Soc Concurrent Development Page 1 of 7

Total Page:16

File Type:pdf, Size:1020Kb

Soc Concurrent Development Page 1 of 7 SoC drawer: SoC concurrent development Page 1 of 7 SoC drawer: SoC concurrent development Establish a disciplined process for hardware and software co -design, integration, and test Sam Siewert ( [email protected] ), Adjunct Professor, University of Colorado Summary: A system-on-a-chip (SoC) can be more complex in terms of hardware-software interfacing than many earlier embedded systems because an SoC often includes multiple processor cores and numerous I/ O interfaces. The process of integrating and testing the firmware-hardware interface can begin early, but without good management and testing, the mutability of firmware and early stages of hardware design simulation can lead to disastrous setbacks for a project. This article teaches system designers about tools and methods to minimize project churn. View more content in this series Date: 20 Dec 2005 Level: Intermediate Activity: 687 views Comments: 0 ( Add comments ) Average rating (based on 17 votes) This article is the third in the SoC drawer series . The series aims to provide the system architect with a starting point and some tips to make system-on-a-chip (SoC) design easier. SoCs are either configurable or reconfigurable. Configurable SoCs are constructed from core logic that can be reused and modified for an application-specific integrated circuit (ASIC) implementation; reconfigurable SoCs use soft cores and field-programmable gate array (FPGA) fabrics that can be reprogrammed by simply downloading new in-circuit FPGA programming. The mutability of SoCs in terms of firmware and FPGA fabric is attractive because it allows for modification and addition of features. Likewise, for configurable SoCs, the mutability during early co-design and co-simulation allows for quick design changes in both hardware and firmware, making for a very agile project. The downside to this increased flexibility and mutability of hardware is that too much change without a process can result in project churn. Churn comes about when the addition of one new feature breaks one or more existing features, or degrades stability or performance. Ideally, with a disciplined process, new firmware or hardware features can be added to an SoC line of products with little or no churn. The keys are the early identification and use of tools that support a disciplined process for development, and the establishment of policies for their use that help the project evolve. An overview of concurrent hardware/firmware engineering for SoCs The emergence of advanced electronic design automation (EDA) tools, hardware design languages (HDLs), test benches, and co- simulators (allowing firmware to run on simulated hardware designs) has helped speed SoC time-to-market. Partly as a result, it's now expected that, once SoC silicon has arrived, firmware should be up and running and ready to ship not long after. This can be done by testing firmware early, during hardware design, and making careful trade-offs between implementation of functions and features in either hardware or firmware. However, starting the process of hardware and firmware integration and test early also helps shorten time-to-market immensely, especially if disciplined processes are defined early so that final integration and test has little to no churn. (See the http://www.ibm.com/developerworks/power/library/pa -soc3/index.html 4/25/2009 SoC drawer: SoC concurrent development Page 2 of 7 information on EDA tools in the Resources section below for more on this.) Figure 1 shows major milestones in an SoC project from the perspective of hardware development, test, and firmware development. There are four main phases where hardware/firmware testing employs different tools and methods to move the overall system design forward. In the first phase, transaction- level models (TLM), built with C or SystemC, can be used to test the hardware/firmware interface and analyze trade-offs between feature implementation in hardware alone, firmware alone, or some combination. Use of an instruction set simulator (ISS) for the processor cores used can be helpful. With an ISS, firmware is tested at the instruction level; although the tests are not cycle-accurate, they allow for early deployment of the firmware code development tool chain. The second phase begins once enough of the hardware design is complete that cycle-accurate register transfer language (RTL) simulations can be run with basic firmware boot code. An RTL simulation can ensure that firmware will come up on real hardware with little delay once it has been fabricated. At this point, the hardware team typically has significant verification work to do, and the firmware team has significant feature development and testing to complete. So, in phase three, the TLM model can be further developed and used (mostly by the firmware team) to continue code development and testing pre-silicon. The cycle-based TLM simulation also allows for regression testing of firmware so that stability and feature interactions can be tested as the firmware base matures. This is