Late Cretaceous Dwarf Decapods from Guerrero, Southern Mexico and Their Migration Patterns

Total Page:16

File Type:pdf, Size:1020Kb

Late Cretaceous Dwarf Decapods from Guerrero, Southern Mexico and Their Migration Patterns Contributions to Zoology, 75 (3/4) 121-132 (2006) Late Cretaceous dwarf decapods from Guerrero, southern Mexico and their migration patterns René H.B. Fraaije1 , Francisco J. Vega2, Barry W.M. van Bakel1 and Luis M. Garibay-Romero2,3 1 Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, The Netherlands, E-mail: info@ oertijdmuseum.nl; 2 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D. F., México, E-mail: [email protected]; 3 Unidad Académica de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda de San Juan Bautista, 40200, Taxco el Viejo, Guer- rero, México Key words: Dwarfi sm, decapoda, Cretaceous, new species, Mexico Abstract Introduction Two new brachyuran species are described for the Upper Cre- The Mexcala Formation crops out in southern Mexi- taceous Mexcala Formation, Guerrero State, Mexico. Longu- co. It is reported from the states of Puebla, Morelos sorbis quadratus new species (Coniacian, Temalac region) is the oldest and southernmost record for the genus. Xanthosia and Guerrero. This lithostratigraphic unit is a com- zoquiapensis new species (Campanian, Zoquiapa region) is the plex sedimentary sequence, as it includes deep-wa- fi rst record for the genus in Mexico. In addition, the age for ter facies as well as very shallow marine sediments, Costacopluma bishopi Vega and Feldmann is discussed (Co- with lateral and vertical changes, overlying Lower niacian, Temalac region) and represents the oldest and south- Cretaceous limestones of the Morelos Formation. ernmost record for Cretaceous representatives of this genus in North America. All specimens are considerably smaller com- Defi ned by Fries (1960) as a 1,220 m fl ysh-like se- pared to other species of the same genera and are interpreted as quence of pelagic limestones and marls at its base, the fi rst example of brachyuran dwarfi sm in the geological the Mexcala Formation grades upward to shales, record. These species add new insight into possible migratory siltstones, sandstones, and conglomeratic lenses. An routes during the Late Cretaceous. Within Longusorbis, a north- early Coniacian age was proposed by Bohnenberg- western migratory route is documented from the Coniacian in Mexico to the Campanian - Maastrichtian of the west coast of Thomas (1955) for the Mexcala Formation. Cserna North America (Canada), whereas within the genus Xanthosia, (1965) named, described, and interpreted the litho- a western migratory route from the Albian of Europe to the logical units in the area. More recent stratigraphic Campanian of Mexico is indicated. Costacopluma migrated east reports have detailed facies distribution, sedimen- and north to the west coast of Africa, southeast North America tology, diagenesis, and subdivided the formation into and Greenland. members (Ontiveros-Tarango, 1973; Cserna et al., 1980; Ortega-Gutierrez, 1980; González-Pacheco, Contents 1988; Hernández-Romano et al., 1998; Hernández- Romano, 1999, among others). Most authors agree Introduction .................................................................................... 121 that deposition of the fi rst sediments of the Mexcala Systematic palaeontology ........................................................... 124 Formation occured in Turonian times, while the last Longusorbis quadratus n. sp. ............................................... 124 marine deposits are found in late Maastrichtian silt- Xanthosia zoquiapensis n. sp. .............................................. 125 stones and sandstones of the study area (Alencáster, Costacopluma bishopi Vega and Feldmann, 1992 ........... 128 1980; Perrilliat et al., 2000). Discussion ...................................................................................... 128 Acknowledgements ...................................................................... 129 Fossil content of the Mexcala Formation includes References ...................................................................................... 