Merlin Regulates Transmembrane Receptor Accumulation and Signaling at the Plasma Membrane in Primary Mouse Schwann Cells and in Human Schwannomas

Total Page:16

File Type:pdf, Size:1020Kb

Merlin Regulates Transmembrane Receptor Accumulation and Signaling at the Plasma Membrane in Primary Mouse Schwann Cells and in Human Schwannomas Oncogene (2009) 28, 854–865 & 2009 Macmillan Publishers Limited All rights reserved 0950-9232/09 $32.00 www.nature.com/onc ORIGINAL ARTICLE Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas D Lallemand1,2, J Manent1,2, A Couvelard3, A Watilliaux1,2, M Siena1,2, F Chareyre1,2, A Lampin1,2, M Niwa-Kawakita1,2, M Kalamarides1,2,4 and M Giovannini1,2 1INSERM, U674, Paris, France; 2Universite´ Paris 7, Denis Diderot, Institut Universitaire d 0He´matologie, Paris, France; 3APHP, Hoˆpital Beaujon, Service d’Anatomie et de Cytologie Pathologique, Clichy, France and 4APHP, Hoˆpital Beaujon, Service de Neurochirurgie, Clichy, France The NF2 gene product,merlin/schwannomin,is a membrane proteins (Bretscher et al., 2002). Merlin cytoskeleton organizer with unique growth-inhibiting inhibits the proliferation of many different cell types, activity in specific cell types. A narrow spectrum of although the proposed mechanisms vary considerably. tumors is associated with NF2 deficiency,mainly schwan- Merlin was shown to downregulate a wide range of nomas and meningiomas,suggesting cell-specific mecha- mitogenic signaling pathways, such as Ras, Rac or PI3K nisms of growth control. We have investigated merlin (Fraenzer et al., 2003; Kissil et al., 2003; Lim et al., 2003; function in mouse Schwann cells (SCs). We found that Hirokawa et al., 2004; McClatchey and Giovannini, merlin regulates contact inhibition of proliferation by 2005; Morrison et al., 2007). Moreover, Nf2 inactivation limiting the delivery of several growth factor receptors at results in destabilization of adherens junctions (AJs) the plasma membrane of primary SCs. Notably,upon cell- that are essential for contact inhibition of proliferation to-cell contact,merlin downregulates the membrane in mouse embryonic fibroblasts (MEFs) (Lallemand levels of ErbB2 and ErbB3,thus inhibiting the activity et al., 2003). In addition, merlin can block ligand- of the downstream mitogenic signaling pathways protein induced epidermal growth factor receptor internaliza- kinase B and mitogen-activated protein kinase. Conse- tion and signaling in various cell types (Curto et al., quently,loss of merlin activity is associated with elevated 2007). In a rat schwannoma cells, merlin also inhibits levels of ErbB receptors in primary SCs. We also observed growth by promoting platelet-derived growth factor accumulation of growth factor receptors such as ErbB2 receptor (PDGFR) degradation (Fraenzer et al., 2003). and 3,insulin-like growth factor 1 receptor and platelet- Finally, in Drosophila, D-Merlin and Expanded coop- derived growth factor receptor in peripheral nerves of Nf2- erate to stimulate endocytosis of membrane proteins, mutant mice and in human NF2 schwannomas,suggesting such as Notch and epidermal growth factor receptor, that this mechanism could play an important role in thereby reducing their levels at the cell surface and tumorigenesis. inhibiting downstream signaling (Maitra et al., 2006). Oncogene (2009) 28, 854–865; doi:10.1038/onc.2008.427; Despite these pieces of evidence, there is no consensus as published online 24 November 2008 to whether these mechanisms are central to specific NF2-related tumors. One striking feature of NF2 is the Keywords: neurofibromatosis type 2; growth factor narrow tumor spectrum composed essentially of benign receptors; trafficking; Schwann cells; proliferation; schwannomas and meningiomas. Therefore, we decided schwannoma to study merlin function in mouse Schwann cells (SCs) that are most likely to provide pertinent information about the molecular mechanisms of NF2 tumor suppression. Introduction Large cultures of primary SC can be derived from mice harboring a conditional Nf2 allele (Giovannini Merlin is the product of the NF2 tumor suppressor