likely to be the longest phase of the overall co-design life cycle. In the fourth and final phase, post-silicon, hardware/firmware integration requires quick firmware "bring up" as designed, along with diagnostic tests to assist with post-silicon hardware verification. Figure 1. Hardware/firmware testing and integration phases http://www.ibm.com/developerworks/power/library/pa -soc3/index.html 4/25/2009 SoC drawer: SoC concurrent development Page 3 of 7 Overall, the co -design and co -simulation tools provide a method under which a system can be developed with frequent feedback from integrated testing at progressively refined levels: from transaction to cycle- accurate simulation, and then to actual integrated testing. Early and continuous re-testing (regression) is important because it helps to identify and fix problems early. However, the rapid pace of feature addition often causes backslides, where the stability and performance of the system suffer as features are added. Ideally, feature count, stability, and performance would monotonically increase throughout the phases of the development life cycle. Most often, however, performance and stability decline as features are added and only begin to improve again as the feature set becomes more constant. In each phase, with a disciplined development approach, you can keep stability, performance, and the feature set all improving. It's likely that there will be apparent declines as you move from phase, as increased fidelity of testing will lead to the discovery of more esoteric and detailed issues. However, constant progress can be maintained, at least within a phase. One of the simplest methods is disciplined regression testing combined with change management tools. Firmware bring-up post-silicon should be quick Given the availability of high-quality co-design techniques, such as the IBM ChipBench™, and co- simulation techniques using instruction set simulators and SystemC transaction level models and core models, firmware bring-up and post-silicon verification should take weeks rather than months. Often, firmware will be up and cycling only days or even hours after silicon arrives back from fabrication. How to keep iterative co-implementation on track during development phases Some tips on how to keep features and modules on track: Identify hardware and firmware module owners to take responsibility through entire life cycle. Require tests to be developed in parallel with module development. Require early adoption of nightly testing using TLM simulation and/or RTL simulation. Adopt configuration management version control (CMVC) tools that allow for feature addition branches and version tagging. While the recommendations above are followed in most projects, they often aren't implemented until the end of the process shown in Figure 1 . Starting early and automating tests for nightly regression is now possible with EDA and co-simulation tools available for SoCs. In the days before early verification tools were available, hardware and firmware development proceeded much more independently than they can now. A typical process included independent development of firmware on an emulator while hardware was designed and developed, with most of the co-testing done during the final post-silicon verification. Despite advances in verification tools, many SoC developers still work along lines established in those days, and thus don't adopt testing and regression processes, or configuration and version control, to the extent that they should. CMVC tools such as ClearCase provide great management for HDL and C code ClearCase® was developed for multisite, multiproject repositories, and can manage source and binary files. It can readily be used by both hardware and firmware development teams and to test releases with integrated co -simulation. http://www.ibm.com/developerworks/power/library/pa -soc3/index.html 4/25/2009 SoC drawer: SoC concurrent development Page 4 of 7 Source CMVC Since EDA and HDLs for SoC design make the hardware development process similar in nature to firmware development, both hardware and firmware can and should use configuration management tools -- the same ones, if at all possible! This almost seems blasphemous to organizations that have grown accustomed to a silo model for hardware and software development, where a quick hand-off is made post-silicon, and interaction is otherwise minimal. One difficulty when testing changing firmware on changing hardware is that stability often suffers: this can greatly impede the progress of both hardware and firmware development teams. This problem can be solved by having the hardware team make releases of simulators to the firmware team. Likewise, the firmware team should make releases of boot code and diagnostic code to the hardware team. Both teams need well-disciplined processes for maintaining versions and releases. One way to go about this is to maintain a main line of C code or HDL that is guaranteed to be stable. As hardware or firmware developers add code, they do so on branches from the stable main line, and merge new features and bug fixes made on code branches back to the line.
