Active Fire Protection Systems

Total Page:16

File Type:pdf, Size:1020Kb

Active Fire Protection Systems NIST NCSTAR 1-4 Federal Building and Fire Safety Investigation of the World Trade Center Disaster Active Fire Protection Systems David D. Evans Richard D. Peacock Erica D. Kuligowski W. Stuart Dols William L. Grosshandler National Institute of Standards and Technology Technology Admlnisiration • U.S. Department of Commerce NIST NCSTAR1-4 Federal Building and Fire Safety Investigation of the World Trade Center Disaster Active Fire Protection Systems David D. Evans Society of Fire Protection Engineers Richard D. Peacock Erica D. Kuiigowski W. Stuart Dols William L. Grosshandler Building and Fire Researcti Laboratory National Institute of Standards and Technology September 2005 U.S. Department of Commerce Carlos M. Gutierrez, Secretary Technology Administration Michelle O'Neill, Acting Under Secretary for Technology National Institute of Standards and Technology William Jeffrey, Director Disclaimer No. 1 Certain commercial entities, equipment, products, or materials are identified in this document in order to describe a procedure or concept adequately or to trace the history of the procedures and practices used. Such identification is not intended to imply recommendation, endorsement, or implication that the entities, products, materials, or equipment are necessarily the best available for the purpose. Nor does such identification imply a finding of fault or negligence by the National Institute of Standards and Technology. Disclaimer No. 2 The policy of NIST is to use the International System of Units (metric units) in all publications. In this document, however, units are presented in metric units or the inch-pound system, whichever is prevalent in the discipline. Disclaimer No. 3 Pursuant to section 7 of the National Construction Safety Team Act, the NIST Director has determined that certain evidence received by NIST in the course of this Investigation is "voluntarily provided safety-related information" that is "not directly related to the building failure being investigated" and that "disclosure of that information would inhibit the voluntary provision of that type of information" (15 USC 7306c). In addition, a substantial portion of the evidence collected by NIST in the course of the Investigation has been provided to NIST under nondisclosure agreements. Disclaimer No. 4 NIST takes no position as to whether the design or construction of a WTC building was compliant with any code since, due to the destruction of the WTC buildings, NIST could not verify the actual (or as-built) construction, the properties and condition of the materials used, or changes to the original construction made over the life of the buildings. In addition, NIST could not verify the interpretations of codes used by applicable authorities in determining compliance when implementing building codes. Where an Investigation report states whether a system was designed or installed as required by a code provision, NIST has documentary or anecdotal evidence indicating whether the requirement was met, or NIST has independently conducted tests or analyses indicating whether the requirement was met. Use in Legal Proceedings No part of any report resulting from a NIST investigation into a structural failure or from an investigation under the National Construction Safety Team Act may be used in any suit or action for damages arising out of any matter mentioned in such report (15 USC 281a; as amended by P.L. 107-231). National Institute of Standards and Technology National Construction Safety Team Act Report 1-4 Natl. Inst. Stand. Technol. Natl. Constr. Sfty. Tm. Act Rpt. 1-4, 141 pages (September 2005) CODEN: NSPUE2 U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 2005 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov — Phone: (202) 512-1800 — Fax: (202) 512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 , Abstract