gene et al., 2000; Manent et al., 2003). In these cells, Nf2 is that shares strong sequence and structural homology inactivated following adenovirus-mediated Cre expres- with the ERM proteins (Ezrin, Radixin and Moesin), as sion, allowing the study of the early consequences of well as the capacity to bind to F-actin and plasma merlin loss on SC proliferation and tumor initiation. We found that merlin controls contact-dependent inhibition Correspondence: Dr M Giovannini, House Ear Institute, Center for of SC proliferation by inhibiting the delivery of Neural Tumor Research, 2100W Third Street, Los Angeles, CA 90057, receptors to the plasma membrane. Notably, merlin USA. E-mail: [email protected] downregulates the membrane levels of ErbB2 and Received 19 March 2008; revised 10 September 2008; accepted 15 ErbB3, thus inhibiting downstream mitogenic signaling September 2008; published online 24 November 2008 pathways. Moreover, we show that loss of merlin Merlin regulates transmembrane receptor accumulation D Lallemand et al 855 activity is associated with elevated levels of ErbB growth factor and adhesion receptors. We found that receptors in peripheral nerves of Nf2-mutant mice the amounts of several growth factor receptors (ErbB2, as well as in human NF2 schwannomas. Taken toge- ErbB3, insulin-like growth factor 1 receptor (IGF1R), ther, our data suggest that the altered delivery of PDGFR-b) and adhesion molecules (N-and E-cadher- ErbB receptors plays a major role in schwannoma in) were elevated in total membrane extracts from development. confluent Nf2À/À SCs compared with Nf2 þ / þ SCs, whereas b-catenin levels were not (Figure 2b). These observations were confirmed by surface protein bioti- nylation (Figure 2d). In contrast, receptor levels were Results nearly identical in subconfluent Nf2 þ / þ SCs and Nf2À/À SCs (Supplementary Figure 2). Quantification of the Proliferative advantage of Nf2À/À SCs signals showed that the higher levels of receptors were We did not observe any difference in the growth rates associated with an increase of phosphorylated receptors. Nf2 þ / þ Nf2À/À between and SCs as long as they These molecular phenotypes were strictly regulated by remained subconfluent (Supplementary Figure 1). Once merlin because its reintroduction into Nf2À/À SCs Nf2 þ / þ SC cultures reached confluence, we saw pro- markedly reduced the levels of ErbB2, ErbB3, IGF1R, gressive growth arrest between days 5 and 13 of culture PDGFR-b and E-and N-cadherin at the plasma (Figure 1a). In contrast, Nf2À/À SCs kept growing and membrane (Figures 2c and d). Quantification of specific reached saturation densities 2–3 times higher than markers EEA1, Lamp1, p115 or Rab11 in membrane Nf2 þ / þ SCs (Figures 1a–c). Adenovirus-mediated re- extracts by western blot (Figure 2e) and by immuno- expression of merlin was sufficient to restore saturation fluorescence staining (Supplementary Figure 3) sug- densities similar to those observed in Nf2 þ / þ SCs, gested that the accumulation of membrane proteins in illustrating that loss of merlin was responsible for the Nf2À/À SCs was not the result of an expansion of phenotype (Figures 1b and c). intracellular compartments, such as the Golgi apparatus Primary cells in culture undergo progressive and or the endocytic vesicles. In addition, saturation of the irreversible growth arrest after several passages, a plasma membrane with the lipophilic fluorescent dye process referred to as replicative senescence. Primary FM1-43X demonstrated that this compartment was not mouse cells can escape this fate by losing expression of enlarged in Nf2À/À SCs (Figure 2f). Finally, quantitative tumor suppressor genes, such as p21Cip, p53 or pRb reverse transcription–PCR (RT–PCR) analysis showed (Bringold and Serrano, 2000; Itahana et al., 2004). We no increase of ErbB2, ErbB3 and IGF1R mRNA observed that Nf2 þ / þ SCs became senescent after five to expression levels in Nf2À/À SCs and a slight increase of seven passages in culture when they stopped proliferat- Pdgfrb (1.3-fold). Only N-cadherin mRNA levels were ing, lost their bipolar