Recommended publications
  • APPLICATION of the DELTA DEBUGGING ALGORITHM to FINE-GRAINED AUTOMATED LOCALIZATION of REGRESSION FAULTS in JAVA PROGRAMS Master’S Thesis
    TALLINN UNIVERSITY OF TECHNOLOGY Faculty of Information Technology Marina Nekrassova 153070IAPM APPLICATION OF THE DELTA DEBUGGING ALGORITHM TO FINE-GRAINED AUTOMATED LOCALIZATION OF REGRESSION FAULTS IN JAVA PROGRAMS Master’s thesis Supervisor: Juhan Ernits PhD Tallinn 2018 TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Marina Nekrassova 153070IAPM AUTOMATISEETITUD SILUMISE RAKENDAMINE VIGADE LOKALISEERIMISEKS JAVA RAKENDUSTES Magistritöö Juhendaja: Juhan Ernits PhD Tallinn 2018 Author’s declaration of originality I hereby certify that I am the sole author of this thesis. All the used materials, references to the literature and the work of others have been referred to. This thesis has not been presented for examination anywhere else. Author: Marina Nekrassova 08.01.2018 3 Abstract In software development, occasionally, in the course of software evolution, the functionality that previously worked as expected stops working. Such situation is typically denoted by the term regression. To detect regression faults as promptly as possible, many agile development teams rely nowadays on automated test suites and the practice of continuous integration (CI). Shortly after the faulty change is committed to the shared mainline, the CI build fails indicating the fact of code degradation. Once the regression fault is discovered, it needs to be localized and fixed in a timely manner. Fault localization remains mostly a manual process, but there have been attempts to automate it. One well-known technique for this purpose is delta debugging algorithm. It accepts as input a set of all changes between two program versions and a regression test that captures the fault, and outputs a minimized set containing only those changes that directly contribute to the fault (in other words, are failure-inducing).
    [Show full text]
  • Embedded Software Knowledge Management System (ESWKMS) Release 0.0
    Embedded Software Knowledge Management System (ESWKMS) Release 0.0 ESWKMS community September 24, 2015 Contents 1 Human Relation Patterns 3 1.1 Categorization of human relation patterns................................3 2 Build Patterns 5 2.1 Categorization of build patterns.....................................5 2.2 All build patterns in alphabetic order..................................6 3 Release Antipatterns 9 4 Requirement Patterns 11 4.1 Standardized Textual Specification Pattern............................... 11 4.2 Perform Manual Review Pattern..................................... 11 5 Design Patterns 13 5.1 Categorization of “design” patterns................................... 13 5.2 Pattern Selection Procedure....................................... 19 5.3 Legend to the design pattern sections.................................. 19 5.4 All design patterns in alphabetic order.................................. 19 6 Idioms in C 27 6.1 Classification of idioms......................................... 27 6.2 Add the name space........................................... 27 6.3 Constants to the left........................................... 27 6.4 Magic numbers as variables....................................... 28 6.5 Namend parameters........................................... 28 6.6 Sizeof to variables............................................ 28 7 Bibliography 29 8 “It is all about structure and vision.” 31 9 Indices and tables 33 i ii Embedded Software Knowledge Management System (ESWKMS), Release 0.0 Contents: Contents 1 Embedded
    [Show full text]
  • Software Configuration Management
    Front cover Software Configuration Management A Clear Case for IBM Rational ClearCase and ClearQuest UCM Implementing ClearCase Implementing ClearQuest for UCM ClearCase and ClearQuest MultiSite Ueli Wahli Jennie Brown Matti Teinonen Leif Trulsson ibm.com/redbooks International Technical Support Organization Software Configuration Management A Clear Case for IBM Rational ClearCase and ClearQuest UCM December 2004 SG24-6399-00 Note: Before using this information and the product it supports, read the information in “Notices” on page xvii. First Edition (December 2004) This edition applies to IBM Rational ClearCase and MultiSite Version 2003.06.00 and IBM Rational ClearQuest and MultiSite Version 2003.06.00. Some information about Version 06.13 is included. © Copyright International Business Machines Corporation 2004. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . xvii Trademarks . xviii Preface . xix The team that wrote this redbook. xxi Become a published author . xxiii Comments welcome. xxiii Part 1. Introduction to SCM . 1 Chapter 1. The quest for software lifecycle management . 3 Stories from the wild. 4 Software asset management . 5 Better software configuration management means better business . 6 Seven keys to improving business value . 7 Safety . 7 Stability . 8 Control. 8 Auditability. 9 Reproducibility. 10 Traceability . 11 Scalability . 12 Good SCM is good business . 13 Chapter 2. Choosing the right SCM strategy . 15 The questions. 16 A version control strategy. 17 Delta versioning . 17 A configuration control strategy . 19 A process management strategy . 21 A problem tracking strategy . 23 Chapter 3. Why ClearCase and ClearQuest .