The National Institute of Standards and Technology investigation of active fire protection systems in World Trade Center (WTC) 1, 2, and 7 included the design, installation, capabilities, and performance on September 1 1 , 200 1 , of the automatic fire sprinkler, standpipe, standpipe preconnected hoses, fire alarm, and smoke management systems. The purpose and normally expected performance of each active fire protection system in the buildings are described, as well as details about the systems installed in WTC 1 2, and 7. Using fire protection engineering methods, the capabilities of the installed systems to respond to various fire threats from normal office fires up to and including the extraordinary challenge of the fires ignited by the aircraft impacts on September 11, 2001, were assessed. Information from The Fire Department of the City of New York records was used to document the history of significant fire events in WTC 1, 2, and 7. Findings of the investigation are presented with regard to the fire suppression, fire alarm, and smoke management systems installed on the day the buildings collapsed. Keywords: Fire alann systems, fire protection engineering, fire protection systems, hydraulic calculations, smoke detection, smoke management, smoke purge, sprinklers, standpipes, voice communication. World Trade Center. NISTNCSTAR 1-4, WTC Investigation 111 Abstract This page intentionally left blank. NISTNCSTAR 1-4, WTC Investigation iv Table of Contents Abstract iii List of Figures ix List of Tables xi List of Acronyms and Abbreviations xiii Metric Conversion Table xv Preface xvii Acknowledgments xxvii Executive Summary xxix Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Building and Fire Prevention Codes 1 1.2 Approach 2 1 .3 Report Organization 4 Chapter 2 1 , Significant Fires in WTC 1 , 2, and 7 Prior to September 1 2001 5 2.1 FDNY Records 5 2.2 Significant Fires 5 Chapter 3 Sprinklers, Standpipes, and Preconnected Hose Systems 9 3.1 Automatic Fire Sprinkler Systems 9 3.2 Standpipes and Preconnected Hoses 11 3.3 NYC Water Supply 12 3.4 WTC 1 and WTC 2 Installed Fire Suppression Features 14 3.4.1 Overview 14 3.4.2 Details of the Sprinkler and Standpipe Riser System 16 3.5 WTC 7 Installed Fire Suppression Features 23 3.5.1 Overview 23 3.5.2 Details of the Standpipe and Sprinkler Riser Systems 24 3.6 Consistency With Engineering Best Practices 30 NISTNCSTAR 1-4, WTC Investigation v Table of Contents 3.7 WTC 1, 2, and 7 Suppression System Installation Differences '. 30 3.8 Water Supply Capacities for WTC 1, 2, and 7 Sprinkler Systems 31 3.9 Suppression System Performance Under Selected Fire Scenarios 33 3.9.1 Scenarios 33 3.9.2 Results 35 3.10 Estimates of Suppression Systems Performance on September 11, 2001 37 3.11 Summary of Findings 40 Chapter 4 Fire Alarm Systems 43 4. 1 WTC 1 and WTC 2 Fire Alarm Systems 43 4.1.1 History 43 4.1.2 FCS and Alami System Installation and Functions 45 4. 1 .3 Fire Alarm System Design 47 4.2 WTC 7 Fire Alarm System 57 4.2.1 History 57 4.2.2 System Arrangement 58 4.2.3 System Architecture and Operation 59 4.2.4 Design and Installation 60 4.2.5 Inspection, Testing, and Maintenance 60 4.3 Comparison of WTC 7 Fire Alarm System to WTC 1 and WTC 2 Fire Alarm System 61 4.4 Fire Emergency Response 62 4.5 System Performance on September 11, 2001 63 4.5.1 WTC 1 and WTC 2 Observations 63 4.5.2 WTC 7 Observations 66 4.6 Surrmiary of Findings 67 Chapters Smoke Management Systems .......69 5.1 Introduction to Smoke Management 69 5.1.1 Smoke Management Methods 69 5.1.2 History of Smoke Management 71 5.1.3 Apphcable Codes and Standards 72 5.2 Building Descriptions 73 5.2.1 WTC land WTC 2 74 5.2.2 WTC 7 78 vi NISTNCSTAR 1-4, WTC Investigation Table of Contents 5.3 Smoke Management System Design and Installation 81 5.3.1 WTClandWTC2 81 5.3.2 WTC7 85 5.4 Evaluation of System Performance on September 1 1, 2001 85 5.4. 