shape and became very large and increased following loss of merlin expression flat, the typical morphological features of senescent cells (Figure 2g). In conclusion, Nf2 inactivation in SCs (Figures 1d and e). In contrast, Nf2À/À SCs never leads to the accumulation of growth factor receptors at stopped proliferating (Figure 1d) and showed none of the plasma membrane, which is not due to increased the morphological features of senescence (Figure 1e). protein synthesis. Although levels of p107, p130, p53, p19Arf and p21Cip increased in late-passage Nf2À/À SCs, their expression þ / þ levels remained always lower than in Nf2 SC Merlin regulates the delivery of growth factor receptors (Figure 1f). p27Kip levels were not affected by Nf2 À/À to the plasma membrane in SCs inactivation. Beyond passage 8, Nf2 SCs never Several reports have proposed a role for merlin in became senescent and spontaneously transformed. protein transport (Maitra et al., 2006; Curto et al., 2007) and the involvement of the ERM proteins in vesicular Transmembrane receptors accumulate at the plasma trafficking is well established (Pujuguet et al., 2003; membrane of Nf2-deficient SCs Tamma et al., 2005; Stanasila et al., 2006). We Following Nf2 inactivation in SCs, we observed a clear compared growth factor internalization in Nf2 þ / þ and morphological change (Figure 2a, upper panels) and Nf2À/À SC cultures using a surface protein biotin pulse- profound alterations of the actin cytoskeleton chase approach and found no differences (data not (Figure 2a, lower panels), suggesting that, as in MEFs shown). As the phenotype might be too subtle to be (Lallemand et al., 2003), Nf2 inactivation results in the detected using this method, we decided to overexpress loss of cell–cell contact. AJs were visualized by staining merlin in Nf2À/À SCs to accentuate a putative trafficking of b-catenin, a component of these structures. In defect. We observed no difference in the rate of contrast to Nf2 þ / þ SCs, staining of b-catenin in internalization of the receptors 20 min after the biotin Nf2-deficient SCs was not clearly localized in regions pulse (or at later times) when comparing Nf2À/À SCs of cell–cell contact (Figure 2a, middle panels).
Recommended publications
  • Human T-Cell Lymphotropic Virus Type II Infection (Letter to the Editor)
    HUMAN T-CELL L YMPHOTROPIC VIRUSES 1. Exposure Data 1.1 Structure, taxonomy and biology 1.1.1 Structure The structure of retroviruses is reviewed in the monograph on human immuno- deficiency viruses (HIV) in this volume. The human T-cell lymphotropic (T-cell Ieu- kaemia/lymphoma) viruses (HTL V) are enveloped viruses with a diameter of approxi- mately 80-100 nm (Figure 1). The HTLV virions contain two covalently bound genomic RNA strands, which are complexed with the viral enzymes reverse transcriptase (RT; with associated RNase H activity), integrase and protease and the capsid proteins. The outer part of the virions consists of a membrane-associated matrix protein and a lipid Iayer intersected by the envelope proteins (GeIderbIom, 1991). Figure 1. An electron micrograph of HTL V -1 virus Courtes y of Dr Bernard Kramarsky, Advanced Biotechnologies, Inc., Columbia, MD, USA 1.1.2 T axonomy and phylogeny Traditionally, retroviruses (family Retroviridae) have been cIassified according to a combination of criteria incIuding disease association, morphoIogy and cytopathic effects in vitro. On this basis three subfamiIies were defined. The oncoviruses (Greek, onkos = mass, swelling) consist of four morphological subtypes which are associated with tumours in naturally or experimentally infected animaIs, and non-oncogenic related viruses. The second group, the Ientiviruses (Latin, lentus = slow), cause a variety of diseases including immunodeficiency and wasting syndromes, usually after a long period -261- 262 IARC MONOGRAPHS VOLUME 67 of clinical latency. The third subfamily, the spumaviruses (Latin, spuma = foam), so called because of the characteristic 'foamy' appearance induced in infected cells in vitro, have not been conclusively 1inked to any disease.
