21. Surjective morphisms 54 22. Monomorphisms 55 23. Closed immersions 55 24. Restricted power series 57 25. Algebras topologically of finite type 58 26. Separation axioms for morphisms 63 27. Proper morphisms 65 28. Formal algebraic spaces and fpqc coverings 66 29. Maps out of affine formal schemes 67 30. The small étale site of a formal algebraic space 69 31. The structure sheaf 72 32. Other chapters 74 References 75 1. Introduction 0AHX This is a chapter of the Stacks Project, version fac02ecd, compiled on Sep 14, 2021. 1 FORMAL ALGEBRAIC SPACES 2 Formal schemes were introduced in [DG67]. A more general version of formal schemes was introduced in [McQ02] and another in [Yas09]. Formal algebraic spaces were introduced in [Knu71]. Related material and much besides can be found in [Abb10] and [FK]. -
Jacobson Radical and Nilpotent Elements
East Asian Math. J. Vol. 34 (2018), No. 1, pp. 039{046 http://dx.doi.org/10.7858/eamj.2018.005 JACOBSON RADICAL AND NILPOTENT ELEMENTS Chan Huh∗ y, Jeoung Soo Cheon, and Sun Hye Nam Abstract. In this article we consider rings whose Jacobson radical con- tains all the nilpotent elements, and call such a ring an NJ-ring. The class of NJ-rings contains NI-rings and one-sided quasi-duo rings. We also prove that the Koethe conjecture holds if and only if the polynomial ring R[x] is NJ for every NI-ring R. 1. Introduction Throughout R denotes an associative ring with identity unless otherwise stated. An element a 2 R is nilpotent if an = 0 for some integer n ≥ 1, and an (one-sided) ideal is nil if all the elements are nilpotent. R is reduced if it has no nonzero nilpotent elements. For a ring R, Nil(R), N(R), and J(R) denote the set of all the nilpotent elements, the nil radical, and the Jacobson radical of R, respectively. Note that N(R) ⊆ Nil(R) and N(R) ⊆ J(R). Due to Marks [14], R is called an NI-ring if Nil(R) ⊆ N(R) (or equilvalently N(R) = Nil(R)). Thus R is NI if and only if Nil(R) forms an ideal if and only if the factor ring R=N(R) is reduced. Hong et al [8, corollary 13] proved that R is NI if and only if every minimal strongly prime ideal of R is completely prime. -
Duality and Flat Base Change on Formal Schemes
Contemporary Mathematics Duality and Flat Base Change on Formal Schemes Leovigildo Alonso Tarr´ıo, Ana Jerem´ıas L´opez, and Joseph Lipman Abstract. We give several related versions of global Grothendieck Duality for unbounded complexes on noetherian formal schemes. The proofs, based on a non-trivial adaptation of Deligne's method for the special case of ordinary schemes, are reasonably self-contained, modulo the Special Adjoint Functor Theorem. An alternative approach, inspired by Neeman and based on recent results about \Brown Representability," is indicated as well. A section on applications and examples illustrates how our results synthesize a number of different duality-related topics (local duality, formal duality, residue theorems, dualizing complexes,. .). A flat-base-change theorem for pseudo-proper maps leads in particular to sheafified versions of duality for bounded-below complexes with quasi-coherent homology. Thanks to Greenlees-May duality, the results take a specially nice form for proper maps and bounded-below complexes with coherent homology. Contents 1. Preliminaries and main theorems. 4 2. Applications and examples. 10 3. Direct limits of coherent sheaves on formal schemes. 31 4. Global Grothendieck Duality. 43 5. Torsion sheaves. 47 6. Duality for torsion sheaves. 59 7. Flat base change. 71 8. Consequences of the flat base change isomorphism. 86 References 90 First two authors partially supported by Xunta de Galicia research project XUGA20701A96 and Spain's DGES grant PB97-0530. They also thank the Mathematics Department of Purdue University for its hospitality, help and support. Third author partially supported by the National Security Agency. c 1999 American Mathematical Society 3 4 LEOVIGILDO ALONSO, ANA JEREM´IAS, AND JOSEPH LIPMAN 1. -
