IAEA TECDOC SERIES Use of Radiotracers to Study Surface Use of Radiotracers to Study Water Processes

Total Page:16

File Type:pdf, Size:1020Kb

IAEA TECDOC SERIES Use of Radiotracers to Study Surface Use of Radiotracers to Study Water Processes IAEA-TECDOC-1760 IAEA-TECDOC-1760 IAEA TECDOC SERIES Use of Radiotracers to Study Surface Water Processes Water Use of Radiotracers to Study Surface IAEA-TECDOC-1760 Use of Radiotracers to Study Surface Water Processes International Atomic Energy Agency Vienna ISBN 978–92–0–100415–4 ISSN 1011–4289 @ USE OF RADIOTRACERS TO STUDY SURFACE WATER PROCESSES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GREECE PAKISTAN ALBANIA GUATEMALA PALAU ALGERIA GUYANA PANAMA ANGOLA HAITI PAPUA NEW GUINEA ARGENTINA HOLY SEE PARAGUAY ARMENIA HONDURAS PERU AUSTRALIA HUNGARY PHILIPPINES AUSTRIA ICELAND POLAND AZERBAIJAN INDIA PORTUGAL BAHAMAS INDONESIA QATAR BAHRAIN IRAN, ISLAMIC REPUBLIC OF REPUBLIC OF MOLDOVA BANGLADESH IRAQ ROMANIA IRELAND BELARUS RUSSIAN FEDERATION BELGIUM ISRAEL RWANDA BELIZE ITALY SAN MARINO BENIN JAMAICA SAUDI ARABIA BOLIVIA JAPAN SENEGAL BOSNIA AND HERZEGOVINA JORDAN BOTSWANA KAZAKHSTAN SERBIA BRAZIL KENYA SEYCHELLES BRUNEI DARUSSALAM KOREA, REPUBLIC OF SIERRA LEONE BULGARIA KUWAIT SINGAPORE BURKINA FASO KYRGYZSTAN SLOVAKIA BURUNDI LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMBODIA REPUBLIC SOUTH AFRICA CAMEROON LATVIA SPAIN CANADA LEBANON SRI LANKA CENTRAL AFRICAN LESOTHO SUDAN REPUBLIC LIBERIA SWAZILAND CHAD LIBYA SWEDEN CHILE LIECHTENSTEIN SWITZERLAND CHINA LITHUANIA SYRIAN ARAB REPUBLIC COLOMBIA LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI THE FORMER YUGOSLAV CÔTE D’IVOIRE MALAYSIA REPUBLIC OF MACEDONIA CROATIA MALI TOGO CUBA MALTA TRINIDAD AND TOBAGO CYPRUS MARSHALL ISLANDS TUNISIA CZECH REPUBLIC MAURITANIA, ISLAMIC TURKEY DEMOCRATIC REPUBLIC REPUBLIC OF UGANDA OF THE CONGO MAURITIUS UKRAINE DENMARK MEXICO UNITED ARAB EMIRATES DOMINICA MONACO UNITED KINGDOM OF DOMINICAN REPUBLIC MONGOLIA GREAT BRITAIN AND ECUADOR MONTENEGRO EGYPT MOROCCO NORTHERN IRELAND EL SALVADOR MOZAMBIQUE UNITED REPUBLIC ERITREA MYANMAR OF TANZANIA ESTONIA NAMIBIA UNITED STATES OF AMERICA ETHIOPIA NEPAL URUGUAY FIJI NETHERLANDS UZBEKISTAN FINLAND NEW ZEALAND VENEZUELA, BOLIVARIAN FRANCE NICARAGUA REPUBLIC OF GABON NIGER VIET NAM GEORGIA NIGERIA YEMEN GERMANY NORWAY ZAMBIA GHANA OMAN ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA-TECDOC-1760 USE OF RADIOTRACERS TO STUDY SURFACE WATER PROCESSES INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2015 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books For further information on this publication, please contact: Terrestrial Environment Laboratory, Seibersdorf International Atomic Energy Agency 2444 Seibersdorf, Austria Email: [email protected] © IAEA, 2015 Printed by the IAEA in Austria March 2015 IAEA Library Cataloguing in Publication Data Use of radiotracers to study surface water processes. — Vienna : International Atomic Energy Agency, 2015. p. ; 30 cm. — (IAEA-TECDOC series, ISSN 1011–4289 ; no. 1760) ISBN 978–92–0–100415–4 Includes bibliographical references. 1. Radioactive tracers. 2. Radioisotopes in hydrology. 3. Radioactive tracers in water pollution research. I. International Atomic Energy Agency. II. Series. IAEAL 15–00956 FOREWORD Most of world’s population is directly affected by the available water resources and the means to supply them. All natural or anthropogenic processes that modify the water flux and quality have a direct impact on human lives. Radioactive tracers can be extremely useful in studying such processes, and thus help to investigate the common problems faced by many States and to find adequate solutions. Problems such as water pollution, erosion, river sedimentation, and the loss of storage capability of water reservoirs, thereby reducing fish stocks, can cause great damage and negatively affect the well-being of local populations. To address this, a consultants meeting on the use of radioactive tracers to study surface water processes was organized by the IAEA to support Member States in situations where the use of radioactive tracers is considered as a major tool for a complete understanding of the process. This publication represents a sound knowledge base for the conduct of radiotracer studies in the environment, with papers on radiotracer methodology, radiation protection and regulation, data analysis and modelling. Environmental case histories from five Member States — Australia, Brazil, France, the Republic of Korea and Sweden — provide information on conducting studies involving the use of radioactive tracers. These case histories are not meant as guidelines for preparing a field study but can rather serve as examples of the type, caution and extent of work