Experimental Study of Water Waves: Nonlinear Effects and Absorption

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Study of Water Waves: Nonlinear Effects and Absorption Experimental study of water waves : nonlinear effects and absorption Eduardo Monsalve Gutierrez To cite this version: Eduardo Monsalve Gutierrez. Experimental study of water waves : nonlinear effects and absorp- tion. Mechanics [physics]. Université Pierre et Marie Curie - Paris VI, 2017. English. NNT : 2017PA066027. tel-01589016 HAL Id: tel-01589016 https://tel.archives-ouvertes.fr/tel-01589016 Submitted on 18 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie Ecole doctorale 391: Sciences mécaniques, acoustique, électronique et robotique de Paris Laboratoire de Physique et Mécanique des Milieux Hétérogènes / Groupe MOndeS Études expérimentales des ondes à la surface de l'eau: effets non linéaires et absorption. Experimental study of water waves: nonlinear effects and absorption. Par Eduardo Monsalve Gutiérrez Thèse de doctorat de dynamique des fluides et des transferts Dirigée par Agnès MAUREL, Vincent PAGNEUX & Philippe PETITJEANS Présentée et soutenue publiquement le 20 mars 2017 Devant un jury composé de : M. Sébastien Guenneau, Directeur de Recherche au CNRS Rapporteur M. Michel Benoit, Professeur IRPHE & Ecole Centrale Marseille Rapporteur M. Christophe Josserand, Directeur de Recherche au CNRS Président du jury Mme. Agnès Maurel, Directrice de Recherche au CNRS Co-directrice de thèse M. Vincent Pagneux, Directeur de Recherche au CNRS Co-directeur de thèse M. Philippe Petitjeans, Directeur de Recherche au CNRS Directeur de thèse `aFabiola. Remerciements Je voudrais remercier tout d’abord `ames encadrants Agn`es, Vincent et Philippe pour toute son aide et patiente dans ce proc`es de convertissement vers la physique fondamentale depuis l’ing´enierie. Merci pour avoir eu le crit`ere et l’exp´erience pour me rediriger quand les choses ne marchaient pas et au mˆeme temps pour me laisser la libert´ed’approfondir mes recherches sur les probl`emes que m’int´eressaient. Merci pour tout ce que m’ont appris et pour prendre le temps de discuter le moindre d´etail de ma th`ese, toujours dans une ambiance tr`es agr´eable et accueillante. Je me sens vraiment privil´egi´ed’avoir travaill´edans ce groupe. Merci aussi pour votre compr´ehension et pour avoir mis les moyennes n´ecessaires pour mon int´egration en France. Je remercie les deux rapporteurs, Dr. Michel Benoit et Dr. S´ebastien Guenneau, pour avoir accept´ede corriger mon travail et pour tous les commentaires tr`es constructifs sur mon manuscrit. Merci `aDr. Christophe Josserand pour avoir pr´esid´ele jury de soutenance. Je voudrais remercier ´egalement au groupe du Laboratoire Saint-Venant-EDF compos´ede Michel Benoit, Marissa Yates et C´ecile Raoult, pour tout l’effort mis sur la mod´elisation num´erique des ondes non lin´eaires et pour les discussions tr`es productives que m’ont fait beaucoup avancer et r´efl´echir pendant la th`ese. Dans le groupe MOndeS, je voudrais remercier particuli`erement `aTomek pour sa bonne humeur et pour les longues discussions sur les ondes, o`uon a trouv´e parfois des r´eponses. Merci aussi `atous les postdocs Ga¨el, H´el`ene, Alex, Florence et Thomas pour sa collaboration et sympathie. Un grand merci `atous les membres du PMMH, permanents, postdocs et doctorants, pour faire de mon passage pour le labo un beau souvenir. Merci `aFred et Claudette pour l’aide administratif et aux membres de l’atelier pour l’aide technique. Merci `aAntonin, Laurette, Jos´eEduardo, Pablo C. et Miguel pour les discussions et commentaires scientifiques. Je tiens `aremercier notamment mes co-bureaux, Pierre et Jessica, pour sa gentillesse, son amiti´eet pour m’avoir fait d´ecouvrir un peu plus le fran¸cais et la France. Merci aussi `ames co-bureaux Ang´elica, Marta et Salom´e, qui ont ´et´etoujours tr`es sympathiques, gentilles et souriantes et avec qui j’ai pu ´elargir encore plus mon vocabulaire d’espagnol. Merci aussi `aJoe et Rory, deux anglais trop sympathiques que m’ont invit´e`ad´ejeuner tous les jours mˆeme si `al’´epoque je ne suivais pas trop son anglais natif. Je souhaite remercier les Professeur chilien Juan Carlos Elicer pour son soutien au d´ebut de ce projet et sp´ecialement au Professeur Rodrigo Hern´andez pour la formation que j’ai suivie au Chili, pour susciter mon int´erˆet pour la m´ecanique des fluides et pour son soutien au cours de