Optical Atomic Clocks – Opening New Perspectives on the Quantum World Jun Ye, JILA, NIST & University of Colorado 26Th CGPM Open Session, November 16 2018
Total Page:16
File Type:pdf, Size:1020Kb
Optical Atomic Clocks – Opening New Perspectives on the Quantum World Jun Ye, JILA, NIST & University of Colorado 26th CGPM Open Session, November 16 2018 Ultra-coherence Quantum sensing New physics on table top Many-body dynamics Credit: NIST Credit: 7 SI Base Units Almost all units, base or derived, can be traced to time 133Cs s NA e • Fundamental laws & constants A are our units mol • “For all timestimes,, For all people.” C k B m K cd kg h Kcd Probes for Fundamental Physics Unruly spiral galaxies Dark matter halo Space-time ripples Credit: NASA Credit: Credit: NASA Credit: NASA Credit: Network of Standardclocks (10 Model-21): SI units long baseline interferometry But, it is INCOMPLETE : • Dark matter & energy Kómár• etMatter al., Nat.- antimatterPhys. 10, 582 asymmetry(2014); Kolkowitz et al., Phys. Rev. D 94, 124043 (2016). Time Scales Quantum pendulum period: 10-15 s 0.000 000 000 000 001 second The geometric mean ~30 s Sr atoms: 1 3 • S0 ↔ P0 (160 s) • Q ~ 1017 Credit: NASA Credit: Life of the Universe: 15 billion years (1018 s) 1,000,000,000,000,000,000 seconds Quantum Certainty and Uncertainty |e> 12 11 1 10 2 1 푖휙 푒 |푒 + |푔 9 3 2 8 4 7 6 5 |g> |e> Quantized transition frequency |g> The Strength of MANY – when you are certain Quantum Phase Noise of Atoms Classical Phase Noise of Probe Laser 12 11 1 10 2 9 3 8 4 7 5 6 1 Quantization of Motion & Interaction DfSQL = rad (Quantum Certainty) N Laser is the Central Ruler of Time & Space Matei et al., PRL 118, 0.5 Optical Coherence time ~ 1 minute 263202 (2017); Stability: -17 0.4 4 x 10 PTB Zhang et al., PRL 119, 243601 (2017). 0.3 JILA 0.2 Signal amplitudeSignal 0.1 0 -0.10 -0.05 0 0.05 0.10 Beat frequency (Hz) Hänsch & Hall: A ruler for the Universe Frequency comb Cooling Atoms with Light Chu, Cohen-Tannoudji, Phillips Holding Atoms in a Magic Light Bowl Ashkin, … Ye, Kimble, Katori, Science 320, 1734 (2008). e Incident laser g Clock laser Udipole 87Sr Laser beam |e> 698 nm |g> |g> |e> Quantizing the Doppler Effect Kolkowitz et al., Nature 542, 66 (2017). T = 1 mK Quantum State Control Haroche, Wineland Ludlow et al., Rev. Mod. Phys. 87, 647 (2015). |e> 0.8 Linewidth ~ Hz |g> 0.6 0.4 ω Fraction Excitation trap 0.2 0 -15 -10 -5 0 5 10 15 Detuning (Hz) • Doppler shift = 0 (motion quantized) • Precision improvement by N1/2 JILA Sr Clock II : 2.1 x 10-18 Nicholson et al., Nature Comm. 6 (2015). Atomic Clock: Sensors of Space-time Nicholson et al., Nature Comm. 6 (2015). Sr: 10-20 t ~ 160 s Quantization Q ~ 1017 Poli et al. La rivista del Nuovo Cimento, 36, 555 (2013). along x & y 3D Fermi Gas Clock Quantum gases: Cornell, Ketterle, Wieman; Jin Scaling up the Sr quantum clock: Pauli Exclusion Principle 1 million atoms 1 atom (clock) per site (100 x 100 x 100 cells) Coherence 160 s Precision 3 x 10-20 Hz-1/2 A Fermi Gas Mott Insulator Clock Goban et al., Nature 563, 369 – 373 (2018). Interaction quantized |e> 푥 푦 |g> 푧 Nuclear spin 9/2 Excitation fraction Excitation 0 0 0 Clock laser frequency (kHz) Long Atom-Light Coherence S. Campbell et al., Science 358, 90 (2017). 