    [Show full text]
  • Original Article ERBB3, IGF1R, and TGFBR2 Expression Correlate With
    Am J Cancer Res 2018;8(5):792-809 www.ajcr.us /ISSN:2156-6976/ajcr0077452 Original Article ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells Kang Song1,2*, Ye Yuan1,2*, Yong Lin1,2, Yan-Xia Wang1,2, Jie Zhou1,2, Qu-Jing Gai1,2, Lin Zhang1,2, Min Mao1,2, Xiao-Xue Yao1,2, Yan Qin1,2, Hui-Min Lu1,2, Xiang Zhang1,2, You-Hong Cui1,2, Xiu-Wu Bian1,2, Xia Zhang1,2, Yan Wang1,2 1Department of Pathology, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; 2Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400038, China. *Equal contributors. Received April 6, 2018; Accepted April 9, 2018; Epub May 1, 2018; Published May 15, 2018 Abstract: Glioma, the most prevalent malignancy in brain, is classified into four grades (I, II, III, and IV), and grade IV glioma is also known as glioblastoma multiforme (GBM). Aberrant activation of receptor tyrosine kinases (RTKs), including platelet-derived growth factor receptor (PDGFR), are frequently observed in glioma. Accumulating evi- dence suggests that PDGFR plays critical roles during glioma development and progression and is a promising drug target for GBM therapy. However, PDGFR inhibitor (PDGFRi) has failed in clinical trials, at least partially, due to the activation of other RTKs, which compensates for PDGFR inhibition and renders tumor cells resistance to PDGFRi. Therefore, identifying the RTKs responsible for PDGFRi resistance might provide new therapeutic targets to syner- getically enhance the efficacy of PDGFRi.
    [Show full text]
  • Merlin Inhibits Wnt/Β-Catenin Signaling by Blocking LRP6 Phosphorylation
    Cell Death and Differentiation (2016) 23, 1638–1647 & 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1350-9047/16 www.nature.com/cdd Merlin inhibits Wnt/β-catenin signaling by blocking LRP6 phosphorylation M Kim1,6, S Kim1,6, S-H Lee2,3,6, W Kim1, M-J Sohn4, H-S Kim5, J Kim*,2 and E-H Jho*,1 Merlin, encoded by the NF2 gene, is a tumor suppressor that acts by inhibiting mitogenic signaling and is mutated in Neurofibromatosis type II (NF2) disease, although its molecular mechanism is not fully understood. Here, we observed that Merlin inhibited Wnt/β-catenin signaling by blocking phosphorylation of LRP6, which is necessary for Wnt signal transduction, whereas mutated Merlin in NF2 patients did not. Treatment with Wnt3a enhanced phosphorylation of Ser518 in Merlin via activation of PAK1 in a PIP2-dependent manner. Phosphorylated Merlin dissociated from LRP6, allowing for phosphorylation of LRP6. Tissues from NF2 patients exhibited higher levels of β-catenin, and proliferation of RT4-D6P2T rat schwannoma cells was significantly reduced by treatment with chemical inhibitors of Wnt/β-catenin signaling. Taken together, our findings suggest that sustained activation of Wnt/β-catenin signaling due to abrogation of Merlin-mediated inhibition of LRP6 phosphorylation may be a cause of NF2 disease. Cell Death and Differentiation (2016) 23, 1638–1647; doi:10.1038/cdd.2016.54; published online 10 June 2016 Wnt/β-catenin signaling has essential roles in the regulation of β-catenin is then translocated into nuclei to activate
    [Show full text]
  • Erbb3 Is Involved in Activation of Phosphatidylinositol 3-Kinase by Epidermal Growth Factor STEPHEN P