1 Actions of Emergency Response Personnel 86 5.4.2 Damage to System Components 86 5.4.3 Summary of System Performance on September 11, 2001 86 5.5 Evaluation of Potential Smoke Management System Effectiveness 87 5.5. 1 Smoke Management System Approaches 88 5.5.2 Design Fire Scenarios 89 5.5.3 Results of the Analysis 90 5.6 Summary of Results 91 Chapter 6 Active Fire Protection Systems: Summary of Investigation Findings 93 6. 1 Minimum Level of Performance for Active Fire Protection Systems Hardware 94 6.1.1 Fire Suppression Systems and Water Supply 94 6. 1 .2 Building Fire Alarm and Communications Systems 95 6.1.3 Smoke Management Systems 96 6.2 Quantity and Reliability of Information Available. 97 6.2. 1 For Fire Status Monitoring and Fire Fighting Activities 97 6.2.2 For Assisting Evacuation 97 6.2.3 For Investigative Purposes 97 Chapter 7 References 99 NISTNCSTAR 1-4, WTC Investigation Table of Contents This page intentionally left blank. vni NISTNCSTAR 1-4, WTC Investigation 0 List of Figures Figure P-1. The eight projects in the federal building and fire safety investigation of the WTC disaster xix Figure 3-1. Typical sprinkler installed in ceiling 1 Figure 3-2. Plan of water distribution system surrounding the WTC complex 13 Figure 3-3. Typical 5,000 gal water storage tank, WTC 1 and WTC 2 15 Figure 3^. WTC 1 and WTC 2 sprinkler and standpipe risers 17 Figure 3-5. Typical hose rack arrangement 20 Figure 3-6. Typical floor control valve assembly 22 Figure 3-7. Typical concealed pendent sprinkler 23 Figure 3-8. WTC 7 water riser schematic 25 Figure 3-9. Floor control valve and fire hose valve/cabinet locations, WTC 7 27 Figure 4-1 .
Recommended publications
  • Analysis of Ontario Fires and Reliability of Active Fire Protection Systems
    ANALYSIS OF ONTARIO FIRES AND RELIABILITY OF ACTIVE FIRE PROTECTION SYSTEMS by Chandra S. Juneja A thesis submitted to the faculty of Graduate Studies and Research in partial fulfillment of the requirements of the degree of Masters of Applied Science Department of Civil and Environmental Engineering Carleton University Ottawa, Ontario © Chandra S. Juneja, 2004 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 0-494-00745-1 Our file Notre reference ISBN: 0-494-00745-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • STATE of NEW HAMPSHIRE Dept
    STATE OF NEW HAMPSHIRE Dept. of Administrative Services Div. of Procurement and Support Services Bureau of Purchase and Property State House Annex Concord, New Hampshire 03301 Date: May 30, 2018 NOTICE OF CONTRACT - REVISION (To update SimplexGrinnell Contact) COMMODITY: Fire Suppression System Testing & Inspection Services CONTRACT NO.: 8002273 NIGP: 936-3376 CONTRACTOR: SimplexGrinnell LP VENDOR # : 175878 35 Progress Ave. Nashua, NH 03062 CONTACT PERSON(s): Danielle Antonellis Tel. No.: (978) 353-3588 E-Mail: [email protected] (Additional contacts listed on page for 24-hour emergencies, scheduling, etc.) EFFECTIVE FROM: March 1, 2018 Through: December 31, 2018 QUESTIONS: Direct any questions to Heather Kelley, 603-271-3147 or [email protected] SimplexGrinnell Elevator 24-Hour Emergency Service 1-603-886-1100 To report a problem: Select Option 1, then Option 3 for the Operator Testing/Inspection Coordinator Service Work Coordinator (Inspection Scheduler) (Service Scheduler) Derek Mellino Kerri Perkins (603) 521-1113 (603) 521-1121 [email protected] [email protected] Sprinkler Sales Rep Deficiency Sales Rep Jimy Weaver Craig LaPointe (603) 897-9622 (603) 521-1147 [email protected] [email protected] PMA Rep Inspection/Service Manager Jessica Chames Michelle Van Valkenberg (603) 320-2739 (603) 219-2654 (cell) (603) 521-1155 (office) [email protected] [email protected] Total Service Manager Dean Bedard (603) 921-8256 (cell) (603) 521-1132 (office) [email protected] SCOPE OF WORK: The purpose of this contract is to provide all labor, tools, transportation, materials, equipment and permits as necessary to provide the required level of services as described herein.