    [Show full text]
  • An Application of Configuration Management on Graphical Models
    MBVC – Model Based Version Control: An Application of Configuration Management on Graphical Models MEHIAR MOUKBEL Master of Science Thesis Stockholm, Sweden 2007 i MBVC – Model Based Version Control: An Application of Configuration Management on Graphical Models By: Mehiar Moukbel A A B Merge Engine B Master of Science Thesis MMK 2007:38 MDA261 KTH Machine Design SE-10044STOCKHOLM ii Master of Science Thesis MMK 2007:38 MDA261 MBVC – Model Based Version Control: An Application of Configuration Management on Graphical Models Mehiar Moukbel Approved Examiner Supervisor 2007-03-20 Martin Törngren Jianlin Shi Jad El-Khoury Commissioner Contact person KTH, Machine Design Abstract File-based version control consists of tools in the software engineering industry, with many available commercial products that allow multiple developers to work simultaneously on a single project. However these tools are most commonly used on plain textual documents such as source code. There exist few tools today for versioning fine-grained data such as graphical Simulink models. Since Simulink is widely used as a modeling tool in numerous engineering fields, nonetheless in the mechatronics field, it will be interesting to study the possibility of developing a tool for version control of graphical models. Two textual software configuration management (SCM) products, CVS and Rational Clear Case, were studied and their functionalities were analyzed, along with a different number of research topics on document versioning. The existing algorithms of ‘diff’ and ‘merge’ functions were also studied to give an understanding of how these functions work for text based documents. The knowledge gained from the tools, existing algorithms and literature on the subject were used to write MATLAB programs that perform diff and merge on Simulink models.
    [Show full text]
  • Abschlussarbeit
    Abschlussarbeit André Behrens Testen von Legacy Code in Open Source Projekten Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Informatik Department of Computer Science André Behrens Testen von Legacy Code in Open Source Projekten Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung im Studiengang Angewandte Informatik am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg Betreuende Prüferin: Frau Prof. Dr. Bettina Buth Zweitgutachterin: Frau Prof. Dr. Ulrike Steffens Abgegeben am 19.02.2016 André Behrens Thema der Arbeit Testen von Legacy Code in Open Source Projekten Stichworte Softwaretest, Legacy Code, Open Source Projekte, ews-java-api, Microsoft Exchange Server, Java Kurzzusammenfassung Thema dieser Arbeit ist es Teststrategien im Zusammenhang von Open Source Projekten und Legacy Code aufzuzeigen. Hier werden zunächst Grundlagen des Softwaretests mit Teststrategien in großen Unternehmen verglichen und deren Anwendbarkeit anhand von Analysen und Beispielen auf ein Projekt angewandt, welches große Bestandteile von Legacy Code aufweist. André Behrens Title of the paper Testing Legacy Code in Open Source Projects Keywords Softwaretest, Legacy Code, Open Source Projects, ews-java-api, Microsoft Exchange Server, Java Abstract This thesis is about test strategies in big firms as well as them to be used in open source projects and will give some introduction on software testing basics in comparison with their applicability with strategies
    [Show full text]
  • ESWP3 - Embedded Software Principles, Procedures and Patterns Release 1.0
    ESWP3 - Embedded Software Principles, Procedures and Patterns Release 1.0 ESWP3 contributors October 04, 2015 Contents 1 Principles 3 1.1 Categorization of principles.......................................3 1.2 All principles in alphabetic order....................................3 2 Procedures 5 2.1 Categorization of procedures.......................................5 2.2 All procedures in alphabetic order....................................5 3 Patterns 7 3.1 Human Relation Patterns.........................................7 3.2 Build Patterns.............................................. 10 3.3 Requirement Patterns........................................... 13 3.4 Design Patterns.............................................. 16 3.5 Unit Test Patterns............................................. 32 3.6 Tool evaluation patterns......................................... 39 3.7 About the meta-data........................................... 41 4 Bibliography 43 5 “It is all about structure and vision.” 45 6 Indices and tables 47 i ii ESWP3 - Embedded Software Principles, Procedures and Patterns, Release 1.0 This project is about summarizing, referencing, structuring and relating principles, procedures (as sequences of pat- terns in a pattern language) and patterns in the context of embedded software engineering. As “(P)atterns are only meaningful as part of a Pattern Language(.)” (Bergin 2013, pos. 74) this project tries also to “make” relations between different pattern languages and the higher-level principles “visible”. Contents: Contents
    [Show full text]