Remarks on Nearby Cycles of Formal Schemes
Remarks on nearby cycles of formal schemes David Hansen⇤ May 9, 2018 Abstract We prove that the nearby cycles functor associated with the generic fiber of a p-adic for- mal scheme has many properties in common with derived pushforward along a proper map of schemes. In particular, we show that this functor has a right adjoint, satisfies the projection formula, and commutes with Verdier duality. Contents 1 Introduction 1 2 Proofs 4 2.1 Compact generation and the right adjoint ...................... 4 2.2 The projection formula and its consequences ..................... 5 2.3 Duality ......................................... 8 References 9 1 Introduction Let K be a nonarchimedean field, with ring of integers and residue field k,andletX be a O formal scheme over Spf which is locally of topologically finite type. By a classical construction of O Raynaud, there is a functorially associated rigid analytic generic fiber X = Xan, which we interpret as an adic space over Spa(K, ). There is a natural map of sites O λ : X X X ´e t ! ´e t corresponding to the functor sending an étale map Y X to the associated map on rigid generic ! fibers. Fix a Noetherian coefficient ring ⇤ killed by some positive integer, so λX induces a pushfor- ward functor λX on sheaves of ⇤-modules. We refer to the associated derived functor ⇤ RλX : D(X´e t , ⇤) D(X´e t , ⇤) ⇤ ! as the nearby cycles functor of X. This functor was introduced and studied (separately) by Berkovich and Huber [Ber94, Hub96], who established many of its important properties; in particular, when X ⇤Department of Mathematics, Columbia University, 2990 Broadway, New York NY 10027; [email protected] 1 is the formal completion of a finite type -scheme, they proved a comparison with classical nearby O cycles. -
Affine Grassmannians
BASICS ON AFFINE GRASSMANNIANS BY TIMO RICHARZ Contents 1. Ind-schemes 1 2. The affine Grassmannian for GLn 8 3. The affine Grassmannian for general groups 13 References 20 These are preliminary notes based on lectures given at the summer school `Buildings and affine Grassmannians' in Luminy, summer 2019. Comments are highly welcome! 1. Ind-schemes Ind-schemes provide a suitable language to handle the infinite-dimensional spaces such as the affine Grassmannians we encounter. Loosely speaking, an ind-scheme is a possibly infinite union 1 S i of schemes. The archetypical example is the infinite-dimensional affine space A = i≥0 A where Ai ⊂ Ai+1 via the first i coordinates. We explain our conventions and point out a few properties. Definition 1.1. A strict ind-scheme is a functor X : AffSchop ! Sets from the category of affine schemes which admits a presentation X ' colimi2I Xi as a filtered colimit of schemes where all transition maps Xi ! Xj, i ≤ j are closed immersions. The category of strict ind-schemes IndSch is the full subcategory of functors AffSchop ! Sets whose objects are strict ind-schemes. Here we regard schemes via the Yoneda embedding as a full subcategory of functors AffSchop ! Sets, and colimits of such functors are computed termwise. All ind-schemes in this survey are strict ind-schemes in the above sense, and we will usually drop the attribute `strict'. Also we identify AffSchop = Rings with the category of (commutative, unital) rings whenever convenient. Remark 1.2. Infact many ind-schemes of interest to us such as the affine Grassmannian admit a presentation X ' colimi2I Xi as in Definition 1.1 where the index set I is countable. -
Modular Curves and Rigid-Analytic Spaces Brian Conrad