cette th`ese. Je remercie le financement de Conicyt Becas-Chile pour le d´eroulement de cette th`ese. Je remercie Marion et ses enfants, pour ouvrir les portes de son foyer, son amiti´eet ses conseils. Je remercie particuli`erement Matthieu, Oxana et Mia, pour les moments sympathiques pass´es ensemble. ⋆ ⋆ ⋆ Ahora puedo pasar a escribir en la lengua de cervantes, en su versi´on chilena-sure˜na. Quisiera comenzar de manera geogr´afica por Europa para no perderme. Gracias Hugol, Pata y Mati, por habernos recibido varias veces en Amsterdam, por su amistad, empat´ıa y por habernos hecho sentir en familia por un par de d´ıas. Gracias a todos los amigos chilenos de paso por Europa que hicieron un espacio en su casa para recibirnos y pasar gratos momentos: Gail, Benja, Renzo, Marlene, Olivia, Josefina, Carlos, Lorenzo, Dayana, Flaco y Maca. Quiero agradecer tambi´en a todos los amigos que III Remerciements se dieron el tiempo de visitarnos, no los puedo nombrar a todos porque son much´ısimos, pero quiero que sepan que para nosotros fue m´as que una alegr´ıa haberlos tenido en Paris. Me gustar´ıa agradecer a la Cami, amiga que vine a encontrar de nuevo, gracias por hacer que mi llegada a Francia no sea tan traum´atica y gracias por haberme presentado a gente incre´ıble como Marianela, Javier, Ignacio y Jorge (y luego Kathleen). Muchas gracias a ellos tambi´en por su compa˜n´ıa y por los lindos momentos que hemos pasado en Paris. Muchas gracias Pame, Antoine y Mathilde, familia tours-penquista que ha sido una gran compa˜n´ıa estos a˜nos, gracias por abrir su casa a gente nueva. Gracias tambi´en a Angela y Benjamin, por su amistad, compa˜n´ıa y cari˜no. Igualmente gracias Vero y Miguel por sus consejos, buena onda y amistad. No puedo dejar de agradecer a los amigos que han hecho familia en el extranjero. Algunos ya han partido como Dani, Pablo, Tere, Nico C., Seba D., Qui˜ni, los monos y Celia. Otros siguen hasta hoy (como dijo Ceratti) como Mariela, Mat´ıas, Sofi, Seba G., Miraine, Pedro (e Irene), David, Ana, Marcy y Javier. Gracias a todos ellos por haber sido siempre tan cari˜nosos, buena onda, con esp´ıritu tan joven y con ganas de juntarse siempre para hacer de la vida parisina algo m´as que llevadero. Muchas gracias a mis amigos que est´an en Chile, los beauchefianos por su apoyo a la distancia y los osorninos por siempre mantener el contacto. Gracias Pablito por haber estado presente en persona este ´ultimo a˜no. Gracias viejujas por sacarme una sonrisa cada vez que miro el celu. Quiero agradecer a mi familia, primas, primos, t´ıas y t´ıos, por haberme dado siempre su apoyo y por siempre desearme buena suerte a la distancia. Quiero agradecer muy especialmente a mis padres, Mercedes y Juan, quienes desde que soy peque˜no han sido mi modelo de vida y de quienes he tenido siempre un apoyo incondicional. Gracias por ense˜narme a ser esforzado y a luchar por mis sue˜nos. Gracias por dejarme partir tan lejos, por aguantar la vida solos en el sur y por siempre creer hasta el final que todo este sacrificio es para mejor. Muchas gracias tambi´en de manera especial a mis suegros y cu˜nadas por su apoyo y por asumir la pena de dejar partir a la Fabi por algunos a˜nos. Finalmente quiero agradecer a mi esposa Fabiola, el amor de mi vida, la persona que ha estado a mi lado cada d´ıa y que ha sido el principal soporte en este per´ıodo. Gracias por haber dejado tu carrera en Chile para acompa˜narme en esta aventura y por haber hecho tambi´en tuyo este proyecto. Gracias por aceptar el volver a tener una vida de estudiantes y por haber hecho el trabajo completo de aprender franc´es desde cero, estudiar y ahora estar trabajando en Francia. Infinitas gracias por haberme apoyado en los momentos en que el ´animo escaseaba y por darme cada d´ıa ese abrazo, ese chiste (porque eres muy chistosa) y esa sonrisa que me hacen feliz. Me siento infinitamente afortunado de tenerte a mi lado, de tener la posibilidad de crecer junto a ti, de decirte que te amo todos los d´ıas y de saber que seguiremos caminando de la mano conociendo lugares como eternos pololos. Te admiro por ser tan valiente, inteligente y tierna al mismo tiempo. Te amo mucho mi amor de meloncito. Paris, le 20 Mars 2017 Eduardo IV R´esum´e Cette th`ese porte sur l’´etude exp´erimentale des ondes non-lin´eaires `ala surface de l’eau. Premi`erement, l’´etude pr´esente les mesures spatio-temporelles des ondes non-lin´eaires lors du passage sur une marche immerg´ee.
