Chapter 14 Water Management (Drainage) Chapter 14 Water Management (Drainage) Part 650 Engineering Field Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 14 Water Management (Drainage) Chapter 14 Water Management (Drainage) Part 650 Engineering Field Handbook United States Department of Part 650 Engineering Field Handbook Agriculture Natural National Engineering Handbook Resources Conservation Service Chapter 14 Water Management (Drainage) Chapter 14 Water Management (Drainage) Part 650 Engineering Field Handbook Issued April 2001 Acknowledgments This chapter was prepared under the general direction of Ronald L. Marlow, national water management engineer, Natural Resources Conserva- tion Service (NRCS), Washington, DC, with assistance from Patrick H. Willey, agricultural engineer, NRCS, Portland, Oregon. Extensive drafting was previously done by Richard D. Wenberg, retired national drainage engineer, with assistance from John Rice, Walter K. Twitty, Gordon Stroup, Elwin Ross, and Virgil Backlund, retired water management engineers (drainage). Editorial and layout assistance was provided by Mary Mattinson, NRCS, Fort Worth, Texas. The final revision were prepared by Walter J. Ochs, Richard D. Wenberg, and Bishay G. Bishay, water management engineering consultants. Peer reviews were provided by James E. Ayars, agricultural engineer, USDA ARS, Pacific West Area, Fresno, California, and Norman R. Fausey, soil scientist - research leader, USDA ARS, Midwest Area, Columbus, Ohio. Reviewers within NRCS include: Gordon Klofstad, national construction engineer, William Hughey, national agricultural engineer, William Irwin, national design engineer, John S. Moore, national hydrogeologist, and Donald Woodward, national hydraulic engineer, Washington, D.C. John Andrews, Denver, Colorado, Grady Adkins, Columbia, South Caro- lina, Arthur Brate, Columbus, Ohio, Dennis Carman, Little Rock, Arkan- sas, Walter Grajko, Syracuse, New York, Ronald Gronwald, Dover Dela- ware, Mark Jensen, Des Moines, Iowa, Richard Judy, Morgantown, West Virginia, Tillman Marshall, Richmond, Virginia, Perry Oakes, Auburn, Alabama, John Ourada, Salina, Kansas, Allen Stahl, Annapolis, Maryland, Jesse Wilson, Gainesville, Florida, all state conservation engineers with their respective staffs. Michelle Burke, Brookings, South Dakota, Gene Nimmer, Juneau, Wiscon- sin, and Chris Stoner, Stillwater, Oklahoma, all agricultural engineers. Jim Bickford, irrigation engineer, Nashville, Tennessee, William Boyd, environmental engineer, Little Rock, Arkansas, Harold Blume, water man- agement engineer, Phoenix, Arizona, Sonia Jacobsen, hydraulic engineer, St. Paul, Minnesota, Don Pitts, water quality specialist, Champaign, Illinois, and Jeffrey Wheaton, conservation engineer, Maite, Guam. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program informa- tion (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. (210-VI-NEH, April 2001) Chapter 14 Water Management (Drainage) Contents Subchapter A—General 650.1400 Scope 14–1 (a) Need for soil and water management ........................................................14–1 (b) Natural resource and environmental setting ............................................ 14–3 (c) Factors affecting drainage .......................................................................... 14–3 (d) Benefits related to drainage ........................................................................14–4 (e) Water quality impacts .................................................................................. 14–5 (f) Agriculture drainage setting ........................................................................14–6 (g) Drainage setting for non-agricultural areas .............................................. 14–7 650.1401 Types of drainage systems 14–7 (a) Surface drainage .......................................................................................... 14–7 (b) Subsurface drainage .................................................................................... 14–8 (c) Interception drainage .................................................................................. 14–8 (d) Water table management ............................................................................ 14–8 (e) Drainage pumping ........................................................................................ 14–8 650.1402 Investigations and planning 14–9 (a) Reconnaissance............................................................................................ 14–9 (b) Physical surveys ..........................................................................................14–10 (c) Environmental considerations ..................................................................14–13 (d) Decision matrix .......................................................................................... 14–14 Subchapter B—Surface Drainage 650.1410 General 14–15 (a) Drainage runoff .......................................................................................... 14–15 (b) Determining drainage runoff .................................................................... 14–15 (c) Composite drainage curves ...................................................................... 14–15 650.1411 Investigation and planning of surface drainage systems 14–17 (a) Field ditches ................................................................................................14–17 (b) Types of open drain systems .................................................................... 