involved in environmental studies using radiotracers. This publication can provide guidance for conducting potential future training events in the use of radioactive tracers in the environment and can serve as a key reference to all concerned directly or indirectly with surface water processes. The IAEA wishes to thank all the participants in the consultants meeting for their valuable contribution, in particular C.E. Hughes (Australia) and P. Brisset (France). The IAEA officer responsible for this publication was A. Ceccatelli of the IAEA Terrestrial Environment Laboratory. EDITORIAL NOTE This publication has been prepared from the original material as submitted by the contributors and has not been edited by the editorial staff of the IAEA. The views expressed remain the responsibility of the contributors and do not necessarily represent the views of the IAEA or its Member States. Neither the IAEA nor its Member States assume any responsibility for consequences which may arise from the use of this publication. This publication does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The IAEA has no responsibility for the persistence or accuracy of URLs for external or third party Internet web sites referred to in this publication and does not guarantee that any content on such web sites is, or will remain, accurate or appropriate. CONTENTS SUMMARY ........................................................................................................................... 1 PAPERS ON SURFACE WATER PROCESSES STUDY USING RADIOACTIVE TRACERS USE OF RADIOTRACERS TO STUDY SURFACE WATER PROCESSES .............................. 1 PAPERS ON SURFACE WATER PROCESSES STUDY USING RADIOACTIVE TRACERS .................................................................................................................... 1 1. INTRODUCTION ......................................................................................................... 1 1.1. Background and Scope .................................................................................................. 1 1.2. Objectives ..................................................................................................................... 1 1.3. Structure of the publication ............................................................................................ 2 PAPERS ON SURFACE WATER PROCESSES STUDY USING RADIOACTIVE TRACERS .................................................................................................................... 4 ARTIFICIAL RADIOTRACER APPLICATIONS IN AQUATIC ENVIRONMENTS .......... 5 1. INTRODUCTION .............................................................................................................. 5 2. MATHEMATICAL MODELLING ............................................................................... 6 3. CHALLENGES TO THE USE OF RADIOTRACERS IN THE ENVIRONMENT ....... 7 REFERENCES ....................................................................................................................... 9 RADIOTRACER METHODOLOGY ................................................................................... 13 1. PRINCIPLES OF TRACER STUDY DESIGN ..........................................................
Recommended publications
  • The Hyporheic Handbook a Handbook on the Groundwater–Surface Water Interface and Hyporheic Zone for Environment Managers
    The Hyporheic Handbook A handbook on the groundwater–surface water interface and hyporheic zone for environment managers Integrated catchment science programme Science report: SC050070 The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. This report is the result of research funded by NERC and supported by the Environment Agency’s Science Programme. Published by: Dissemination Status: Environment Agency, Rio House, Waterside Drive, Released to all regions Aztec West, Almondsbury, Bristol, BS32 4UD Publicly available Tel: 01454 624400 Fax: 01454 624409 www.environment-agency.gov.uk Keywords: hyporheic zone, groundwater-surface water ISBN: 978-1-84911-131-7 interactions © Environment Agency – October, 2009 Environment Agency’s Project Manager: Joanne Briddock, Yorkshire and North East Region All rights reserved. This document may be reproduced with prior permission of the Environment Agency. Science Project Number: SC050070 The views and statements expressed in this report are those of the author alone. The views or statements Product Code: expressed in this publication do not necessarily SCHO1009BRDX-E-P represent the views of the Environment Agency and the Environment Agency cannot accept any responsibility for such views or statements. This report is printed on Cyclus Print, a 100% recycled stock, which is 100% post consumer waste and is totally chlorine free.