    MOLECULAR AND CELLULAR BIOLOGY, June 1994, p. 3550-3558 Vol. 14, No. 6 0270-7306/94/$04.00+0 Copyright C 1994, American Society for Microbiology ErbB3 Is Involved in Activation of Phosphatidylinositol 3-Kinase by Epidermal Growth Factor STEPHEN P. SOLTOFF,l* KERMIT L. CARRAWAY III,1 S. A. PRIGENT,2 W. G. GULLICK,2 AND LEWIS C. CANTLEY' Division of Signal Transduction, Department ofMedicine, Beth Israel Hospital, Boston, Massachusetts 02115,1 and Molecular Oncology Laboratory, ICRF Oncology Group, Hammersmith Hospital, London W12 OHS, United Kingdom2 Received 11 October 1993/Returned for modification 11 November 1993/Accepted 24 February 1994 Conflicting results concerning the ability of the epidermal growth factor (EGF) receptor to associate with and/or activate phosphatidylinositol (Ptdlns) 3-kinase have been published. Despite the ability of EGF to stimulate the production of Ptdlns 3-kinase products and to cause the appearance of PtdIns 3-kinase activity in antiphosphotyrosine immunoprecipitates in several cell lines, we did not detect EGF-stimulated Ptdlns 3-kinase activity in anti-EGF receptor immunoprecipitates. This result is consistent with the lack of a phosphorylated Tyr-X-X-Met motif, the p85 Src homology 2 (SH2) domain recognition sequence, in this receptor sequence. The EGF receptor homolog, ErbB2 protein, also lacks this motif. However, the ErbB3 protein has seven repeats of the Tyr-X-X-Met motif in the carboxy-terminal unique domain. Here we show that in A431 cells, which express both the EGF receptor and ErbB3, Ptdlns 3-kinase coprecipitates with the ErbB3 protein (pl80eR3) in response to EGF. p180B3 is also shown to be tyrosine phosphorylated in response to EGF.
    [Show full text]
  • Acquired Resistance to Dasatinib in Lung Cancer Cell Lines Conferred by DDR2 Gatekeeper Mutation and NF1 Loss
    Published OnlineFirst December 2, 2013; DOI: 10.1158/1535-7163.MCT-13-0817 Molecular Cancer Cancer Biology and Signal Transduction Therapeutics Acquired Resistance to Dasatinib in Lung Cancer Cell Lines Conferred by DDR2 Gatekeeper Mutation and NF1 Loss Ellen M. Beauchamp1, Brittany A. Woods1,7, Austin M. Dulak1, Li Tan3, Chunxiao Xu1, Nathanael S. Gray2, Adam J. Bass1,6, Kwok-kin Wong1,4, Matthew Meyerson1,5,6, and Peter S. Hammerman1,6 Abstract The treatment of non–small cell lung cancer has evolved dramatically over the past decade with the adoption of widespread use of effective targeted therapies in patients with distinct molecular alterations. In lung squamous cell carcinoma (lung SqCC), recent studies have suggested that DDR2 mutations are a biomarker for therapeutic response to dasatinib and clinical trials are underway testing this hypothesis. Although targeted therapeutics are typically quite effective as initial therapy for patients with lung cancer, nearly all patients develop resistance with long-term exposure to targeted drugs. Here, we use DDR2-dependent lung cancer cell lines to model acquired resistance to dasatinib therapy. We perform targeted exome sequencing to identify two distinct mechanisms of acquired resistance: acquisition of the T654I gatekeeper mutation in DDR2 and loss of NF1. We show that NF1 loss activates a bypass pathway, which confers ERK dependency downstream of RAS activation. These results indicate that acquired resistance to dasatinib can occur via both second-site mutations in DDR2 and by activation of bypass pathways. These data may help to anticipate mechanisms of resistance that may be identified in upcoming clinical trials of anti-DDR2 therapy in lung cancer and suggest strategies to overcome resistance.