  • Altova Umodel 2019 User & Reference Manual
    User and Reference Manual Altova UModel 2019 User & Reference Manual All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. Published: 2019 © 2019 Altova GmbH Table of Contents 1 UModel 3 2 Introducing UModel 6 2.1 Support Notes................................................................................................................. 7 3 UModel Tutorial 10 3.1 Getting Started................................................................................................................. 11 3.2 Use Cases................................................................................................................. 14 3.3 Class Diagrams................................................................................................................
    [Show full text]
  • Altova Umodel 2021 Basic Edition
    Altova UModel 2021 Basic Edition User & Reference Manual Altova UModel 2021 Basic Edition User & Reference Manual All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. Published: 2021 © 2015-2021 Altova GmbH Table of Contents 1 Introduction 10 1.1 Support.......................................................................................................................................................... Notes 11 2 UModel Tutorial 14 2.1 Getting.......................................................................................................................................................... Started 15 2.2 Use Cases.........................................................................................................................................................
    [Show full text]
  • Rational Business Driven Development for Compliance
    Front cover Rational Business Driven Development for Compliance Say what you do, do what you say, and be able to prove it Manage compliance using Rational tools and processes Leverage compliance for business advantage Ueli Wahli Majid Irani Matthew Magee Ana Negrello Celio Palma Jason Smith ibm.com/redbooks International Technical Support Organization Rational Business Driven Development for Compliance November 2006 SG24-7244-00 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. First Edition (November 2006) This edition applies to IBM Rational software tools, such as RequisitePro, ClearCase, ClearQuest, ClearQuest Test Manager, Portfolio Manager, BuildForge, Functional Tester, Manual Tester, Performance Tester, Method Composer, Unified Process, ProjectConsole, and SoDA. © Copyright International Business Machines Corporation 2006. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . ix Trademarks . x Preface . xi The team that wrote this IBM Redbook . xii Thanks . xiii Become a published author . xiv Comments welcome. xiv Chapter 1. A discussion about compliance . 1 Overview of today’s regulated environment . 2 What it means to be compliant . 3 Policy creation and management . 4 Regulations . 5 Sarbanes-Oxley . 6 USA Patriot Act . 7 Basel II . 7 Title 21 CFR 11 . 8 HIPAA . 8 Gramm-Leach-Bliley . 9 Sustainable compliance management . 9 How auditors inspect . 10 Compliance: an opportunity to improve the business. 13 Regulations versus standards . 14 Software development oriented standards. 16 COSO . 16 COBIT . 16 ITIL . 17 SPICE . 17 ISO 900x . 18 Six Sigma .
    [Show full text]
  • A Survey of Version Control Systems
    A Survey of Version Control Systems Ali Koc, M.A. Abdullah Uz Tansel, PhD Graduate Center – City University of New York Baruch College – City University of New York New York, USA New York, USA Abstract —Version control has been an essential aspect of any see who works how much, give credit or blame mistakes − software development project since early 1980s. In the recent blame is actually a command in some version control years, however, we see version control as a common feature systems (2). embedded in many collaborative based software packages; such as word processors, spreadsheets and wikis. In this paper, we This paper is organized such that in section 2 we explain the common structure of version control systems, explain the structure of version control systems and provide historical information on their development, and provide an abstract depiction of their basic functionalities. identify future improvements. Section 3 traces the history of version control systems and briefly describes commonly used software systems. We Keywords- version control; revision control; collaboration. discuss possible functions that can be added to version control systems in Section 4, and Section 5 concludes the I. INTRODUCTION paper. Change is a vital aspect of data. Most data encounters multiple modifications over the course of its life. For II. STRUCTURE OF VERSION CONTROL SYSTEMS certain forms of complex data, version control (aka The data, its versions, and all the information revision control) systems are commonly used to track associated with each version are stored in a location called changes; such as software source code, documents, repository . There are four repository models commonly graphics, media, VLSI layouts, and others.