14–17 (c) Landforming ................................................................................................14–22 (210-VI-NEH, April 2001) 14–i Chapter 14 Water Management (Drainage) Part 650 Engineering Field Handbook 650.1412 Design of open drains 14–24 (a) Drainage runoff .......................................................................................... 14–24 (b) Drain alignment .......................................................................................... 14–25 (c) Hydraulic gradient ......................................................................................14–25 (d) Design methods .......................................................................................... 14–27 650.1413 Construction 14–37 (a) Open drain layout ...................................................................................... 14–37 (b) Structures.................................................................................................... 14–37 (c) Watergates .................................................................................................. 14–37 (d) Surface water inlets ....................................................................................14–37 (e) Berms, spoil banks, and seeding .............................................................. 14–38 (f) Safety ............................................................................................................14–39 650.1414 Maintenance 14–40 (a) Mowing ........................................................................................................ 14–40 (b) Burning ........................................................................................................ 14–41 (c) Chemicals.................................................................................................... 14–41 (d) Biological .................................................................................................... 14–42 (e) Maintenance of land forming ....................................................................14–42 Subchapter C—Subsurface Drainage 650.1420 General 14–45 (a) Plans ............................................................................................................ 14–45 (b) Soils ..............................................................................................................14–45 (c) Economics .................................................................................................. 14–48 (d) Use of local guides ......................................................................................14–48 650.1421 Applications of Subsurface Drainage 14–49 (a) Field drainage ..............................................................................................14–49 (b) Interception drainage ................................................................................ 14–49 (c) Drainage by pumping ................................................................................ 14–49 (d) Mole drainage ..............................................................................................14–49 (e) Water table management .......................................................................... 14–50 (f) Salinity control ............................................................................................14–50 (g) Residential and non-agricultural sites ......................................................14–51 650.1422 Investigations and planning 14–51 (a) Topography ..................................................................................................14–51 (b) Soils ..............................................................................................................14–51
Recommended publications
  • Groundwater Recharge from a Changing Landscape
    ST. ANTHONY FALLS LABORATORY Engineering, Environmental and Geophysical Fluid Dynamics Project Report No. 490 Groundwater Recharge from a Changing Landscape by Timothy Erickson and Heinz G. Stefan Prepared for Minnesota Pollution Control Agency St. Paul, Minnesota May, 2007 Minneapolis, Minnesota The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national origin, handicap, age or veteran status. 2 Abstract Urban development of rural and natural areas is an important issue and concern for many water resource management organizations and wildlife organizations. Change in groundwater recharge is one of the many effects of urbanization. Groundwater supplies to streams are necessary to sustain cold water organisms such as trout. An investigation of the changes of groundwater recharge associated with urbanization of rural and natural areas was conducted. The Vermillion River watershed, which is both a world class trout stream and on the fringes of the metro area of Minneapolis and St. Paul, Minnesota, was used for a case study. Substantial changes in groundwater recharge could destroy the cold water habitat of trout. In this report we give first an overview of different methods available to estimate recharge. We then present in some detail two models to quantify the changes in recharge that can be expected in a developing area. We finally apply these two models to a tributary watershed of the Vermillion River. In this report we discuss several techniques that can be used to estimate groundwater recharge: (1) the recession-curve-displacement method and (2) the base-flow-separation method that both use only streamflow records (Rutledge 1993, Lee and Chen 2003); (3) a recharge map developed by the USGS for the state of Minnesota (Lorenz and Delin 2007); (4) a minimal recharge map developed by the Minnesota Geological Survey using statistical methods (Ruhl et al.