Pure and Applied Mathematics Quarterly Volume 2, Number 1 (Special Issue: In honor of John H. Coates, Part 1 of 2 ) 29|110, 2006 Modular Curves and Rigid-Analytic Spaces Brian Conrad Contents 1. Introduction 30 1.1. Motivation 30 1.2. Overview of results 30 1.3. Notation and terminology 32 2. Analytic generalized elliptic curves 33 2.1. Basic de¯nitions over a rigid-analytic space 33 2.2. Global structure of generalized elliptic curves over rigid spaces 41 3. Universal structures 52 3.1. Relative rigid Tate curves and a variant on Berthelot's functor 52 3.2. Degenerate ¯bers and modular curves 58 4. Canonical subgroups 69 4.1. The p-torsion case 69 4.2. Higher torsion-level canonical subgroups 75 4.3. Frobenius lifts 81 Appendix A. Some properties of morphisms 86 Received July 23, 2005. 1991 Mathematics Subject Classi¯cation. Primary 14G22; Secondary 14H52. This research was partially supported by NSF grant DMS-0093542, the Alfred P. Sloan Foun- dation, and the Clay Mathematics Institute. I would like to thank L. Lipshitz and M. Temkin for helpful discussions, and K. Buzzard for sustained encouragement while this circle of ideas evolved. 30 Brian Conrad A.1. Properties of ¯nite morphisms 86 A.2. Change of base ¯eld 90 Appendix B. Algebraic theory of generalized elliptic curves 101 B.1. Deligne{Rapoport semistable curves of genus 1 101 B.2. Generalized elliptic curves over schemes 103 B.3. Reduction-type and formal canonical subgroups 106 References 109 1. Introduction 1.1. Motivation. In the original work of Katz on p-adic modular forms [Kz], a key insight is the use of Lubin's work on canonical subgroups in 1-parameter formal groups to de¯ne a relative theory of a \canonical subgroup" in p-adic fam- ilies of elliptic curves whose reduction types are good but not too supersingular. -
Arxiv:Math/0701532V3 [Math.AG] 25 Mar 2009
FORMAL AND RIGID GEOMETRY: AN INTUITIVE INTRODUCTION, AND SOME APPLICATIONS JOHANNES NICAISE Abstract. We give an informal introduction to formal and rigid geometry, and we discuss some applications in algebraic and arithmetic geometry and singularity theory, with special emphasis on recent applications to the Milnor fibration and the motivic zeta function by J. Sebag and the author. 1. Introduction Let R be a complete discrete valuation ring, with quotient field K, and residue field k. We choose a uniformizing parameter π, i.e. π generates the unique maximal ideal of R. Geometers may take R = C[[t]], the ring of formal power series over the complex numbers, with K = C((t)), k = C, π = t, while number theorists might prefer to think of R = Zp, the ring of p-adic integers, with K = Qp, k = Fp, π = p. Very roughly, a formal scheme over R consists of an algebraic variety over k, together with algebraic information on an infinitesimal neighbourhood of this vari- ety. If X is a variety over R, we can associate to X its formal completion X in a natural way. It is a formal scheme over R, and can be seen as an infinitesimal tubu- b lar neighbourhood of the special fiber X0 in X. Its underlying topological space coincides with the space underlying X0, but additional infinitesimal information is contained in the sheaf of regular functions on X. An important aspect of the formal scheme X is the following phenomenon. A b closed point x on the scheme-theoretic generic fiber of X over K has coordinates b in some finite extension of the field K, and (unless X is proper over R) there is no natural way to associate to the point x a point of the special fiber X0/k by reduction modulo π. -
On Perfect Group Rings
PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 27, Number 1, January 1971 ON PERFECT GROUP RINGS S. M. WOODS1 Abstract. It is shown that the group ring A G of the group G over the ring A is perfect if and only if A is perfect and G is finite. (Perfect rings were characterized by H. Bass in 1960.) 1. Introduction. All rings are assumed to have a unit element. A ring R is called semiprime if its prime radical rad(P) is 0, and semi- primitive if its Jacobson radical Rad(P) is 0. The ring R is perfect if P/Rad(P) is artinian and Rad(P) is left P-nilpotent (i.e. for every sequence {a¿} in Rad(P) there exists an n such that aia2 ■ • • an = 0). Equivalently, R is perfect if it satisfies the descending chain condi- tion on principal right ideals. If R is a perfect ring then so is every homomorphic image of R, and so is Rcn), the ring of all n by n matrices over P. These results are due to H. Bass [l ]. If A is a ring and G is a group, A G will denote the group ring of G over A. If H is a subgroup of G then aH will denote the right ideal of AG generated by {l— h: hEH} ; if H is normal then coP is an ideal and AG/uH^A(G/H). The fundamental ideal coGof AG will be de- noted A; A^.AG/A. If Iis a right ideal of ^4G then IG will denote the right ideal of ^4G generated by the subset /; if I is an ideal then IG is an ideal and AG/IG=.(A/I)G. -
Arxiv:1006.2723V1 [Math.AG]
SMOOTHNESS OF THE TRUNCATED DISPLAY FUNCTOR EIKE LAU Abstract. We show that to every p-divisible group over a p-adic ring one can associate a display by crystalline Dieudonn´etheory. For an appropriate notion of truncated displays, this induces a functor from truncated Barsotti-Tate groups to truncated displays, which is a smooth morphism of smooth algebraic stacks. As an application we obtain a new proof of the equivalence between infinitesimal p-divisible groups and nilpotent displays over p-adic rings, and a new proof of the equivalence due to Berthelot and Gabber between commutative finite flat group schemes of p-power order and Dieudonn´emodules over perfect rings. Introduction The notion of displays over p-adic rings arises naturally both in Cartier theory and in crystalline Dieudonn´etheory. In Cartier theory, displays are a categorised form of structure equations of Cartier modules of formal Lie groups. This is the original perspective in [Zi1]. Passing from a structure equation to the module corresponds to Zink’s functor BT from displays to formal Lie groups, which induces an equivalence between nilpotent displays and p-divisible formal groups by [Zi1, La1]. The theory includes at its basis a description of the Dieudonn´e crystal of a p- divisible group BT(P) in terms of the nilpotent display P. We view this as a passage from Cartier theory to crystalline Dieudonn´etheory. On the other hand, let G be a p-divisible group over a p-adic ring R, and let D be the covariant Dieudonn´ecrystal of G. It is well-known that the Frobenius of D restricted to the Hodge filtration is divisible by p. -
Noncommutative Ring Theory Notes
NONCOMMUTATIVE RING THEORY NOTES Contents 1. Notational Conventions & Definitions 1 1.1. Notation 1 1.2. Definitions 1 2. Introduction 1 3. Rings with d.c.c. 7 3.1. Finite Dimensional Algebras 12 4. Nil and Nilpotent Ideals 14 5. Quotient Rings 17 5.1. Ideals in Q(R) 25 6. Division Algebras 30 6.1. Brauer Groups 33 7. Gelfand-Kirillov dimension 38 1. Notational Conventions & Definitions In these notes, R always denotes a ring with 1, unless otherwise stated. 1.1. Notation. subset, proper subset, ideal, right/left ideal, right mod- ule, bimodule 1.2. Definitions. simple, semisimple, prime, semiprime, primitive, semiprim- itive, artinian, noetherian, nil, nilpotent, regular, dedekind-finite, es- sential, uniform, goldie 2. Introduction Definition 2.1. A right R-module, MR, is an abelian group under addition together with a map MR × R ! MR, written (m; r) 7! mr, such that the following hold, for all m; n 2 MR, and all r; s 2 R: (1) (m + n)r = mr + nr (2) m(r + s) = mr + ms (3) m(rs) = (mr)s (4) m · 1 = m 1 2 NONCOMMUTATIVE RING THEORY NOTES If the ring R is understood, we usually drop the subscript and just write M in place of MR. A subgroup N of MR is a submodule if NR ⊆ N. Moreover, if N is a submodule of M, then we can form the factor module M=N in the obvious way. As a set, we have M=N = f m + N j m 2 M g, and the action of R is given by (m + N)r = mr + N.