    [Show full text]
  • The Role of the C-Terminus Merlin in Its Tumor Suppressor Function Vinay Mandati
    The role of the C-terminus Merlin in its tumor suppressor function Vinay Mandati To cite this version: Vinay Mandati. The role of the C-terminus Merlin in its tumor suppressor function. Agricultural sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA112140. tel-01124131 HAL Id: tel-01124131 https://tel.archives-ouvertes.fr/tel-01124131 Submitted on 19 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 TABLE OF CONTENTS Abbreviations ……………………………………………………………………………...... 8 Resume …………………………………………………………………………………… 10 Abstract …………………………………………………………………………………….. 11 1. Introduction ………………………………………………………………………………12 1.1 Neurofibromatoses ……………………………………………………………………….14 1.2 NF2 disease ………………………………………………………………………………15 1.3 The NF2 gene …………………………………………………………………………….17 1.4 Mutational spectrum of NF2 gene ………………………………………………………..18 1.5 NF2 in other cancers ……………………………………………………………………...20 2. ERM proteins and Merlin ……………………………………………………………….21 2.1 ERMs ……………………………………………………………………………………..21 2.1.1 Band 4.1 Proteins and ERMs …………………………………………………………...21 2.1.2 ERMs structure ………………………………………………………………………....23 2.1.3 Sub-cellular localization and tissue distribution of ERMs ……………………………..25 2.1.4 ERM proteins and their binding partners ……………………………………………….25 2.1.5 Assimilation of ERMs into signaling pathways ………………………………………...26 2.1.5. A. ERMs and Ras signaling …………………………………………………...26 2.1.5. B. ERMs in membrane transport ………………………………………………29 2.1.6 ERM functions in metastasis …………………………………………………………...30 2.1.7 Regulation of ERM proteins activity …………………………………………………...31 2.1.7.
    [Show full text]
  • Targeting the Function of the HER2 Oncogene in Human Cancer Therapeutics
    Oncogene (2007) 26, 6577–6592 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW Targeting the function of the HER2 oncogene in human cancer therapeutics MM Moasser Department of Medicine, Comprehensive Cancer Center, University of California, San Francisco, CA, USA The year 2007 marks exactly two decades since human HER3 (erbB3) and HER4 (erbB4). The importance of epidermal growth factor receptor-2 (HER2) was func- HER2 in cancer was realized in the early 1980s when a tionally implicated in the pathogenesis of human breast mutationally activated form of its rodent homolog neu cancer (Slamon et al., 1987). This finding established the was identified in a search for oncogenes in a carcinogen- HER2 oncogene hypothesis for the development of some induced rat tumorigenesis model(Shih et al., 1981). Its human cancers. An abundance of experimental evidence human homologue, HER2 was simultaneously cloned compiled over the past two decades now solidly supports and found to be amplified in a breast cancer cell line the HER2 oncogene hypothesis. A direct consequence (King et al., 1985). The relevance of HER2 to human of this hypothesis was the promise that inhibitors of cancer was established when it was discovered that oncogenic HER2 would be highly effective treatments for approximately 25–30% of breast cancers have amplifi- HER2-driven cancers. This treatment hypothesis has led cation and overexpression of HER2 and these cancers to the development and widespread use of anti-HER2 have worse biologic behavior and prognosis (Slamon antibodies (trastuzumab) in clinical management resulting et al., 1989).