    [Show full text]
  • Miami-Dade County Drainage and Canals Flood Complaint Form
    MIAMI-DADE COUNTY DRAINAGE AND CANALS FLOOD COMPLAINT FORM Service Request # _____________ Complaint Date Time AM PM Resident/Complainant Name Address Telephone Nearest Street Intersection of Flooding or Location of Flooding Is this the first time you report this? Yes No If No, date PLEASE SELECT ONLY ONE (1) COMPLAINT TYPE AND ANSWER RELATED QUESTIONS FOR BETTER SERVICE Type of Complaint 302 Clogged Storm Drain Is the water on top of drain now? Yes No How long does it take for the water to drain? What is the exact location of the drain? Is the area a new development? Yes No Was there a recent drainage project in the area? Yes No 303 Standing Water (No Drain) How deep is the water? How hard did it rain? Light Moderate Heavy Is your property flooded? Yes No Is your property in a new development? Yes No Where is the nearest drain? Flooding/Standing Water (Localized) Is the water flooding the inside of your residence? Yes No Is the water in your driveway / swale? Yes No Is the water across the roadway? Yes No Is it affecting traffic? Yes No How long does the water remain after rainfall? Page 1 of 2 MIAMI-DADE COUNTY DRAINAGE AND CANALS FLOOD COMPLAINT FORM Canal Complaints Solid waste (floating debris, bottles, cans, etc.) present Aquatic vegetation overgrown Needs mowing / treating vegetation on canal bank Bank instability due to Erosion / Collapses are present Culvert cleaning needed Damaged culvert / Headwall Encroachment of Easement / Right of Way Cutting / trimming of trees on a canal Right of Way needed Damaged Guardrails / Fence Canal Signs damaged / down Other Other Nature of Complaint For more information, call (305) 372-6688 Page 2 of 2 .
    [Show full text]
  • Pages 406 To
    397 SOIL SALINITY CONTROL UNDER BARLEY CULTIVATION USING A LABORATORY DRY DRAINAGE MODEL Shahab Ansari 1,*, Behrouz Mostafazadeh-Fard 2, Jahangir Abedi Koupai3 Abstract The drainage of agricultural fields is carried out in order to control soil salinity and the water table. Conventional drainage methods such as lateral drainage and interceptor drains have been used for many years. These methods increase agriculture production; but they are expensive and often cause environmental contaminations. One of the inexpensive and more environmental friendly methods that can be used in arid and semi-arid regions to remove excess salts from irrigated lands to non- irrigated or fallow lands is dry drainage. In the dry drainage method, natural soil system and the evaporation of fallow land is used to control soil salinity and the water table of irrigated land. There are few studies about dry drainage concepts. it is also important to study soil salt changes over time because of salt movements from irrigated areas to non-irrigated areas especially under plant cultivation. In this study a laboratory model which is able to simulate dry drainage was used to investigate soil salts transport under barley cultivation. The model was studied during the barley growing season and for a constant water table. During the growing season soil salinities of irrigated and non-irrigated areas were measured at different time. The Results showed that dry drainage can control the soil salinity of an irrigated area. The excess salts leached from an irrigated area and accumulated in the non-irrigated area and the leaching rate changed over time.
    [Show full text]
  • Acid Sulfate Soil Materials
    Site contamination —acid sulfate soil materials Issued November 2007 EPA 638/07: This guideline has been prepared to provide information to those involved in activities that may disturb acid sulfate soil materials (including soil, sediment and rock), the identification of these materials and measures for environmental management. What are acid sulfate soil materials? Acid sulfate soil materials is the term applied to soils, sediment or rock in the environment that contain elevated concentrations of metal sulfides (principally pyriteFeS2 or monosulfides in the form of iron sulfideFeS), which generate acidic conditions when exposed to oxygen. Identified impacts from this acidity cause minerals in soils to dissolve and liberate soluble and colloidal aluminium and iron, which may potentially impact on human health and the environment, and may also result in damage to infrastructure constructed on acid sulfate soil materials. Drainage of peaty acid sulfate soil material also results in the substantial production of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O). The oxidation of metal sulfides is a function of natural weathering processes. This process is slow however, and, generally, weathering alone does not pose an environmental concern. The rate of acid generation is increased greatly through human activities which expose large amounts of soil to air (eg via excavation processes). This is most commonly associated with (but not necessarily confined to) mining activities. Soil horizons that contain sulfides are called ‘sulfidic materials’ (Isbell 1996; Soil Survey Staff 2003) and can be environmentally damaging if exposed to air by disturbance. Exposure results in the oxidation of pyrite. This process transforms sulfidic material to sulfuric material when, on oxidation, the material develops a pH 4 or less (Isbell 1996; Soil Survey Staff 2003).