    [Show full text]
  • Fire Protection Application Guide Armacell's Products for Passive Fire Protection
    FIRE PROTECTION APPLICATION GUIDE ARMACELL'S PRODUCTS FOR PASSIVE FIRE PROTECTION Tel.: +49 25 17 60 30 [email protected] www.armacell.eu 02 | Fire protection application guide Foreword “Nine dead in house fire.” Fortunately we don’t read this or similar headlines every day. Nevertheless, around 4,000 people die in fires every year in the EU member countries. In many cases, deaths, injuries and major damage to buildings can be prevented if the fire protection requirements are implemented correctly. Therefore, passive fire protec- tion in buildings aims to design, construct, modify and maintain build- ings in such a way that the outbreak of a fire and the spread of flames and smoke (fire spread) are prevented. And, if a fire does occur, it must be possible to rescue people and animals and carry out fire-fighting operations effectively. In terms of fire protection, building service equipment, such as pipe- work and ventilation systems, represents a particular weak point. Pipe- and ductwork passes through separating building elements (walls and ceilings), stairwells and corridors, and thus forms a path along which flames and smoke can spread. In the event of a fire, pipe- and ductwork has a significant impact on safety in buildings and can soon pose a seri- ous threat. The risk potential rises with the number of pipes and their various tasks, thicknesses, materials and media. Therefore, in order to achieve the necessary fire protection targets, service penetrations in separating building elements must be sealed off. These fire protec- tion measures can be carried out in accordance with the less strin- gent requirements of the MLAR (state building regulations) or with an approval.
    [Show full text]
  • Fire Service Features of Buildings and Fire Protection Systems
    Fire Service Features of Buildings and Fire Protection Systems OSHA 3256-09R 2015 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards- related topic. This publication does not alter or determine compliance responsibilities which are set forth in OSHA standards and the Occupational Safety and Health Act. Moreover, because interpretations and enforcement policy may change over time, for additional guidance on OSHA compliance requirements the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory-impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877-889-5627. This guidance document is not a standard or regulation, and it creates no new legal obligations. It contains recommendations as well as descriptions of mandatory safety and health standards. The recommendations are advisory in nature, informational in content, and are intended to assist employers in providing a safe and healthful workplace. The Occupational Safety and Health Act requires employers to comply with safety and health standards and regulations promulgated by OSHA or by a state with an OSHA-approved state plan.
    [Show full text]
  • Fire Prevention and Control in Compressor Buildings
    THE INGAA FOUNDATION, INC. 10 G Street, NE, Suite 700 • Washington, DC 20002 (202) 216-5900 • FAX (202) 216-0870 • www.ingaa.org Fire Prevention and Control in Compressor Buildings Prepared for The INGAA Foundation, Inc. by: Solomon Associates 13455 Noel Road Suite 1500 Dallas, TX 75240-6634 F-2004-50625 Copyright © 2004 by The INGAA Foundation, Inc. Table of Contents Executive Summary ii Introduction 1 Project Scope and Approach 2 Assumptions and Limitations 3 Project Results 4 Summary 6 Attachment A Master Summary Document A-1 Fire Prevention and Control Survey forDallas Compressor StationsLondon Beijing Shanghai Mexico City i Chennai Solomon Associates #4RL118C Dallas London Beijing Shanghai Mexico City Chennai Executive Summary Solomon Associates (Solomon) is pleased to submit the Fire Prevention and Control Survey for the results obtained from a survey designed to gather information on the fire prevention and control practices of Interstate Natural Gas Association of America (INGAA) membership. Some insurance industry loss control inspectors are recommending or requiring installation of active fire suppression systems in natural gas compressor buildings without due consideration of fire prevention efforts or costs versus benefits. The objective of this INGAA membership survey was to determine the extent to which insurance and risk management companies are requesting natural gas transmission companies to install active fire prevention controls, what types of active and passive controls are being used, and the incidence of fires. Active fire controls include a method of distinguishing the fire after ignition, whereas passive controls are methods to minimize fire risk or alert operators of a fire or fire condition.