    [Show full text]
  • Toward a Conceptual Framework of Hyporheic Exchange Across Spatial Scales
    Hydrol. Earth Syst. Sci., 22, 6163–6185, 2018 https://doi.org/10.5194/hess-22-6163-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Toward a conceptual framework of hyporheic exchange across spatial scales Chiara Magliozzi1, Robert C. Grabowski1, Aaron I. Packman2, and Stefan Krause3 1School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK 2Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA 3School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, Edgbaston, B15 2TT, UK Correspondence: Robert C. Grabowski (r.c.grabowski@cranfield.ac.uk) Received: 15 May 2018 – Discussion started: 30 May 2018 Revised: 19 October 2018 – Accepted: 28 October 2018 – Published: 30 November 2018 Abstract. Rivers are not isolated systems but interact con- 1 Introduction tinuously with groundwater from their confined headwaters to their wide lowland floodplains. In the last few decades, Hyporheic zones (HZs) are unique components of river sys- research on the hyporheic zone (HZ) has increased appreci- tems that underpin fundamental stream ecosystem functions ation of the hydrological importance and ecological signif- (Ward, 2016; Harvey and Gooseff, 2015; Merill and Ton- icance of connected river and groundwater systems. While jes, 2014; Krause et al., 2011a; Boulton et al., 1998; Brunke recent studies have investigated hydrological, biogeochem- and Gonser, 1997; Orghidan, 1959). At the
    [Show full text]
  • Impact of Geomorphic Structures on Hyporheic Exchange, Stream Temperature, and Stream Ecological Processes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Carolina Digital Repository Impact of Geomorphic Structures on Hyporheic Exchange, Temperature, and Ecological Processes in Streams Erich T. Hester A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Curriculum in Ecology. Chapel Hill 2008 Approved by: Martin W. Doyle Lawrence E. Band Emily S. Bernhardt Michael F. Piehler Seth R. Reice Abstract Erich T. Hester: Impact of Geomorphic Structures on Hyporheic Exchange, Temperature, and Ecological Processes in Streams (Under the direction of Martin W. Doyle) Water exchange between streams and groundwater (hyporheic exchange) facilitates exchange of heat, nutrients, toxics, and biota. In-stream geomorphic structures (IGSs) such as log dams and steps are common in natural streams and stream restoration projects, and can significantly enhance hyporheic exchange. Hyporheic exchange is known to moderate temperatures in streams, a function important to a variety of stream organisms. Nevertheless, the connection between IGS form, hydrogeologic setting, hyporheic exchange, and hyporheic thermal impacts are poorly known. In this dissertation, I used hydraulic modeling and field experiments to quantify how basic characteristics of IGSs and their hydrogeologic setting impact induced hyporheic water and heat exchange and stream temperature. Model results indicate that structure size, background groundwater discharge, and sediment hydraulic conductivity are the most important factors controlling induced hyporheic exchange. Nonlinear relationships between many such driving factors and hyporheic exchange are important for understanding IGS functioning. Weir-induced hyporheic heat advection noticeably affected shallow sediment temperatures during the field experiments, and also caused slight cooling of the surface stream, an effect that increased with weir height.
    [Show full text]
  • Impact of Cattle Access to Watercourses
    Report No. 260 Impact of Cattle Access to Watercourses: Literature Review on Behalf of the COSAINT Project Authors: Paul O’Callaghan, Mary Kelly-Quinn, Eleanor Jennings, Patricia Antunes, Matt O’Sullivan, Owen Fenton and Daire Ó hUallacháin www.epa.ie ENVIRONMENTAL PROTECTION AGENCY Monitoring, Analysing and Reporting on the The Environmental Protection Agency (EPA) is responsible for Environment protecting and improving the environment as a valuable asset • Monitoring air quality and implementing the EU Clean Air for for the people of Ireland. We are committed to protecting people Europe (CAFÉ) Directive. and the environment from the harmful effects of radiation and • Independent reporting to inform decision making by national pollution. and local government (e.g. periodic reporting on the State of Ireland’s Environment and Indicator Reports). The work of the EPA can be divided into three main areas: Regulating Ireland’s Greenhouse Gas Emissions • Preparing Ireland’s greenhouse gas inventories and projections. Regulation: We implement effective regulation and environmental • Implementing the Emissions Trading Directive, for over 100 of compliance systems to deliver good environmental outcomes and the largest producers of carbon dioxide in Ireland. target those who don’t comply. Knowledge: We provide high quality, targeted and timely Environmental Research and Development environmental data, information and assessment to inform • Funding environmental research to identify pressures, inform decision making at all levels. policy and provide solutions in the areas of climate, water and sustainability. Advocacy: We work with others to advocate for a clean, productive and well protected environment and for sustainable Strategic Environmental Assessment environmental behaviour. • Assessing the impact of proposed plans and programmes on the Irish environment (e.g.