    [Show full text]
  • Git Commit -M "Commit Message„ – Új Commit • Git Push – Commitok Feltöltése Remote-Ra LEGFONTOSABB GIT PARANCSOK
    VÁLLALATI INFORMÁCIÓS RENDSZEREK előadás „A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült.” © 2018-2019, Dr. Hegedűs Péter VERZIÓKÖVETÉS FOGALMA ÉS ESZKÖZEI Vállalati Információs Rendszerek © 2018-2019, Dr. Hegedűs Péter VERZIÓKÖVETÉS CÉLJA • Forráskód és egyéb szöveges (vagy bináris) állományok (asset) változásainak nyomon követése – Minden változtatás egyedi azonosítóval ellátott (revision) – Változás meta-információi • Ki, mikor, mit módosított – Megváltozott sorok (diff) • A változások visszakereshetők, visszaállíthatók • Különböző változások összefésülhetők (merge) • Csapatok által fejlesztett közös kódbázis esetén elengedhetetlen VERZIÓKÖVETÉS MEGVALÓSÍTÁSA • Speciális szoftverek (VCS – Version Control System) – Számos különböző koncepció a fenti célok megvalósítására • Változások tárolása – Fájlok/adatok kezdeti változatának tárolása, módosítások nyomon követése • Intuitív, de átnevezés, törlés, összefésülés problémás – Minden változás az egész adathalmaz egy újabb állapota • Apró/egyszerű módosítások esetén kevésbé intuitív • Nagy/komplex változtatások esetén viszont egyszerűsít VÁLTOZÁSOK SZERKEZETE • Az egyes verziók (revision) irányított gráfként reprezentálhatók – Directed Acyclic Graph (DAG) • Gráf pontjai az egyes revíziók • Élek a rákövetkező revízió kapcsolat – Több párhuzamos fejlesztési ág • Tipikusan van egy fő ág – Az összefűzés (merge) műveletek miatt nem fa – A változások szekvenciálisan követik egymást időben • Sorba rendezhető revizió szám vagy időbélyegző alapján – HEAD jelöli a legutolsó
    [Show full text]
  • Clearcase Environment How Do I Web Page
    ClearCase Environment – How do I Soft - is your software and documentation Asset - is something that must be protected Management - is what we do Enterprise - is the capability Computing - is the power Services - are what we provide ClearCase Environment – “How do I”:(Last update 12-Dec-12) Anti-virus software and ClearCase – recommendations, etc... Server processes – lockmgr (redundancy in v7) & new vob_almd_params file, stopping and starting (windows & remotely), etc... ClearCase Registry – commands requiring the registry password, etc... Multi Version File System (MVFS) layer – understanding, debugging, flushing the cache, etc... LDAP and Active Directory services – issues, etc... Shell access – understanding, etc... Network Attached Storage devices - root permissions and, chown_pool & chown_container, etc... Storage – default location for Views on windows, etc... .NET issues – understanding etc,... Regions – Tags, etc... Email – configuring, etc... Problems and Issues - “The Evil twins” , eclipsed files, protectvob and, etc... Installation and patching of ClearCase - including silent install, patching, uninstalling, feature differences ClearCase and ClearCase LT etc... Firewalls – ClearCase and etc... Upgrading and compatibility issues between major versions, preserving installs, etc... Plugins & integrations for ClearCase - Eclipse, ClearCase Automation Libraty (CAL), Source Code Control provider (changing), etc... ClearCase context menus – configuring etc... Temporary files – created by and used by ClearCase, etc..
    [Show full text]