6s, 83 mHz Atom-Light coherence: 10 s Quality factor: 8 x 1015 Limit: photon scattering ; need shallow lattices Excitation fraction Excitation Laser detuning (Hz) A Fermi Band/Mott Insulator Clock l clock lclock t t 푖2휋 푎/휆 푖2휋 푎/휆 푒 푐푙표푐푘 ≠ 1 푒 푐푙표푐푘 = 1 Kolkowitz et al., Nature 542, 66 (2017); Bromley et al., Nature Phys. 14, 399 (2018). Lattice spacing = 813 nm / 2sin(휃/2) Change the interference angle q , but need to have 훿휃 < 3표 × 10−5 푎 = Clock under a Microscope Marti et al., Phys Rev Lett 120, 103201 (2018). -19 10-17 2.5⨉10 @ 3 hours 10-18 Quality factor 8 x 1015 Allan Allan Deviation -19 10 훻퐵푥 10 102 103 104 Average time (s) Imaging resolution ≈ 1 μm ≈ 2 lattice sites Gravitational Potential & Atomic Coherence Extreme spatial resolution & precision 10 μm height: 10-21 effect Unexplored regime: quantum dynamics with post-Newtonian effects. GR entangles a clock with its spatial degrees of freedom via time dilation . Spatial coherence modulated due to which-way information Sr optical clock – a big playground Current Sr Group T. Bothwell A. Goban E. Marti (Stanford U) A. Ludlow (NIST) S. Bromley (U. Durham) G. Campbell (JQI, NIST) D. Kedar R. Hutson W. Zhang (NIST) T. Zelevinsky (Columbia U.) C. Kennedy C. Sanner S. Campbell (UC Berkeley) Y. Lin (NIM) L. Sonderhouse S. Kolkowitz (U. Wisconsin) M. Boyd (AO Sense) W. Milner X. Zhang (Peking U.) J. Thomsen (U. Copenhagen) E. Oelker T. Nicholson (NUS) T. Zanon (Univ. Paris 6) M. Bishof (Argonne) S. Foreman (U. San Fran) J. Robinson B. Bloom (Atom Compute) X. Huang (WIPM) M. Martin (Los Alamos) T. Ido (NICT Tokyo) Collaboration: NIST Time & Frequency, J. Williams (JPL/Caltech) X. Xu (ECNU) PTB (Riehle, Sterr, Legero) M. Swallows (Honeywell) T. Loftus (Honeywell) S. Blatt (MPQ, Garching) Theory: A. M. Rey, M. Safronova, P. Julienne, M. Lukin, P. Zoller, … Laser is the Central Ruler of Time & Space -16 -14 CavityLaser length Cavity L ~ 1 m DL ~ 10 m (size of a nucleus: 10 m) Laser Cavity Intensity 0 1 2 3 4 5 Time (ns) Length is linked to Time via c Hänsch & Hall: Optical frequency comb Intensity 0 1 2 3 4 5 Time (ns) Clock Meets Atomic Interactions Martin et al., Science 341, 632 (2013). Zhang et al., Science 345, 1467 (2014). U nj U ni Quantum fluctuations correlated 1 ) 15 U t >> 1 - 0 |↑↓ + × |n1 n2 ‒ |n2 1 - |↓↑ n1 Fractional Shift (10 Shift Fractional 2 - Excitation angle Credit: Ye Group Ye Credit: Credit: NIST Credit: Quantum sensing Table-top search for new physics Many-body dynamics Credit: Ye Group Ye Credit: Atomic Clock: Sensors of Space-time Important innovations: Current accuracy ~10-18 : gravitational redshift 1 cm Higher Q optical transitions Quantum many-body and coherence New laser phase control: optical coherence > 1 s Trapped atoms/ions: high N, long coherence Optical frequency comb Nicholson et al., Nature Comm. 6 (2015). Sr: 10-20 t ~ 160 s Quantization Q ~ 1017 Poli et al. La rivista del Nuovo Cimento, 36, 555 (2013). along x & y .