129 foraminifera (Hernández-Romano et al., 1997; Lang Downloaded from Brill.com10/07/2021 10:16:36PM via free access 122 Fraaije et al – Dwarf decapods from Mexico Fig. 1. Location map of the two studied localities in northeast Guerrero state, Southern Mexico. and Frerichs, 1998; Aguilera-Franco, 2000; 2003; tion in Guerrero. Locality IGM-2448 is found 5 Aguilera-Franco et al., 2001; Aguilera-Franco and km north of Temalac, a small village located 35 km Hernández-Romano, 2004; Aguilera-Franco and Al- southeast of Iguala, Guerrero. Locality IGM-3557 lison, 2005), gastropods and bivalves (Böse, 1923; is found near the town of Zoquiapa, northeast Alencáster, 1980; Alencáster et al., 1987; Perrilliat Guerrero (Fig. 1). and Vega, 1996; 2001; Garibay-Romero et al., 1998; Vega and Feldmann (1992) described Costaco- 2002; Kiel et al., 2000; 2002; Perrilliat et al., 2000; pluma bishopi based on very small specimens found Kiel and Perrilliat, 2001; 2004; Reyes-Prieto, 2004; on light-brown siltstones of locality IGM-2448. Vermeij et al., 2004); ammonoids (Burckhard, 1919; They proposed a Maastrichtian age for these sedi- González-Arreola, 1977); crustaceans (Vega and ments, but from recent studies on foraminifera and Feld mann, 1992); sea urchins and planktic crinoids rudists it is now clear that the age is Coniacian. Al- (Barrios-Matías, 1992; Sánchez-Rodríguez, 1997; though no complete section was measured due to Rosendo-Brito et al., 2002); fi shes (Garibay-Romero intense folding and covered outcrops, a composite and Alvarado-Ortega, 2004; Alvarado-Ortega et al., column of 25 m of limestones, siltstones and sand- 2004, and dinosaur ichnites (Ferrusquía-Villafranca stones has been constructed (Fig. 2). The base of et al., 1993). this sequence is represented by an alternation of The brachyuran decapods described herein were dark-brown limestones and light-brown siltstones collected at two localities of the Mexcala Forma- and mudstones, with a rich content of fossils (fo- Downloaded from Brill.com10/07/2021 10:16:36PM via free access Contributions to Zoology, 75 (3/4) – 2006 123 raminifera, rudists, ostreids, echinoids and plant remains). This locality is interpreted to be the tran- sitional contact between the Morelos and Mexcala formations, marking the fi rst pulses of terrigenous sediments. Some well-preserved rudists are found on limestone layers of the Morelos Formation at the base of the section, and belong to the genus Touca- sia, of possible Turonian age. Based on foraminifera studies, Lang and Frerichs (1998) proposed a Coni- Fig. 2. Composite stratigraphic section at localities IGM-2448 acian age for the fi rst Laramide pulses in the study and IGM-3557, showing lithology and thickness of Morelos and area, marking as a change in the sedimentary regi- Mexcala formations. men from carbonates to fi ne siliciclastic sediments. Based on identifi cation of the Di ca rinella concavata cies, was found both in the uppermost limestone biozone, Lang and Frerichs (1998) placed the fi rst layers of the Morelos Formation, and in siltstones of strata of the Mexcala Formation in the Coniacian the lower part of the Mexcala Formation. It is im- just above what they called the Cuautla Formation portant to note that Lang and Frerichs (1998) pro- limestones. An interesting fact is that one of the spe- posed that the southern margin of the North cies here reported, Longusorbis quadratus new spe- American Plate in northern Guerrero was isolated Downloaded from Brill.com10/07/2021 10:16:36PM via free access 124 Fraaije et al – Dwarf decapods from Mexico from the Coniacian-early Santonian Pacifi c Ocean. and outwardly directed, massive outer orbital spine. However, occurrence of the other representative Including the outer orbital spine, the lateral margin species of Longusorbis, L. cuniculosus Richards, is armed with 4 equally outwardly directed spines 1975 in upper Campanian – lower Maastrichtian decreasing in size posteriorly. Regions are distinct sediments of the Shelter Point locality at Vancouver and demarcated by furrows. The anterior process of Island, Canada (Richards, 1975; Schweitzer et al. the relatively small mesogastric region extends al- 2003), clearly indicates a northwest migration of most to the frontal, the distinct top fading into the this genus during the Late Cretaceous. The upper- downturned sulcus of the rostrum. The most promi- most part of the Mexcala Formation is represented nent furrow is the cervical furrow extending sinu- by siltstones and sandstones of early to late Maas- ously from the base of the mesogastric lobe ending trichtian age in