    [Show full text]
  • The Role of the Hyporheic Zone Across Stream Networks T This File Was
    HYDROLOGICAL PROCESSES Hydro/. Process. (2011) Published online in Wiley Online Library (wileyonlinelibrary.com). 001: 10.1002jhyp.8119 The role of the hyporheic zone across stream networks t Steven M. Wondzell* Abstract USDA Forest Service, Pacific Many hyporheic papers state that the hyporheic zone is a critical component of Northwest Research Station, Olympia stream ecosystems, and many of these papers focus on the biogeochemical effects Forestry Sciences Laboratory, of the hyporheic zone on stream solute loads. However, efforts to show such Olympia, WA 98512, USA relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly variable in place and time *Correspondence to: (or among streams) that a consistent relationship should not be expected? Or, is the Steven M. Wondzell, USDA Forest hyporheic zone less important in stream ecosystems than is commonly expected? Service, Pacific Northwest Research These questions were examined using data from existing groundwater modelling Station, Olympia Forestry Sciences Laboratory, Olympia, WA studies of hyporheic exchange flow at five sites in a fifth-order, mountainous stream 98512, USA. network. The size of exchange flows, relative to stream discharge (QHEF : Q), was E-mail: [email protected] large only in very small streams at low discharge (area ",,100 ha; Q <10I/s). At higher flows (flow exceedance probability >0·7) and in all larger streams, was small. These data show that biogeochemical processes in the +This article is a US Government work QHEF : Q and is in the public domain in the USA. hyporheic zone of small streams can substantially influence the stream's solute load, but these processes become hydrologically constrained at high discharge or in larger streams and rivers.
    [Show full text]
  • Spatial and Temporal Variability in a Hyporheic Zone: a Hierarchy of Controls from Water Flows to Meiofauna
    SPATIAL AND TEMPORAL VARIABILITY IN A HYPORHEIC ZONE: A HIERARCHY OF CONTROLS FROM WATER FLOWS TO MEIOFAUNA Richard Goodwin Storey A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy, Graduate Department of Zoology, in the University of Toronto O Copyright by Richard Goodwin Storey 2001 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellingbn O(tawa ON K1A ON4 OmwaON K1AW Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence aliowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seIl reproduire, prêter, distribuer ou copies of this thesis in microfoxm, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur fomat électronique. The author retains ownership of the L'auteur conserve la propriété du copy~@~tin &is thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son pemiission. autorisation. SPATIAL AND TEMPORAL VARIABILITY IN A HYPORHEIC ZONE: A HlERARCHY OF CONTROLS FROM WATER FLOWS TO MEIOFAUNA By Richard Goodwin Storey A thesis submitted in conformity with the requirernents for the degree of Doctor of Philosophy, Graduate Department of Zoology in the University of Toronto, 200 1. Abstract The hyporheic zone beneath a single 10 m-long riffle of a gravel-bed strearn was sampled intensively between August 1996 and Novernber 2000.
    [Show full text]
  • The Role of the Hyporheic Zone Across Stream Networks†
    HYDROLOGICAL PROCESSES Hydrol. Process. 25, 3525–3532 (2011) Published online 5 May 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/hyp.8119 The role of the hyporheic zone across stream networks† Steven M. Wondzell* Abstract USDA Forest Service, Pacific Many hyporheic papers state that the hyporheic zone is a critical component of Northwest Research Station, Olympia stream ecosystems, and many of these papers focus on the biogeochemical effects Forestry Sciences Laboratory, of the hyporheic zone on stream solute loads. However, efforts to show such Olympia, WA 98512, USA relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly variable in place and time *Correspondence to: (or among streams) that a consistent relationship should not be expected? Or, is the Steven M. Wondzell, USDA Forest hyporheic zone less important in stream ecosystems than is commonly expected? Service, Pacific Northwest Research Station, Olympia Forestry Sciences These questions were examined using data from existing groundwater modelling Laboratory, Olympia, WA studies of hyporheic exchange flow at five sites in a fifth-order, mountainous stream 98512, USA. network. The size of exchange flows, relative to stream discharge (QHEF :Q),was E-mail: [email protected] large only in very small streams at low discharge (area ³100 ha; Q <10 l/s). At higher flows (flow exceedance probability >0·7) and in all larger streams, †This article is a US Government work QHEF : Q was small. These data show that biogeochemical processes in the and is in the public domain in the USA. hyporheic zone of small streams can substantially influence the stream’s solute load, but these processes become hydrologically constrained at high discharge or in larger streams and rivers.