Recommended publications
  • Accurate Modelling of Uni-Directional Surface Waves
    Journal of Computational and Applied Mathematics 234 (2010) 1747–1756 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam Accurate modelling of uni-directional surface waves E. van Groesen a,b,∗, Andonowati a,b,c, L. She Liam a, I. Lakhturov a a Applied Mathematics, University of Twente, The Netherlands b LabMath-Indonesia, Bandung, Indonesia c Mathematics, Institut Teknologi Bandung, Indonesia article info a b s t r a c t Article history: This paper shows the use of consistent variational modelling to obtain and verify an Received 30 November 2007 accurate model for uni-directional surface water waves. Starting from Luke's variational Received in revised form 3 July 2008 principle for inviscid irrotational water flow, Zakharov's Hamiltonian formulation is derived to obtain a description in surface variables only. Keeping the exact dispersion Keywords: properties of infinitesimal waves, the kinetic energy is approximated. Invoking a uni- AB-equation directionalization constraint leads to the recently proposed AB-equation, a KdV-type Surface waves of equation that is also valid on infinitely deep water, that is exact in dispersion for Variational modelling KdV-type of equation infinitesimal waves, and that is second order accurate in the wave height. The accuracy of the model is illustrated for two different cases. One concerns the formulation of steady periodic waves as relative equilibria; the resulting wave profiles and the speed are good approximations of Stokes waves, even for the Highest Stokes Wave on deep water. A second case shows simulations of severely distorting downstream running bi-chromatic wave groups; comparison with laboratory measurements show good agreement of propagation speeds and of wave and envelope distortions.
    [Show full text]
  • Arxiv:2002.03434V3 [Physics.Flu-Dyn] 25 Jul 2020
    APS/123-QED Modified Stokes drift due to surface waves and corrugated sea-floor interactions with and without a mean current Akanksha Gupta Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, U.P. 208016, India.∗ Anirban Guhay School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK. (Dated: July 28, 2020) arXiv:2002.03434v3 [physics.flu-dyn] 25 Jul 2020 1 Abstract In this paper, we show that Stokes drift may be significantly affected when an incident inter- mediate or shallow water surface wave travels over a corrugated sea-floor. The underlying mech- anism is Bragg resonance { reflected waves generated via nonlinear resonant interactions between an incident wave and a rippled bottom. We theoretically explain the fundamental effect of two counter-propagating Stokes waves on Stokes drift and then perform numerical simulations of Bragg resonance using High-order Spectral method. A monochromatic incident wave on interaction with a patch of bottom ripple yields a complex interference between the incident and reflected waves. When the velocity induced by the reflected waves exceeds that of the incident, particle trajectories reverse, leading to a backward drift. Lagrangian and Lagrangian-mean trajectories reveal that surface particles near the up-wave side of the patch are either trapped or reflected, implying that the rippled patch acts as a non-surface-invasive particle trap or reflector. On increasing the length and amplitude of the rippled patch; reflection, and thus the effectiveness of the patch, increases. The inclusion of realistic constant current shows noticeable differences between Lagrangian-mean trajectories with and without the rippled patch.