    [Show full text]
  • Rules and Regulations for Fire Alarm and Fire Sprinkler Systems
    NORTH ATTLEBOROUGH FIRE DEPARTMENT 50 Elm Street, North Attleborough, Massachusetts 02760 Tel (508) 699-0140 • Fax (508) 643-0296 Issued: January 2020 Revised 02/10/2020 Rules and Regulations for Fire Alarm and Fire Sprinkler Systems The following rules and regulations shall govern the installation, use, and maintenance of all required fire alarm and fire sprinkler systems in the Town of North Attleborough. The rules and regulations are effective January 1, 2020 until otherwise revised or amended. They are intended to cover the most common variables encountered by architects, engineers, fire alarm and fire suppression professionals. These rules and regulations are subject to change and at no time should be considered complete towards all projects and scopes of work. Consult the fire prevention office after reading this document where additional clarification is required. Contents Section 1: General Requirements: ................................................................................................................... 2 Section 2: Engineer/Contractor Submittal and Plan Review ......................................................................... 3 Section 3: Interior System Design and Layout ............................................................................................... 6 Section 4: Sprinkler and Standpipe Systems ................................................................................................ 11 Section 5: Direct Connections to the North Attleborough Fire Department ..............................................
    [Show full text]
  • Active Fire Protection Systems
    NIST NCSTAR 1-4 Federal Building and Fire Safety Investigation of the World Trade Center Disaster Active Fire Protection Systems David D. Evans Richard D. Peacock Erica D. Kuligowski W. Stuart Dols William L. Grosshandler NIST NCSTAR 1-4 Federal Building and Fire Safety Investigation of the World Trade Center Disaster Active Fire Protection Systems David D. Evans Society of Fire Protection Engineers Richard D. Peacock Erica D. Kuligowski W. Stuart Dols William L. Grosshandler Building and Fire Research Laboratory National Institute of Standards and Technology September 2005 U.S. Department of Commerce Carlos M. Gutierrez, Secretary Technology Administration Michelle O’Neill, Acting Under Secretary for Technology National Institute of Standards and Technology William Jeffrey, Director Disclaimer No. 1 Certain commercial entities, equipment, products, or materials are identified in this document in order to describe a procedure or concept adequately or to trace the history of the procedures and practices used. Such identification is not intended to imply recommendation, endorsement, or implication that the entities, products, materials, or equipment are necessarily the best available for the purpose. Nor does such identification imply a finding of fault or negligence by the National Institute of Standards and Technology. Disclaimer No. 2 The policy of NIST is to use the International System of Units (metric units) in all publications. In this document, however, units are presented in metric units or the inch-pound system, whichever is prevalent in the discipline. Disclaimer No. 3 Pursuant to section 7 of the National Construction Safety Team Act, the NIST Director has determined that certain evidence received by NIST in the course of this Investigation is “voluntarily provided safety-related information” that is “not directly related to the building failure being investigated” and that “disclosure of that information would inhibit the voluntary provision of that type of information” (15 USC 7306c).
    [Show full text]
  • Separation Distances in NFPA Codes and Standards
    Separation Distances in NFPA Codes and Standards Final Report Prepared by: Dr. Ted Argo and Mr. Evan Sandstrom Applied Research Associates, Inc. Rocky Mountain Division 7921 Shaffer Parkway Littleton, CO 80127 © 2014 Fire Protection Research Foundation THE FIRE PROTECTION RESEARCH FOUNDATION ONE BATTERYMARCH PARK QUINCY, MASSACHUSETTS, U.S.A. 02169-7471 E-MAIL: [email protected] WEB: www.nfpa.org/Foundation —— Page c —— —— Page ii —— FOREWORD Many NFPA codes and standards, in particular NFPA 400, Hazardous Materials Code, specify separation/clearance distances for hazardous chemical storage and processes from other equipment and occupied buildings. Many of these requirements have historical undocumented origins. Guidance, which may inform a sound technical basis for adjusting these distances, has been requested by NFPA Technical Committees. There are a number of methodologies in the literature, both risk and hazard based, which are used in the chemical safety process safety field that may be relevant to the calculation of these distances. The purpose of this project is to provide guidance to NFPA technical committees on methodologies to develop technically based separation/clearance distances for hazardous chemical storage/processes and their application to the chemical storage and processes. The specific focus of the project is those hazards within the scope of NFPA 400. The Research Foundation expresses gratitude to the report author Dr. Ted Argo and Mr. Evan Sandstrom, who is with Applied Research Associates, Inc located in Littleton, CO. The Research Foundation appreciates the guidance provided by the Project Technical Panelists and all others that contributed to this research effort. Thanks are also expressed to the National Fire Protection Association (NFPA) for providing the project funding through the NFPA Annual Code Fund.