the Temalac – Mitepec area (Perril- below the outer orbital spine defi ning the posterior liat et al., 2000). margin of the swollen protogastric and hepatic re- The Mexcala Formation is represented by shal- gions. The forwardly-directed hepatic furrow sepa- low marine light brown siltstones nearby Zoquiapa rates the protogastric and hepatic regions. The width town, northeastern Guerrero, where a composite of the urogastric region is smaller than the maxi- section of 25 m (Fig. 2) contains several species of mum width of the mesogastric region. The broad gastropods and bivalves of Campanian age. shield shaped cardiac region is separated from the The material studied is deposited in the Colec- branchial regions by broad shallow furrows. The ción Nacional de Paleontología, Instituto de Ge- mesobranchial lobes bear three tubercles forming a ología, Universidad Nacional Autónoma de México. triangle. The posterolateral margins
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Geology of the Bernal-Jalpan Area Estado De Queretaro Mexico
    Geology of the Bernal-Jalpan Area Estado de Queretaro Mexico By KENNETH SEGERSTROM GEOLOGIC INVESTIGATIONS IN MEXICO GEOLOGICAL SURVEY BULLETIN 1104-B Prepared in cooperation with the Instituto Nacional para la Investigation de Recursos Minerales, under the auspices of the International Cooperation Admin­ istration of the Department of State UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract __..---_.--___-____._-___---___.______..____._._...______ 19 Introduction __-_______--_____-_____-____-_______._____..__..__.___ 19 Location _____________________________________________________ 19 Fieldwork and acknowledgments._______________________________ 19 Geography ___________________________________________________ 2 ] Accessibility ___________________________________________ ___ 21 Topography and drainage__________________________________ 22 Climate. _--__--_-___-_--_--___._____-_ ____________.______ 24 Vegetation_ _ _______--..___.__.__________._____-_____.___ 26 Water supply and agriculture_-___-_______-__---__--_-______ 27 Archeology ---_-----_---_------_--___---____-_____--______ 29 Sedimentary, metamorphic, and volcanic rocks....____.-_____..____._. 29 Jurassic system or older.___---_-_____--___---____-__--_-_______ 30 Pre-Las Trancas rocks.____________________________________ 30 Jurassic system.
    [Show full text]
  • (Campanian) of the Moyenne Moulouya, Northeast Morocco
    Revista Mexicana de CienciasNew Geológicas, crabs from v. 27,the núm.Upper 2, Cretaceous 2010, p. 213-224 of the Moyenne Moulouya, Morocco 213 New crabs (Crustacea, Decapoda) from the Upper Cretaceous (Campanian) of the Moyenne Moulouya, northeast Morocco Àlex Ossó-Morales1, Pedro Artal2, and Francisco J. Vega3,* 1 Josep Vicenç Foix, 12-H, 1er-1ª 43007 Tarragona, Catalonia, Spain, 2 Museo Geológico del Seminario de Barcelona, Diputación 231, E-08007 Barcelona, Spain. 3 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, 04510, México D. F., Mexico. * [email protected] ABSTRACT The presence of the genera Costacopluma and Ophthalmoplax in Upper Cretaceous (Campanian) Moroccan strata is documented on the basis of specimens collected from the Calcaires à slumps de Taghit Formation, Moyenne Moulouya (Morocco). Two new species are described, Ophthalmoplax minimus and Costacopluma maroccana. The first record for Opthalmoplax in the west Tethyan realm is reported, and systematic affinities of this genus and its species are discussed. An absolute age of the late Campanian was obtained for this assemblage from 87Sr/86Sr analysis applied to well preserved cuticle calcitic remains of Ophthalmoplax minimus. Costacopluma maroccana represents the 14th species for this genus and the fourth Cretaceous species. Its morphology reinforces hypothesis of two main phyletic groups for this genus. Key words: Crustacea, Decapoda, Ophthalmoplax, Costacopluma, Campanian, Morocco. RESUMEN Se documenta la presencia de los géneros Ophthalmoplax y Costacopluma con base en especímenes recolectados en sedimentos del Cretácico Superior (Campaniano) de la Moyenne Mouluya (Marruecos). Se describen dos nuevas especies: Ophthalmoplax minimus y Costacopluma maroccana. Se identifíca y localiza (por primera vez en la parte occidental del dominio del Tethys) el género Ophthalmoplax, discutiéndose las afinidades sistemáticas de este género y sus especies.