    [Show full text]
  • Part II-1 Water Wave Mechanics
    Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32
    [Show full text]
  • Variational Principles for Water Waves from the Viewpoint of a Time-Dependent Moving Mesh
    Variational principles for water waves from the viewpoint of a time-dependent moving mesh Thomas J. Bridges & Neil M. Donaldson Department of Mathematics, University of Surrey, Guildford, GU2 7XH, UK May 21, 2010 Abstract The time-dependent motion of water waves with a parametrically-defined free surface is mapped to a fixed time-independent rectangle by an arbitrary transformation. The emphasis is on the general properties of transformations. Special cases are algebraic transformations based on transfinite interpolation, conformal mappings, and transformations generated by nonlinear elliptic PDEs. The aim is to study the effect of transformation on variational principles for water waves such as Luke’s Lagrangian formulation, Zakharov’s Hamiltonian formulation, and the Benjamin-Olver Hamiltonian formulation. Several novel features are exposed using this approach: a conservation law for the Jacobian, an explicit form for surface re-parameterization, inner versus outer variations and their role in the generation of hidden conservation laws of the Laplacian, and some of the differential geometry of water waves becomes explicit. The paper is restricted to the case of planar motion, with a preliminary discussion of the extension to three-dimensional water waves. 1 Introduction In the theory of water waves, the fluid domain shape is changing with time. Therefore it is appealing to transform the moving domain to a fixed domain. This approach, first for steady waves and later for unsteady waves, has been widely used in the study of water waves. However, in all cases the transformation is either algebraic (explicit) or a conformal mapping. In this paper we look at the equations governing the motion of water waves from the viewpoint of an arbitrary time-dependent transformation of the form x(µ,ν,τ) (µ,ν,τ) y(µ,ν,τ) , (1.1) 7→ t(τ) where (µ,ν) are coordinates for a fixed time-independent rectangle D := (µ,ν) : 0 µ L and h ν 0 , (1.2) { ≤ ≤ − ≤ ≤ } with h, L given positive parameters.
    [Show full text]
  • Surface Waves NOAA Tech Refresh 20 Jan 2012 Kipp Shearman, OSU Outline
    Surface Waves NOAA Tech Refresh 20 Jan 2012 Kipp Shearman, OSU Outline – Surface winds • Wind stress • Beaufort scale • Buoy measurements – Surface Gravity Waves • Wave characteristics • Deep/Shallow water waves • Generation • Modeling January mean atmospheric circulation and surface winds Fig 2.3 Ocean Circulation July mean atmospheric circulation and surface winds Fig 2.3 Ocean Circulation Wind Forcing at the Ocean Surface • Wind-forcing can generate currents and waves, as wind transfers some of its momentum into the ocean" •! Wind acts via friction at the surface: wind stress τ# " # # Stresses have units of N/m2, (force/area), like pressure.# Stresses are forces parallel to a surface, pressure is force perpendicular to the surface." •! Force/Area depends on the square of the wind speed u, and it points in the same direction as the wind: " 2 τ ∝ u C drag coefficient 1.4 10−3 " D = ≈ × C u u 3 τ = ρa D density of air 1.3 kg / m " ρa = ≈ Example: 20kt wind $ 10 m/s → 0.18 N/m2 = 1.8 dyne/cm2" 0, <1 knot 1, 1-3 knots 2, 4-6 knots 3, 7-10 knots 4, 11-17 knots 5, 17-21 knots 6, 22-27 knots 7, 28-33 knots 8, 33-40 knots 9, 41-47 knots 10, 48-55 knots 11, 56-63 knots Beaufort scale, after http://www.geology.wmich.edu/Kominz/windwater.html Beaufort scale still provides climatological data Look at buoy winds off oregon coast. http://www.wrh.noaa.gov/pqr/ Outline –! Surface winds •! Wind stress •! Beaufort scale •! Buoy measurements –! Surface Gravity Waves •! Wave characteristics •! Deep/Shallow water waves •! Generation •! Modeling Wave Propagation • Wave Period T: time between arrival of successive wave crests at a given place • Wave Length L: distance between successive wave crests • Wave (phase) speed c: cp = L / T By definition, the definition of cp is valid for all Segar waves.