    [Show full text]
  • Missense Mutations in the NF2 Gene Result in the Quantitative Loss of Merlin Protein and Minimally Affect Protein Intrinsic Function
    Missense mutations in the NF2 gene result in the quantitative loss of merlin protein and minimally affect protein intrinsic function Chunzhang Yang, Ashok R. Asthagiri, Rajiv R. Iyer, Jie Lu, David S. Xu, Alexander Ksendzovsky, Roscoe O. Brady1, Zhengping Zhuang1, and Russell R. Lonser1 Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 Contributed by Roscoe O. Brady, February 9, 2011 (sent for review December 29, 2010) Neurofibromatosis type 2 (NF2) is a multiple neoplasia syndrome Results and is caused by a mutation of the NF2 tumor suppressor gene Quantitative Tumor Suppressor Protein Levels and mRNA Expression. that encodes for the tumor suppressor protein merlin. Biallelic NF2 To assess the levels of merlin expression in NF2 tumors, we gene inactivation results in the development of central nervous quantitatively measured merlin expression in microdissected system tumors, including schwannomas, meningiomas, ependy- tumors from NF2 patients using Western blot analysis (Fig. 1A). momas, and astrocytomas. Although a wide variety of missense Quantitative protein analysis revealed a significant reduction in germline mutations in the coding sequences of the NF2 gene can merlin expression in NF2-associated meningiomas and schwan- cause loss of merlin function, the mechanism of this functional loss nomas (95% reduction in merlin expression; seven tumors) com- is unknown. To gain insight into the mechanisms underlying loss pared with normal adjacent central nervous system tissue. of merlin function in NF2, we investigated mutated merlin homeo- Consistent with Western blot analysis of merlin expression in NF2- stasis and function in NF2-associated tumors and cell lines.
    [Show full text]
  • AUSTRALIAN PATENT OFFICE (11) Application No. AU 199875933 B2
    (12) PATENT (11) Application No. AU 199875933 B2 (19) AUSTRALIAN PATENT OFFICE (10) Patent No. 742342 (54) Title Nucleic acid arrays (51)7 International Patent Classification(s) C12Q001/68 C07H 021/04 C07H 021/02 C12P 019/34 (21) Application No: 199875933 (22) Application Date: 1998.05.21 (87) WIPO No: WO98/53103 (30) Priority Data (31) Number (32) Date (33) Country 08/859998 1997.05.21 US 09/053375 1998.03.31 US (43) Publication Date : 1998.12.11 (43) Publication Journal Date : 1999.02.04 (44) Accepted Journal Date : 2001.12.20 (71) Applicant(s) Clontech Laboratories, Inc. (72) Inventor(s) Alex Chenchik; George Jokhadze; Robert Bibilashvilli (74) Agent/Attorney F.B. RICE and CO.,139 Rathdowne Street,CARLTON VIC 3053 (56) Related Art PROC NATL ACAD SCI USA 93,10614-9 ANCEL BIOCHEM 216,299-304 CRENE 156,207-13 OPI DAtE 11/12/98 APPLN. ID 75933/98 AOJP DATE 04/02/99 PCT NUMBER PCT/US98/10561 IIIIIIIUIIIIIIIIIIIIIIIIIIIII AU9875933 .PCT) (51) International Patent Classification 6 ; (11) International Publication Number: WO 98/53103 C12Q 1/68, C12P 19/34, C07H 2UO2, Al 21/04 (43) International Publication Date: 26 November 1998 (26.11.98) (21) International Application Number: PCT/US98/10561 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, (22) International Filing Date: 21 May 1998 (21.05.98) GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, (30) Priority Data: TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO 08/859,998 21 May 1997 (21.05.97) US patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian 09/053,375 31 March 1998 (31.03.98) US patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, (71) Applicant (for all designated States except US): CLONTECH CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • The Nf2 Tumor Suppressor Gene Product IS Essential for Extraembryon.Lc Development Immediately Prior to Gastrulation
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The Nf2 tumor suppressor gene product IS essential for extraembryon.lc development immediately prior to gastrulation Andrea I. McClatchey, 1 Ichiko Saotome, 1"2 Vijaya Ramesh, s James F. Gnsella, s and Tyler Jacks 1'2'4 1Center for Cancer Research, 2Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA; SMolecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 USA The neurofibromatosis type II (NF2) tumor suppressor encodes a putative cytoskeletal associated protein, the loss of which leads to the development of Schwann cell tumors associated with NF2 in humans. The NF2 protein merlin belongs to the band 4.1 family of proteins that link membrane proteins to the cytoskeleton and are thought to be involved in dynamic cytoskeletal reorganization. Beyond its membership in this family, however, the function of merlin remains poorly understood. In order to analyze the function of merlin during embryogenesis and to develop a system to study merlin function in detail, we have disrupted the mouse Nf2 gene by homologous recombination in embryonic stem cells. Most embryos homozygous for a mutation at the Nf2 locus fail between embryonic days 6.5 and 7.0, exhibiting a collapsed extraembryonic region and the absence of organized extraembryonic ectoderm. The embryo proper continues to develop, but fails to initiate gastrulation. These observations are supported by the expression patterns of markers of the extraembryonic lineage and the lack of expression of mesodermal markers in the mutant embryos.