    [Show full text]
  • NFPA 72 Fire Alarm System
    Fire Alarm System Plan Review Checklist 2010 OFC and 2007 NFPA 72 This checklist is for jurisdictions that permit the use of the 2007 NFPA 72 in lieu of IFC’s referenced 2002 NFPA 72. Date of Review: ______________________________ Permit Number: _____________________________ Business/Building Name: _______________________ Address of Project: __________________________ Designer Name: ______________________________ Designer’s Phone: ___________________________ Contractor: ________________________________ __Contractor’s Phone: __________________________ FA Manufacturer: ___________________ FA Model: ____________ Occupancy Classification: _________ Reference numbers following checklist statements represent an NFPA code section unless otherwise specified. Checklist Le gend: v or OK = acceptable N = need to provide NA = not applicable 1. ____ Three sets of drawings are provided. 2. ____ Equipment is listed for intended use and compatible with the system, specification data sheets are required, 4.3.1, 4.4.2. Drawings sh all detail t he follo wing items, OFC 907.1.2 and NFPA 72 4.5.1.1: 3. ____ Scale: a common scale is used and plan information is legible. 4. ____ Rooms are labeled and room dimensions are provided. 5. ____ Equipment symbol legend is provided. 6. ____ Class A or B system is declared, alarms zones do not exceed 22,500 sq. ft. (unless sprinklered then limit is set by NFPA 13, and each floor is a separate zone, OFC 907.7.3. 7. ____ When detectors are used, device locations, mounting heights, and building cross sectional details are shown on the plans. 8. ____ The type of devices used. 9. ____ Wiring for alarm initiating and alarm signaling indicating devices are detailed. 10.
    [Show full text]
  • Home Fire Sprinkler Systems: Separating Fact from Fiction
    Home Fire Sprinkler Systems: Separating Fact from Fiction This fact sheet was prepared by the nonprofit Home Fire Sprinkler Coalition (HFSC). HFSC is the only national, non-commercial organization working exclusively to educate the public about the life-saving value of installed residential fire sprinkler systems. HFSC develops a wide range of fire safety educational materials for consumers, members of the homebuilding industry, insurance and real estate professionals, and for the fire service to use in local educational outreach. All materials are provided at no charge and are available via HFSC’s Web site: www.homefiresprinkler.org. Home Fires: More than 3,000 Lives Lost Every Year The fire problem in the U.S. is overwhelmingly a home fire problem. According to the nonprofit National Fire Protection Association (NFPA), homes account for about 80% of all fire deaths in a typical year and more than 95% of all deaths in structure fires in a typical year. Quite clearly, any improvements in overall fire safety must be improvements in home fire safety, and no strategy has as much documented life safety effectiveness as fire sprinklers. Homes Burn, Whether New or Old Few fatal home fires involve installed features of homes. Instead, they usually involve the actions and errors of the occupants in combination with the flaws and vulnerabilities of products brought into the home. Modern Home Fires Burn Faster New homes benefit from fire sprinkler protection as much as older homes. Research conducted by the National Institute of Standards and Technology (NIST) has shown that home fires become deadly in as few as three minutes.