    [Show full text]
  • Life in Water
    Life in Water Chapter 3 Outline • Hydrologic Cycle • Oceans • Shallow Marine Waters • Marine Shores • Estuaries, Salt Marshes, and Mangrove Forests • Rivers and Streams • Lakes 2 The Hydrologic Cycle • Over 71% of the earth’s surface is covered by water: – Oceans con tai n 97%. – Polar ice caps and glaciers contain 2%. – Freshwater in lakes, streams, and ground water make up less than 1%. 3 • Reservoir = storage for nutrient/molecule – H2O en ters • Precipitation • Surface or subsurface flow – H20 leaves • Evaporation • Flow • Cycle powered by solar energy 4 5 The Hydrologic Cycle • Turnover time is the time required for the entire volume of a reservoir to be renewed. – Atmosphere 9 days – Rivers 12-20 days – Oceans 3,100 years 6 Oceanic Circulation • Driven by prevailing winds • Moderates earth’s climate 7 Oceans - Geography • The Pacific is the largest ocean basin with a total area of nearly 180 million km2. • Gu lf o f C a liforn ia • Gulf of Alaska • Bering Sea • SfSea of Okho ts k • Sea of Japan • China Sea • Tasman Sea • Coral Sea 8 Oceans - Geography • The Atlantic is the second largest basin with a total area of over 106 million km2. – Mediterranean – Black Sea –North Sea – Baltic Sea – Gulf of Mexico – Caribbean Sea 9 Oceans - Geography • The Indian is the smallest basin with an area of just under 75 million km2. – Bay of Bengal – Arabian Sea – Persian Gulf – Red Sea 10 Oceans - Geography • Average Depth – Pacific - 4, 000 m – Atlantic - 3,900 m – Indian - 3,900 m • Undersea Trenches – Marianas - 10,,p000 m deep • Would engulf Mt.
    [Show full text]
  • Interaction of Ground Water and Surface Water in Different Landscapes
    Interaction of Ground Water and Surface Water in Different Landscapes Ground water is present in virtually all perspective of the interaction of ground water and landscapes. The interaction of ground water with surface water in different landscapes, a conceptual surface water depends on the physiographic and landscape (Figure 2) is used as a reference. Some climatic setting of the landscape. For example, a common features of the interaction for various stream in a wet climate might receive ground-water parts of the conceptual landscape are described inflow, but a stream in an identical physiographic below. The five general types of terrain discussed setting in an arid climate might lose water to are mountainous, riverine, coastal, glacial and ground water. To provide a broad and unified dune, and karst. MOUNTAINOUS TERRAIN downslope quickly. In addition, some rock types The hydrology of mountainous terrain underlying soils may be highly weathered or (area M of the conceptual landscape, Figure 2) is characterized by highly variable precipitation and fractured and may transmit significant additional water movement over and through steep land amounts of flow through the subsurface. In some slopes. On mountain slopes, macropores created by settings this rapid flow of water results in hillside burrowing organisms and by decay of plant roots springs. have the capacity to transmit subsurface flow A general concept of water flow in moun- tainous terrain includes several pathways by which precipitation moves through the hillside to a stream (Figure 20). Between storm and snowmelt periods, streamflow is sustained by discharge from the ground-water system (Figure 20A). During intense storms, most water reaches streams very rapidly by partially saturating and flowing through the highly conductive soils.