    [Show full text]
  • Waves on Deep Water, I
    Lecture 14: Waves on deep water, I Lecturer: Harvey Segur. Write-up: Adrienne Traxler June 23, 2009 1 Introduction In this lecture we address the question of whether there are stable wave patterns that propagate with permanent (or nearly permanent) form on deep water. The primary tool for this investigation is the nonlinear Schr¨odinger equation (NLS). Below we sketch the derivation of the NLS for deep water waves, and review earlier work on the existence and stability of 1D surface patterns for these waves. The next lecture continues to more recent work on 2D surface patterns and the effect of adding small damping. 2 Derivation of NLS for deep water waves The nonlinear Schr¨odinger equation (NLS) describes the slow evolution of a train or packet of waves with the following assumptions: • the system is conservative (no dissipation) • then the waves are dispersive (wave speed depends on wavenumber) Now examine the subset of these waves with • only small or moderate amplitudes • traveling in nearly the same direction • with nearly the same frequency The derivation sketch follows the by now normal procedure of beginning with the water wave equations, identifying the limit of interest, rescaling the equations to better show that limit, then solving order-by-order. We begin by considering the case of only gravity waves (neglecting surface tension), in the deep water limit (kh → ∞). Here h is the distance between the equilibrium surface height and the (flat) bottom; a is the wave amplitude; η is the displacement of the water surface from the equilibrium level; and φ is the velocity potential, u = ∇φ.
    [Show full text]
  • 0123737354Fluidmechanics.Pdf
    Fluid Mechanics, Fourth Edition Founders of Modern Fluid Dynamics Ludwig Prandtl G. I. Taylor (1875–1953) (1886–1975) (Biographical sketches of Prandtl and Taylor are given in Appendix C.) Photograph of Ludwig Prandtl is reprinted with permission from the Annual Review of Fluid Mechanics, Vol. 19, Copyright 1987 by Annual Reviews www.AnnualReviews.org. Photograph of Geoffrey Ingram Taylor at age 69 in his laboratory reprinted with permission from the AIP Emilio Segre` Visual Archieves. Copyright, American Institute of Physics, 2000. Fluid Mechanics Fourth Edition Pijush K. Kundu Oceanographic Center Nova Southeastern University Dania, Florida Ira M. Cohen Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania Philadelphia, Pennsylvania with contributions by P. S. Ayyaswamy and H. H. Hu AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 30 Corporate Drive, Suite 400 Burlington, MA 01803, USA Elsevier, The Boulevard, Langford Lane Kidlington, Oxford, OX5 1GB, UK © 2008 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).
    [Show full text]
  • Answers of the Reviewers' Comments Reviewer #1 —- General
    Answers of the reviewers’ comments Reviewer #1 —- General Comments As a detailed assessment of a coupled high resolution wave-ocean modelling system’s sensitivities in an extreme case, this paper provides a useful addition to existing published evidence regarding coupled systems and is a valid extension of the work in Staneva et al, 2016. I would therefore recommend this paper for publication, but with some additions/corrections related to the points below. —- Specific Comments Section 2.1 Whilst this information may well be published in the authors’ previous papers, it would be useful to those reading this paper in isolation if some extra details on the update frequencies of atmosphere and river forcing data were provided. Authors: More information about the model setup, including a description of the open boundary forcing, atmospheric forcing and river runoff, has been included in Section 2.1. Additional references were also added. Section 2.2 This is an extreme case in shallow water, so please could the source term parameterizations for bottom friction and depth induced breaking dissipation that were used in the wave model be stated? Authors: Additional information about the parameterizations used in our model setup, including more references, was provided in Section 2.2. Section 2.3 I found the statements that "<u> is the sum of the Eulerian current and the Stokes drift" and "Thus the divergence of the radiation stress is the only (to second order) force related to waves in the momentum equations." somewhat contradictory. In the equations, Mellor (2011) has been followed correctly and I see the basic point about radiation stress being the difference between coupled and uncoupled systems, so just wondering if the authors can review the text in this section for clarity.
    [Show full text]
  • On the Transport of Energy in Water Waves
    On The Transport Of Energy in Water Waves Marshall P. Tulin Professor Emeritus, UCSB [email protected] Abstract Theory is developed and utilized for the calculation of the separate transport of kinetic, gravity potential, and surface tension energies within sinusoidal surface waves in water of arbitrary depth. In Section 1 it is shown that each of these three types of energy constituting the wave travel at different speeds, and that the group velocity, cg, is the energy weighted average of these speeds, depth and time averaged in the case of the kinetic energy. It is shown that the time averaged kinetic energy travels at every depth horizontally either with (deep water), or faster than the wave itself, and that the propagation of a sinusoidal wave is made possible by the vertical transport of kinetic energy to the free surface, where it provides the oscillating balance in surface energy just necessary to allow the propagation of the wave. The propagation speed along the surface of the gravity potential energy is null, while the surface tension energy travels forward along the wave surface everywhere at twice the wave velocity, c. The flux of kinetic energy when viewed traveling with a wave provides a pattern of steady flux lines which originate and end on the free surface after making vertical excursions into the wave, even to the bottom, and these are calculated. The pictures produced in this way provide immediate insight into the basic mechanisms of wave motion. In Section 2 the modulated gravity wave is considered in deep water and the balance of terms involved in the propagation of the energy in the wave group is determined; it is shown again that vertical transport of kinetic energy to the surface is fundamental in allowing the propagation of the modulation, and in determining the well known speed of the modulation envelope, cg.