    [Show full text]
  • A New Classification of the Xanthoidea Sensu Lato
    Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Die Magenstrukturen Der Brachyura (Crustacea, Decapoda): Morphologie Und Phylogenetische Bedeutung
    Die Magenstrukturen der Brachyura (Crustacea, Decapoda): Morphologie und phylogenetische Bedeutung Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie der Mathematisch-Naturwissenschaftlichen Fakultät I von Dipl.-Biol. Andreas Brösing, geb. am 28.06. 1968 in Dessau Präsident der Humboldt-Universität zu Berlin Prof. Dr. Jürgen Mlynek Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Michael Linscheid Gutachter: 1. Prof. Dr. Gerhard Scholtz 2. Prof. Dr. Hannelore Hoch 3. Prof. Dr. Johann-Wolfgang Wägele eingereicht: 20. September 2002 Tag der mündlichen Prüfung: 27. November 2002 Wissenschaft hat etwas Faszinierendes an sich. So eine geringfügige Investition an Fakten liefert so einen reichen Ertrag an Voraussagen. Mark Twain • Keywords: Brachyura, phylogeny, foregut-ossicles, fossil record • Schlagworte: Brachyura, Phylogenie, Magenossikel, Fossilbericht Abstract Within the Decapoda the taxon Brachyura is the species-richest taxon with up to 10000 species. The phylogeny of the Brachyura has been discussed based on morphological and molecular investigations since more than a century. The investigation of the foregut-ossicles and gastric-teeth of 66 brachyuran species, is a new approach to answer important phylogenetic questions. Using a specific staining pigment Alizarin Red S, six new described foregut-ossicles are added to an existing nomenclature. As a result of this method the presence of 41 foregut-ossicles is proposed for the ground pattern of the Brachyura. The cladistic analysis supports a monophyletic origin of the Brachyura including the Dromiidae and the Raninidae. The taxa Podotremata and Heterotremata, postulated as monophyletic by Guinot (1977, 1978), are not supported in the present study. The Dromiidae and Raninidae, which are placed within the Podotremata sensu Guinot, are closer related to the “higher crabs”.
    [Show full text]
  • New Data on the Crab Binkhorstia Ubaghsii (Late Maastrichtian; NE Belgium, SE Netherlands)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/249009143 New data on the crab Binkhorstia ubaghsii (Late Maastrichtian; NE Belgium, SE Netherlands) Article in Contributions to zoology Bijdragen tot de dierkunde · January 2003 DOI: 10.1163/18759866-0720203003 CITATIONS READS 6 119 4 authors: Barry Van Bakel John W. M. Jagt Oertijdmuseum Boxtel Natuurhistorisch Museum Maastricht 140 PUBLICATIONS 1,127 CITATIONS 396 PUBLICATIONS 4,334 CITATIONS SEE PROFILE SEE PROFILE R. Fraaije Yvonne Coole Oertijdmuseum Boxtel, Netherlands Private University Consortium Ltd 170 PUBLICATIONS 1,932 CITATIONS 2 PUBLICATIONS 6 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Maastrichtian Geoheritage Project View project Sedimentology, stratigraphy & petroleum potential of the Cretaceous system of Dhofar, southern Oman View project All content following this page was uploaded by Barry Van Bakel on 31 May 2014. The user has requested enhancement of the downloaded file. Current issue: Vol. 82 nr. 1 home search search history archive help feedback To refer to this article use this url: http://dpc.uba.uva.nl/ctz/vol72/nr02/art03 Contributions to Zoology, 72 (2/3) (2003) New data on the crab Binkhorstia ubaghsii (Late Maastrichtian; NE Belgium, SE Netherlands) Barry W.M. van Bakel , John W.M. Jagt , René H.B. Fraaije , Yvonne Coole Schepenhoek 235, NL-5403 GB Uden, the Netherlands Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7,
    [Show full text]
  • Taphonomy of Decapod-Bearing Concretions and Their Associated
    Volumen 77 (3): REVISTA DE LA DESARROLLOS RECIENTES EN ICNOLOGÍA ARGENTINA ASOCIACIÓN GEOLÓGICA ARGENTINA www.geologica.org.ar Septiembre 2020 Taphonomy of decapod-bearing concretions and their associated trace fossils from the Agrio Formation (Lower Cretaceous, Neuquén Basin), with paleobiological implications for axiid shrimps A. Mariel ANDRADA1, Graciela S. BRESSAN1,2 and Darío G. LAZO1,2 1Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. 