    [Show full text]
  • Stream Sediments Serve Important Role in Ecological Balance
    2011 volume 3 Aquatic Sciences Chronicle ASCaqua.wisc.edu/chronicle unIversity of Wisconsin SeA grAnt InStItute unIversity of Wisconsin WAter reSourCeS InStItute Inside: pgs.3-4 Farewell to Lubner and Harris ASC video still/John Karl pg.5 Who’s Eating Whom & pg.7 WAter reSourCeS reSeArCh Measuring Mercury StreAm SedImentS Serve ImportAnt role In Ecological BAlAnCe he Green Revolution—not the kind that celebrates Earth Day, solar panels and recycling but the one related to food produc- tion—has used various technologies to meet the world’s nutri- tional needs by growing more food per acre. The use of nitrogen tfertilizer is one tool that has allowed for increased food production. Crops need nitrogen to make their own food, but since they can’t take it directly from the air, nitrogen fertilizer, often in the form of Labeling samples. anhydrous ammonia, is added to enrich the soil and maximize yields. Undergraduate Research Adding more fertilizer than crops need to grow results in surface and Assistant Ashley Winker groundwater contamination. (l) and UW–Oshkosh Worldwide, there is more available nitrogen in our environment than Professor of Biology and ever before because of fertilizers and burning of fossil fuels, according Microbiology Bob Stelzer to Bob Stelzer, associate professor of biology at UW–Oshkosh. Stelzer are investigating the role is interested in the overall balance of the many forms of nitrogen in that deep stream sediments the environment. play in removing nitrogen Too much nitrogen in our lakes and streams can lead to excessive from the environment. plant growth, degraded recreational experiences and fish kills.
    [Show full text]
  • Carbon Dynamics in the Hyporheic Zone of a Headwater Mountain Stream in the Cascade Mountains, Oregon, Facilities Were Provided by the H.J
    PUBLICATIONS Water Resources Research RESEARCH ARTICLE Carbon dynamics in the hyporheic zone of a headwater 10.1002/2016WR019303 mountain stream in the Cascade Mountains, Oregon Key Points: Hayley A. Corson-Rikert1, Steven M. Wondzell2, Roy Haggerty1, and Mary V. Santelmann1 The hyporheic zone (HZ) is a source of DIC to the stream 1 2 During base flow periods, neither College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA, U.S. Forest Service, stream water nor groundwater nor Pacific Northwest Research Station, Corvallis, Oregon, USA hillslope soil water are significant sources of DOC or DIC to the HZ Most hyporheic DIC exported to the Abstract We investigated carbon dynamics in the hyporheic zone of a steep, forested, headwater stream is generated by microbial respiration of buried particulate catchment western Oregon, USA. Water samples were collected monthly from the stream and a well organic matter network during base flow periods. We examined the potential for mixing of different source waters to explain concentrations of DOC and DIC. We did not find convincing evidence that either inputs of deep Correspondence to: groundwater or lateral inputs of shallow soil water influenced carbon dynamics. Rather, carbon dynamics H. A. Corson-Rikert, appeared to be controlled by local processes in the hyporheic zone and overlying riparian soils. DOC [email protected] concentrations were low in stream water (0.04–0.09 mM), and decreased with nominal travel time through the hyporheic zone (0.02–0.04 mM lost over 100 h). Conversely, stream water DIC concentrations were Citation: Corson-Rikert, H. A., S.
    [Show full text]
  • Relation to Nutrient Dynamics and Particulate Organic Matter
    Table of contents I Processes and community structure in microbial biofilms of the River Elbe: relation to nutrient dynamics and particulate organic matter D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Fakultät Mathematik / Naturwissenschaft der Technischen Universität Dresden von Dipl. Biol. F r a n k K l o e p geboren am 11.06.1972 in Gerolstein Dresden, 2002 Table of contents II Dissertation der Technischen Universität Dresden Datum der mündlichen Prüfungen: 16.08.2001 Referenten: Prof. Dr. Isolde Röske Prof. Dr. Dietrich Uhlmann PD Dr. Werner Manz Table of contents III Table of contents 1 Introduction ........................................................................................................................... 1 1.1 EFFECTS OF DIURNAL CHANGES IN DISSOLVED OXYGEN ON DAILY AND SEASONAL NUTRIENT CONCENTRATIONS IN THE OPEN WATER AND THE HYPORHEIC ZONE OF THE RIVER ELBE......................................3 1.2 TRANSPORT BEHAVIOUR OF ALGAL CELLS IN HYPORHEIC SEDIMENTS ............................................................3 1.3 HYPORHEIC BIOFILMS AT TWO CONTRASTING RIVER ELBE SITES....................................................................5 1.4 ANALYSIS OF MICROBIAL COMMUNITIES OF THE RIVER ELBE.........................................................................6 2 Materials and Methods .........................................................................................................8 2.1 DIURNAL CHANGES IN DISSOLVED OXYGEN AND
    [Show full text]