    [Show full text]
  • Drainage Water Management R
    doi:10.2489/jswc.67.6.167A RESEARCH INTRODUCTION Drainage water management R. Wayne Skaggs, Norman R. Fausey, and Robert O. Evans his article introduces a series of the most productive in the world. Drainage needed. Drainage water management, or papers that report results of field ditches or subsurface drains (tile or plastic controlled drainage, emerged as an effec- T studies to determine the effec- drain tubing) are used to remove excess tive practice for reducing losses of N in tiveness of drainage water management water and lower water tables, improve traf- drainage waters in the 1970s and 1980s. (DWM) on conserving drainage water ficability so that field operations can be The practice is inherently based on the and reducing losses of nitrogen (N) to sur- done in a timely manner, prevent water fact that the same drainage intensity is face waters. The series is focused on the logging, and increase yields. Drainage is not required all the time. It is possible to performance of the DWM (also called also needed to manage soil salinity in irri- dramatically reduce drainage rates during controlled drainage [CD]) practice in the gated arid and semiarid croplands. some parts of the year, such as the winter US Midwest, where N leached from mil- Drainage has been used to enhance crop months, without negatively affecting crop lions of acres of cropland contributes to production since the time of the Roman production. Drainage water management surface water quality problems on both Empire, and probably earlier (Luthin may also be used after the crop is planted local and national scales.
    [Show full text]
  • French Drains
    THE 11311 E. FM 917 WORKING ALVARADO, TEXAS 76009 WITH SERIES PHONE: 817-225-0059 02 TSGMATERIALS.COM WORKING WITH & UNDERSTANDING FRENCH DRAINS SO WHAT IS A FRENCH DRAIN? A French Drain is a trench filled with gravel or rock that usually contains a perforated pipe which is generally covered by rocks to quickly vent water that seeps down. The French Drain can be exposed on the top or completely hidden depending on the location and application. The French Drain is used to redirect surface water and groundwater away from an area. French Drains are primarily used to prevent rain water, ground water and surface water from penetrating or damaging building foundations where proper drainage is problematic. French Drains are also used behind retaining walls to relieve ground water pressure. French Drains are constructed with washed 1” Rock. In our area of North Texas, the two most common materials are either a washed 1” Limestone Rock or washed 1” River Rock. Both materials are free from finer granuals of material and dirt debris, which allows the water to flow freely into the perforated pipe below the gravel. WHAT IS THE PROPER PROCEDURE TO INSTALL A FRENCH DRAIN? The first step to installing a French Drain is to get the grade of the surrounding land or area correct. If you have areas that need to be raised or lowered, spend time getting the area completely ready so that when the trench is dug, it will be at the correct depth to allow proper drainage, as well as to allow the proper placement of the French Drain.
    [Show full text]
  • Stormwater Management Guidance WHERE COMMUNITY and SPIRIT MEET
    Stormwater Management Guidance WHERE COMMUNITY AND SPIRIT MEET. City of Kirkwood Green Infrastructure Techniques for Stormwater Management August 2020 Prepared by: Wood Environment & Infrastructure Solutions, Inc. City of Kirkwood, Missouri Residential Green Practices – Techniques for Stormwater Management This page is intentionally blank City of Kirkwood, Missouri Residential Green Practices – Techniques for Stormwater Management TECHNIQUES FOR STORMWATER MANAGEMENT TABLE OF CONTENTS BACKGROUND AND PURPOSE ............................................................................................... 1 REQUIREMENTS AND PRINCIPLES OF STORMWATER MANAGEMENT ................................. 3 SUBMITTAL INFORMATION.................................................................................................... 8 MAINTENANCE AND INSPECTIONS ...................................................................................... 11 DRY WELLS ........................................................................................................................... 13 VEGETATED FILTER STRIP AREAS ......................................................................................... 19 MODIFIED FRENCH DRAIN ................................................................................................... 25 PERMEABLE PAVERS ............................................................................................................ 29 RAIN GARDENS ....................................................................................................................