2CONICET E-mails: [email protected], [email protected], [email protected] Editor: Diana E. Fernández Recibido: 7 de julio de 2020 Aceptado: 14 de septiembre de 2020 ABSTRACT A total of 22 concretions containing 37 decapod crustacean specimens belonging to the family Axiidae, from the Hauterivian (Lower Cretaceous) of the Agrio Formation in the Neuquén Basin, were studied. The decapods were assigned to Protaxius sp., which likely had a fossorial life habit. In this work we attempt to determine, through taphonomic analysis, if the specimens fossilized within their burrows or outside them in order to interpret paleobiological aspects of the studied taxon. Several taphonomic criteria of the specimens and concretions, known from the literature, were applied and their utility discussed, including anatomical disposition, completeness of specimens, orientation and alignment, dispersion of exoskeletal elements in the concretion, preservation of both chelae, sedimentary fabric of the concretion, position within the concretion, and shape of the concretions. The relative importance of these criteria was discussed especially in those concretions with conflicting evidence pointing to either fossilization within or outside burrow systems.
    [Show full text]
  • First Evidence of the Cretaceous Decapod Crustacean Protocallianassa from Sweden
    Downloaded from http://sp.lyellcollection.org/ by guest on October 2, 2021 First evidence of the Cretaceous decapod crustacean Protocallianassa from Sweden ELISABETH EINARSSON1, ARON PRASZKIER1 & VIVI VAJDA1,2* 1Department of Geology, Lund University, So¨lvegatan 12, SE-223 62 Lund, Sweden 2Department of Palaeobiology, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden *Corresponding author (e-mail: [email protected]) Abstract: An assemblage of the burrowing ghost shrimp, Protocallianassa faujasi, is described, providing the first evidence of this decapod species from Sweden. The fossils occur in succes- sions of the informal earliest late Campanian Belemnellocamax balsvikensis zone at A˚ sen and the latest early Campanian B. mammillatus zone at Ivo¨ Klack, both in the Kristianstad Basin of NE Ska˚ne. Numerous, heavily calcified chelipeds were found within a restricted bed at A˚ sen that was rich in carbonate-cemented nodules. Based on the burrowing lifestyle of modern mud shrimps, we interpret these nodules as infilled burrow chambers. The low abundance of molluscs within the Protocallianassa beds is also consistent with analogous extant communities, indicating that a similar ecologically exclusive relationship ruled within the Late Cretaceous shallow- marine ecosystems. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. The Kristianstad Basin in the southernmost Swedish represented by sea-urchin spines (Erlstro¨m & Gabri- province of Ska˚ne hosts a richly fossiliferous suc- elson
    [Show full text]
  • Events of the Cenomanian-Turonian Succession, Southern Mexico
    ISSN: 0378-102X www.ucm.es \JIG Journal of Iberian Geology 31 (2004) 25-50 Events of the Cenomanian-Turonian Succession, Southern Mexico Eventos de una Sucesión del Cenomaniano-Turoniano del Sur de México Noemí Aguilera-Franco1 and Peter Allison2 1Instituto Mexicano del Petróleo, Gerencia de Geociencias, Edificio 6, Eje Central Norte Lázaro Cárdenas 152, C.P. 07730, México D.F. MEXICO. E-mail address:[email protected] 2T.H. Huxley School of Environment, Earth Science and Engineering, Imperial College of Science Technology and Medicine, Prince Consort Road, London SW7 2BP, UK. Received: 22/10/03 / Accepted: 16/06/04 Abstract The Cenomanian-Turonian succession of the Guerrero-Morelos basin contains a number of paloecommunities that can be cor- related. These palaeocommunities have been recognized and interpreted as the result of environmental disturbances. Some of these bioevents are probably local (platform-wide) and reflect successive stages of the platform drowning, whereas others have equiva- lents in other parts of the world and are probably linked to global paleoceanographic changes. Bioevents that can be used for cor- relation are: 1) the last appearance of Pseudorhapydionina dubia (94.4Ma); 2) the disappearance of most large benthic foraminifers and calcareous algae (94.2Ma); 3) the first appearance of hippuritid mollusks (93.5Ma); 4) the first appearance ofHelvetoglobotrun - cana helvetica (93.0Ma) accompanied by a diversification of keeled planktonic foraminifers. Increase in13 C and TOC values in the deeper-water facies covering the carbonate platform suggests a probable link between the drowning of the platform and the global Cenomanian-Turonian Anoxic Event. The deposition of organic-rich facies in the upper Whiteinella archaeocretacea and lower Helvetoglobotruncana helvetica Zones is associated with the establishment of oxygen poor and eutrophic conditions.