    [Show full text]
  • NONLINEAR DISPERSIVE WAVE PROBLEMS Thesis by Jon
    NONLINEAR DISPERSIVE WAVE PROBLEMS Thesis by Jon Christian Luke In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1966 (Submitted April 4, 1966) -ii­ ACKNOWLEDGMENTS The author expresses his thanks to Professor G. B. Whitham, who suggested the problems treated in this dissertation, and has made available various preliminary calculations, preprints of papers, and lectur~ notes. In addition, Professor Whitham has given freely of his time for useful and enlightening discussions and has offered timely advice, encourageme.nt, and patient super­ vision. Others who have assisted the author by suggestions or con­ structive criticism are Mr. G. W. Bluman and Mr. R. Seliger of the California Institute of Technology and Professor J. Moser of New York University. The author gratefully acknowledges the National Science Foundation Graduate Fellowship that made possible his graduate education. J. C. L. -iii­ ABSTRACT The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonl~nearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differ­ ential equations is analogous to the "multiple time scale" meth­ ods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geomet­ r i cal optics to nonlinear problems.
    [Show full text]
  • Method of Studying Modulation Effects of Wind and Swell Waves on Tidal and Seiche Oscillations
    Journal of Marine Science and Engineering Article Method of Studying Modulation Effects of Wind and Swell Waves on Tidal and Seiche Oscillations Grigory Ivanovich Dolgikh 1,2,* and Sergey Sergeevich Budrin 1,2,* 1 V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch Russian Academy of Sciences, 690041 Vladivostok, Russia 2 Institute for Scientific Research of Aerospace Monitoring “AEROCOSMOS”, 105064 Moscow, Russia * Correspondence: [email protected] (G.I.D.); [email protected] (S.S.B.) Abstract: This paper describes a method for identifying modulation effects caused by the interaction of waves with different frequencies based on regression analysis. We present examples of its applica- tion on experimental data obtained using high-precision laser interference instruments. Using this method, we illustrate and describe the nonlinearity of the change in the period of wind waves that are associated with wave processes of lower frequencies—12- and 24-h tides and seiches. Based on data analysis, we present several basic types of modulation that are characteristic of the interaction of wind and swell waves on seiche oscillations, with the help of which we can explain some peculiarities of change in the process spectrum of these waves. Keywords: wind waves; swell; tides; seiches; remote probing; space monitoring; nonlinearity; modulation 1. Introduction Citation: Dolgikh, G.I.; Budrin, S.S. The phenomenon of modulation of short-period waves on long waves is currently Method of Studying Modulation widely used in the field of non-contact methods for sea surface monitoring. These processes Effects of Wind and Swell Waves on are mainly investigated during space monitoring by means of analyzing optical [1,2] and Tidal and Seiche Oscillations.
    [Show full text]
  • Quantification of Stokes Drift As a Mechanism for Surface Oil Advection in the Gulf of Mexico During the Deepwater Horizon Oil Spill Matthew Clark
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2015 Quantification of Stokes Drift as a Mechanism for Surface Oil Advection in the Gulf of Mexico during the Deepwater Horizon Oil Spill Matthew Clark Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES QUANTIFICATION OF STOKES DRIFT AS A MECHANISM FOR SURFACE OIL ADVECTION IN THE GULF OF MEXICO DURING THE DEEPWATER HORIZON OIL SPILL By MATTHEW CLARK A Thesis submitted to the Department of Earth, Ocean, and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science 2015 Matthew Clark defended this thesis on June 30, 2015. The members of the supervisory committee were: Mark Bourassa Professor Co-Directing Thesis Eric Chassignet Professor Co-Directing Thesis Robert Hart Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS Thanks to everyone who helped with this, especially Dr. Mark Bourassa, who gave me far more time and patience than I deserved. Thanks to COAPS in general for giving me the opportunity and direction for this. Thanks to Deep-C and GoMRI for most of the funding and NOAA for the rest. Thanks to my parents who did not like the idea of me moving so far away but also did not discourage me from doing so. iii TABLE OF CONTENTS List of Tables ...................................................................................................................................v List of Figures ...............................................................................................................................
    [Show full text]