    [Show full text]
  • French Drain Roof Gutters and Downspouts
    DRAINAGE Q & A’S How can I prevent drainage problems? Some of the ways you can help reduce drainage problems is by installing one of the following drainage diversion devices on your property. Belmont enjoys a Mediterranean climate with long seasons of dry sunny weather, but winter storms do routinely produce torrential downpours. This can create significant property damage if there is a lack of proper drainage design and maintenance. Identifying drainage problems and Can I divert surface and ground water possible solutions to City streets or drain pipes? French Drain Yard Inlets Overflowing rain gutters-Clear You can discharge this water to a City street leaves and debris from house gut- using an approved drainage system. ters to prevent backups in down- spouts. Never divert a water drainage system to your sanitary sewer lateral/system. Ponding occurring around the Dry Well Foundation Drain house– Install a foundation drain, If you are planning on collecting ground or french drain, yard inlets, catch surface water and diverting it to the street, or basin or dry well. a city drainage system a permit may be re- quired for installation of drainage system and Standing water in basement/crawl curb drain. space- A sump pump may be Please contact the installed for pumping water to an Belmont Permit Center approved discharge point. before starting any Catch Basin Sump Pump construction at: Over-irrigation- Avoid using too 650-595-7422. much water or watering too often. Be sure your irrigation system is adjusted properly and replace any broken sprinkler heads. Roof Gutters and Downspouts BASIC DRAINAGE INFORMATION City of Belmont Flooding is a Water flow that occurs Drainage Issues Surface runoff primary problem.
    [Show full text]
  • The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Research: A Journal of Natural and Social Sciences Great Plains Studies, Center for Spring 1998 The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies Garth van der Kamp National Hydrology Research Institute, Environment Canada Masaki Hayashi University of Calgary, Canada Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsresearch Part of the Other International and Area Studies Commons van der Kamp, Garth and Hayashi, Masaki, "The Groundwater Recharge Function of Small Wetlands in the Semi-Arid Northern Prairies" (1998). Great Plains Research: A Journal of Natural and Social Sciences. 366. https://digitalcommons.unl.edu/greatplainsresearch/366 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Research: A Journal of Natural and Social Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Great Plains Research 8 (Spring 1998):39-56 © Copyright by the Center for Great Plains Studies THE GROUNDWATER RECHARGE FUNCTION OF SMALL WETLANDS IN THE SEMI-ARID NORTHERN PRAIRIES Garth van der Kamp National Hydrology Research Institute, Environment Canada 11 Innovation Boulevard, Saskatoon, SK Canada S7N 3H5 and Masaki Hayashi Department ofGeology and Geophysics, University of Calgary 2500 University Drive, Calgary, AB Canada T2N IN4 Abstract. Small wetlands in the semi-arid northern prairie region are focal pointsfor groundwater recharge. Hence the groundwater recharge function of the wetlands is an important consideration in development of wetland conservation policies.
    [Show full text]
  • Concentrated Alkaline Recharge Pools for Acid Seep Abatement: Principles, Design,Construction and Performance1
    CONCENTRATED ALKALINE RECHARGE POOLS FOR ACID SEEP ABATEMENT: PRINCIPLES, DESIGN,CONSTRUCTION AND PERFORMANCE1 Jack R. Nawrot', Pat S. Conley2, and James E. Sandusky' Abstract: Concentrated alkaline recharge pools have been constructed above previously soil covered acid gob at the Peabody Will Scarlet Mine to abate acid seeps. Preliminary monitoring results (1989-1994) from a concentrated alkaline recharge pool demonstration project in the Pit 4 area have documented a 45 to 90 % reduction in acidity in the principal recharge pool groundwater zone. A 23 % reduction in acidity has occurred in the primary seep located downslope from the alkaline recharge pools. The initial improvements in water quality are seen as a positive indication that groundwater acidity will decrease further and amelioration of the acid seep will continue. Additional Key Words: acid seeps, mine refuse, acid mine drainage, alkaline recharge. Introduction Covering acid producing coal refuse with 4-ft of soil cover does not preclude pyrite oxidation under the soil cover. When pyrite oxidation does occur overlying soil covers may become acidified and acid seeps may be generated following several seasons of rainfall infiltration and flushing cycles. Burial of potentially acid producing coal waste in a zone of fluctuating groundwater elevations is conducive to chronic acid seep generation when. the upslope groundwater chemistry has insufficient alkalinity to neutralize downslope acid groundwater pools generated by the buried refuse. Soil covering after limestone is applied in sufficient quantities to overcome the potential acidity · of refuse, or limestone amendment and direct seeding are effective reclamation techniques that enhance long-term vegetation success and establish a favorable acid-base balance (Warburton et al.