    [Show full text]
  • First Evidence of the Cretaceous Decapod Crustacean Protocallianassa from Sweden
    Downloaded from http://sp.lyellcollection.org/ by guest on October 3, 2021 First evidence of the Cretaceous decapod crustacean Protocallianassa from Sweden ELISABETH EINARSSON1, ARON PRASZKIER1 & VIVI VAJDA1,2* 1Department of Geology, Lund University, So¨lvegatan 12, SE-223 62 Lund, Sweden 2Department of Palaeobiology, Swedish Museum of Natural History, PO Box 50007, SE-104 05 Stockholm, Sweden *Corresponding author (e-mail: [email protected]) Abstract: An assemblage of the burrowing ghost shrimp, Protocallianassa faujasi, is described, providing the first evidence of this decapod species from Sweden. The fossils occur in succes- sions of the informal earliest late Campanian Belemnellocamax balsvikensis zone at A˚ sen and the latest early Campanian B. mammillatus zone at Ivo¨ Klack, both in the Kristianstad Basin of NE Ska˚ne. Numerous, heavily calcified chelipeds were found within a restricted bed at A˚ sen that was rich in carbonate-cemented nodules. Based on the burrowing lifestyle of modern mud shrimps, we interpret these nodules as infilled burrow chambers. The low abundance of molluscs within the Protocallianassa beds is also consistent with analogous extant communities, indicating that a similar ecologically exclusive relationship ruled within the Late Cretaceous shallow- marine ecosystems. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. The Kristianstad Basin in the southernmost Swedish represented by sea-urchin spines (Erlstro¨m & Gabri- province of Ska˚ne hosts a richly fossiliferous suc- elson
    [Show full text]
  • A Taxonomic Review of British Decapod Crustacea
    Bulletin of the Mizunami Fossil Museum, no. 29 (2002), p. 81-92. A taxonomic review of British decapod Crustacea Joe S. H. Collins 8 Shaw's Cottages, Perry Rise, London, SE23 2QN, U. K. & Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, U. K. Abstract Recent changes in the taxonomic position of a number of British decapod crustaceans are brought together from their respective publications. A new crab genus, Stintonius, is described to contain Portunites subovata Quayle & Collins, 1981, Panopeus kempi Ouayle & Collins, 1981, is also transferred to a new genus, Sereneopeus, and a subspecies, Dromilites lamarckii humerosus Quayle & Collins, 1981, is raised to specific status. Key words: Crustacea, Decapoda, Mesozoic, Cenozoic, England Introduction Coeloma sp., from Boxstones, in Suffolk requires verification, while A. Bell (1921) himself, cast doubt on Accounts of the fossil crabs of the British succession are the identification of Calappa sp. that he first recorded in widely distributed in the scientific literature and there is 1897. Cancer deshayesii is considered herein; Maja no recent review that considers their taxonomic diversity. veruccosa, recorded from an almost entire carapace from Continuing research and refinement of diagnoses, often as the Coralline Crag of Butley, presently occurs in the not reflecting the constant differences of opinion between Mediterranean (Zariquiey Alvarez, 1946). The Monograph the 'splitters' and the 'lumpers', latterly largely attendant of the Crustacea of the London Clay by Thomas Bell upon the revision of the Treatise on Invertebrate (1858) remains the only collective work concerning the Palaeontology (Decapoda, Part R) (Feldmann, R. M. & Eocene species.
    [Show full text]