    [Show full text]
  • NFPA 13 – 2016 Faqs
    NFPA 13 – 2016 FAQs Responses to FAQs are prepared by NFPA technical staff to assist users in reading and understanding NFPA codes and standards. The responses, however, are not Formal Interpretations issued pursuant to NFPA Regulations. Any opinions expressed are the personal opinions of the author(s), and do not necessarily represent the official position of the NFPA or its Technical Committees. In addition, the responses are neither intended, nor should be relied upon, to provide professional consultation or services. 1. Do I need sprinklers in my building? NFPA 13 is an installation standard and does not specify which buildings or structures require a sprinkler system. NFPA 13 specifies how to properly design and install a sprinkler system using the proper components and materials after it has been determined that a sprinkler system is required. The administrative authority for requiring sprinklers within buildings rests with any of the following: the local building code, NFPA 5000, NFPA 101, International Building Code, or insurance regulations that typically specify which buildings and structures require sprinkler systems. Where the building code does not require a sprinkler system but one is installed voluntarily, the requirements of NFPA 13 still apply to the portion of the building being protected. 2. If I have a dry‐pipe sprinkler system under a pitched roof exceeding a slope of 16.7%, do I apply both area increases from Section 11.2.3.2.4 and Section 11.2.3.2.5? Yes, both sections would be applied cumulatively to the design area chosen from Figure 11.2.3.1.1 in accordance with Section 11.2.3.2.7.
    [Show full text]
  • Example Fire Alarm System Replacement General Notes Duct Detectors Existing Devices to Demolish Fa System Device Legend
    EXAMPLE FIRE ALARM SYSTEM REPLACEMENT GENERAL NOTES DUCT DETECTORS EXISTING DEVICES TO DEMOLISH FA SYSTEM DEVICE LEGEND 1. EACH ALARM AND SUPERVISORY SIGNAL INITIATING DEVICE CIRCUIT SHALL BE WIRED FOR CLASS "B", STYLE "4" OPERATION. FIRE ALARM NOTIFICATION APPLIANCE CIRCUIT SHALL BE WIRED DUCT DETECTORS SHALL BE PROVIDED AND INSTALLED IN ACCORDANCE WITH IMC 606.2 (COPIED BELOW). QUANTITY AND LOCATION OF DUCT DEVICE DESCRIPTION FOR CLASS "B", STYLE "Y" OPERATION. DETECTORS SHALL BE COORDINATED WITH MECHANICAL PLANS AND CONTRACTOR. FIRE ALARM CONTROL PANEL 606.2 WHERE REQUIRED. 2. THE EXTERIOR OF ALL FIRE ALARM SYSTEM JUNCTION BOXES SHALL BE PAINTED RED. FSA FIRE ALARM ANNUNCIATOR SMOKE DETECTORS SHALL BE INSTALLED WHERE INDICATED IN SECTIONS 606.2.1 THROUGH 606.2.3. RPS STROBE POWER SUPPLY 3. ALL PENETRATIONS IN WALLS, CEILINGS, AND FLOORS SHALL BE SEALED TO THE FULL THICKNESS OF THE PENETRATION WITH AN APPROVED FIRE STOPPING MATERIAL. PENETRATIONS IN EXCEPTION: SMOKE DETECTORS SHALL NOT BE REQUIRED WHERE AIR DISTRIBUTION SYSTEMS ARE INCAPABLE OF SPREADING SMOKE BEYOND THE DIGITAL ALARM COMMUNICATOR - POINT CONTACT ID EXISTING FIRE RATED WALLS, CEILINGS AND FLOORS SHALL BE SEALED TO THE FULL THICKNESS OF THE PENETRATION WITH AN APPROVED FIRE-STOPPING MATERIAL OF EQUAL OR ENCLOSING WALLS, FLOORS AND CEILINGS OF THE ROOM OR SPACE IN WHICH THE SMOKE IS GENERATED. GREATER FIRE RESISTANCE. LAN INTERFACE - IN EACH FACP 606.2.1 RETURN AIR SYSTEMS. GRAPHIC MAP 4. ALL WALL AND FLOOR PENETRATIONS SHALL BE CORE-DRILLED AND SLEEVED. SMOKE DETECTORS SHALL BE INSTALLED IN RETURN AIR SYSTEMS WITH A DESIGN CAPACITY GREATER THAN 2,000 CFM (0.9 M3/S), IN THE RETURN AIR MAP DUCT OR PLENUM UPSTREAM OF ANY FILTERS, EXHAUST AIR CONNECTIONS, OUTDOOR AIR CONNECTIONS, OR DECONTAMINATION EQUIPMENT AND F/S CAB RECORD DOCUMENT CABINET 5.
    [Show full text]