    [Show full text]
  • This Month in the Journal
    Am. J. Hum. Genet. 74:i–ii, 2004 This Month in the Journal This month in the Journal, Walter Nance and Michael 53 are known, and this limits the resolution that can be Kearsey provide their thoughts on the role of the con- achieved between lineages. Kayser et al. used the recently nexins in human evolution. Previous work from Dr. reported Y-chromosome sequence to find 166 novel mi- Nance’s group suggested that the frequency of mutations crosatellites, thereby quadrupling the number of avail- at the DFNB1 deafness locus, which includes the genes able markers. Of the novel markers, 139 were polymor- for connexins 26 and 30, has doubled in the United phic in a sample of eight chromosomes from different States in the past 200 years. Here, they performed simu- haplogroups. Comparisons of the markers through mul- lations indicating that a combination of relaxed selection tiple linear regressions allowed the authors to determine and assortative mating due to the development of sign that repeat count—or, in the case of complex repeats, language could have led to this rapid rise in the incidence the repeat count of the longest homogeneous array— of connexin-associated deafness. This got them to think- appears to explain a large proportion of the repeat vari- ing about the evolution of speech in general. They pro- ance in these markers. It is likely that the great majority pose that once the first mutations for oral communica- of useful microsatellites on the Y chromosome have now tion arose, assortative mating based on linguistic homog- been reported, thereby making it easier for researchers amy may have played a role in the accelerated fixation to select appropriate markers for high-resolution analy- of genes for speech.
    [Show full text]
  • Merlin Controls the Repair Capacity of Schwann Cells After Injury by Regulating
    Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. Thomas Mindos1, Xin-peng Dun1, Katherine North1,5, Robin D. S. Doddrell1, Alexander Schulz2, Philip Edwards3, James Russell1, Bethany Gray1,5, Sheridan Roberts1, Aditya Shivane3, Georgina Mortimer1 , Melissa Pirie1, Nailing Zhang4, Duojia Pan4, Helen Morrison2 and David B. Parkinson1. 1. Plymouth University Peninsula Schools of Medicine and Dentistry, Derriford, Plymouth, Devon, UK, PL6 8BU. 2. Leibniz Institute for Age Research-FLI Jena, Beutenbergstr. 11, D-07745, Jena, Germany. 3. Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth, UK. 4. Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, United States. 5. University of Bath, Claverton Down, Bath, UK, BA2 7AY. Correspondence to: Prof. David Parkinson, Plymouth University Schools of Medicine and Dentistry, Derriford, Plymouth, Devon, UK PL6 8BU. Tel. 0044 (0)1752 431037; Fax 0044 (0)1752 517846 e-mail: [email protected] Condensed title: Schwann cell Merlin controls repair of the PNS. 1 eTOC: The regenerative capacity of Schwann cells in the PNS underlies functional repair following injury. Here, Mindos et al show a new function for the tumour suppressor Merlin and Hippo/YAP signalling in the generation of repair-competent Schwann cells following injury. Number of characters: 39,838 2 Abstract. Loss of the Merlin tumour suppressor and activation of the Hippo signalling pathway play major roles in the control of cell proliferation and tumourigenesis. We have identified completely novel roles for Merlin and the Hippo pathway effector Yes Associated Protein or YAP in the control of Schwann cell plasticity and peripheral nerve repair following injury.
    [Show full text]