    [Show full text]
  • 17 Major Drainage Basins
    HUC 8 HYDROLOGIC UNIT NAME CLINTON 04120101 Chautauqua-Conneaut FRANKLIN 04150409 CHAMPLAIN MASSENA FORT COVINGTON MOOERS ST LAWRENCE CLINTON 04120102 Cattaraugus BOMBAY WESTVILLE CONSTABLE CHATEAUGAY NYS Counties & BURKE LOUISVILLE 04120103 Buffalo-Eighteenmile BRASHER 04150308 CHAZY ALTONA ELLENBURG BANGOR WADDINGTON NORFOLK MOIRA 04120104 Niagara ESSEX MALONE DEC Regions JEFFERSON 6 04150307 BEEKMANTOWN MADRID 05010001 Upper Allegheny LAWRENCE BELLMONT STOCKHOLM DANNEMORA BRANDON DICKINSON PLATTSBURGH LEWIS OGDENSBURG CITY LISBON 05010002 Conewango 5 PLATTSBURGH CITY HAMILTON POTSDAM SCHUYLER FALLS SARANAC 05010004 French WARREN OSWEGATCHIE DUANE OSWEGO 04150306 PERU 04130001 Oak Orchard-Twelvemile CANTON PARISHVILLE ORLEANS WASHINGTON NIAGARA DE PEYSTER ONEIDA MORRISTOWN HOPKINTON WAVERLY PIERREPONT FRANKLIN 04140101 Irondequoit-Ninemile AUSABLE MONROE WAYNE BLACK BROOK FULTON SARATOGA DEKALB HERKIMER BRIGHTON GENESEE SANTA CLARA CHESTERFIELD 04140102 Salmon-Sandy ONONDAGA NYS Major 04150406 MACOMB 04150304 HAMMOND ONTARIO MADISON MONTGOMERY RUSSELL 04150102 Chaumont-Perch ERIE SENECA CAYUGA SCHENECTADY HERMON WILLSBORO ST ARMAND WILMINGTON JAY WYOMING GOUVERNEUR RENSSELAER ALEXANDRIA CLARE LIVINGSTON YATES 04130002 Upper Genesee OTSEGO ROSSIE COLTON CORTLAND ALBANY ORLEANS 04150301 04150404 SCHOHARIE ALEXANDRIA LEWIS 7 EDWARDS 04150408 CHENANGO FOWLER ESSEX 04130003 Lower Genesee 8 TOMPKINS CLAYTON SCHUYLER 9 4 THERESA 04150302 TUPPER LAKE HARRIETSTOWN NORTH ELBA CHAUTAUQUA CATTARAUGUS PIERCEFIELD 02050104 Tioga ALLEGANY STEUBEN
    [Show full text]
  • Information Sources on Land Drainage
    - Educational Low-Priced Books Scheme, British Council: Book Coupons Programme; and British Council: Resale Scheme. Contact your local British Council representative; - Head, Information and Documentation, Swedish Agency for Research Cooperation with Developing Countries; - Third World Academy of Science, Donation Programme; - CTA. 26.4 Information Sources on Land Drainage 26.4.1 Tertiary Literature Tertiary literature gives information on abstract journals, journals, addresses of institutions, dictionaries, etc. It may have titles such as Sources of Information on .... An example is: Naber, G. Drainage : An Annotated Guide to Books and Journals Wageningen, ILRI, 1984.37 p. Gives an overview of sources of information, abstract journals, journals, bibliographies, directories, dictionaries, and books. Several titles are illustrated by their front cover. 26.4.2 Abstract Journals Abstract journals list titles of publications with an abstract of their contents. Examples are: - Soils and Fertilizers Published twelve times a year by CABI. Subscription price U.S. $680/year. - Irrigation and Drainage Abstracts Published five times a year by CABI. Subscription price U.S. $160/year. - Bibliography of Irrigation, Drainage and Flood Control Published once a year by the International Commission on Irrigation and Drainage/ICID, India. 26.4.3 Databases The book Online Databases in the Medical and Life Sciences, published by Elsevier, lists various interesting databases and their products. The following databases cover the field of tropical agriculture. Although not entirely concerned with land drainage, they will be of interest to land drainage engineers. They are also available on compact disc: - AGRICOLA, produced by the U.S. Department of Agriculture, National Agricultural Library; 1072 - AGRIS, International Information System for the Agricultural Sciences and Technology, produced by AGRIS Coordinating Centre, FAO; - CAB Abstracts, produced by CAB International, available online in DIALOG, DIMDI, and ESA.
    [Show full text]