Optical Atomic Clocks – Opening New Perspectives on the Quantum World Jun Ye, JILA, NIST & University of Colorado 26Th CGPM Open Session, November 16 2018

Total Page:16

File Type:pdf, Size:1020Kb

Optical Atomic Clocks – Opening New Perspectives on the Quantum World Jun Ye, JILA, NIST & University of Colorado 26Th CGPM Open Session, November 16 2018 Optical Atomic Clocks – Opening New Perspectives on the Quantum World Jun Ye, JILA, NIST & University of Colorado 26th CGPM Open Session, November 16 2018 Ultra-coherence Quantum sensing New physics on table top Many-body dynamics Credit: NIST Credit: 7 SI Base Units Almost all units, base or derived, can be traced to time 133Cs s NA e • Fundamental laws & constants A are our units mol • “For all timestimes,, For all people.” C k B m K cd kg h Kcd Probes for Fundamental Physics Unruly spiral galaxies Dark matter halo Space-time ripples Credit: NASA Credit: Credit: NASA Credit: NASA Credit: Network of Standardclocks (10 Model-21): SI units long baseline interferometry But, it is INCOMPLETE : • Dark matter & energy Kómár• etMatter al., Nat.- antimatterPhys. 10, 582 asymmetry(2014); Kolkowitz et al., Phys. Rev. D 94, 124043 (2016). Time Scales Quantum pendulum period: 10-15 s 0.000 000 000 000 001 second The geometric mean ~30 s Sr atoms: 1 3 • S0 ↔ P0 (160 s) • Q ~ 1017 Credit: NASA Credit: Life of the Universe: 15 billion years (1018 s) 1,000,000,000,000,000,000 seconds Quantum Certainty and Uncertainty |e> 12 11 1 10 2 1 푖휙 푒 |푒 + |푔 9 3 2 8 4 7 6 5 |g> |e> Quantized transition frequency |g> The Strength of MANY – when you are certain Quantum Phase Noise of Atoms Classical Phase Noise of Probe Laser 12 11 1 10 2 9 3 8 4 7 5 6 1 Quantization of Motion & Interaction DfSQL = rad (Quantum Certainty) N Laser is the Central Ruler of Time & Space Matei et al., PRL 118, 0.5 Optical Coherence time ~ 1 minute 263202 (2017); Stability: -17 0.4 4 x 10 PTB Zhang et al., PRL 119, 243601 (2017). 0.3 JILA 0.2 Signal amplitudeSignal 0.1 0 -0.10 -0.05 0 0.05 0.10 Beat frequency (Hz) Hänsch & Hall: A ruler for the Universe Frequency comb Cooling Atoms with Light Chu, Cohen-Tannoudji, Phillips Holding Atoms in a Magic Light Bowl Ashkin, … Ye, Kimble, Katori, Science 320, 1734 (2008). e Incident laser g Clock laser Udipole 87Sr Laser beam |e> 698 nm |g> |g> |e> Quantizing the Doppler Effect Kolkowitz et al., Nature 542, 66 (2017). T = 1 mK Quantum State Control Haroche, Wineland Ludlow et al., Rev. Mod. Phys. 87, 647 (2015). |e> 0.8 Linewidth ~ Hz |g> 0.6 0.4 ω Fraction Excitation trap 0.2 0 -15 -10 -5 0 5 10 15 Detuning (Hz) • Doppler shift = 0 (motion quantized) • Precision improvement by N1/2 JILA Sr Clock II : 2.1 x 10-18 Nicholson et al., Nature Comm. 6 (2015). Atomic Clock: Sensors of Space-time Nicholson et al., Nature Comm. 6 (2015). Sr: 10-20 t ~ 160 s Quantization Q ~ 1017 Poli et al. La rivista del Nuovo Cimento, 36, 555 (2013). along x & y 3D Fermi Gas Clock Quantum gases: Cornell, Ketterle, Wieman; Jin Scaling up the Sr quantum clock: Pauli Exclusion Principle 1 million atoms 1 atom (clock) per site (100 x 100 x 100 cells) Coherence 160 s Precision 3 x 10-20 Hz-1/2 A Fermi Gas Mott Insulator Clock Goban et al., Nature 563, 369 – 373 (2018). Interaction quantized |e> 푥 푦 |g> 푧 Nuclear spin 9/2 Excitation fraction Excitation 0 0 0 Clock laser frequency (kHz) Long Atom-Light Coherence S. Campbell et al., Science 358, 90 (2017). 6s, 83 mHz Atom-Light coherence: 10 s Quality factor: 8 x 1015 Limit: photon scattering ; need shallow lattices Excitation fraction Excitation Laser detuning (Hz) A Fermi Band/Mott Insulator Clock l clock lclock t t 푖2휋 푎/휆 푖2휋 푎/휆 푒 푐푙표푐푘 ≠ 1 푒 푐푙표푐푘 = 1 Kolkowitz et al., Nature 542, 66 (2017); Bromley et al., Nature Phys. 14, 399 (2018). Lattice spacing = 813 nm / 2sin(휃/2) Change the interference angle q , but need to have 훿휃 < 3표 × 10−5 푎 = Clock under a Microscope Marti et al., Phys Rev Lett 120, 103201 (2018). -19 10-17 2.5⨉10 @ 3 hours 10-18 Quality factor 8 x 1015 Allan Allan Deviation -19 10 훻퐵푥 10 102 103 104 Average time (s) Imaging resolution ≈ 1 μm ≈ 2 lattice sites Gravitational Potential & Atomic Coherence Extreme spatial resolution & precision 10 μm height: 10-21 effect Unexplored regime: quantum dynamics with post-Newtonian effects. GR entangles a clock with its spatial degrees of freedom via time dilation . Spatial coherence modulated due to which-way information Sr optical clock – a big playground Current Sr Group T. Bothwell A. Goban E. Marti (Stanford U) A. Ludlow (NIST) S. Bromley (U. Durham) G. Campbell (JQI, NIST) D. Kedar R. Hutson W. Zhang (NIST) T. Zelevinsky (Columbia U.) C. Kennedy C. Sanner S. Campbell (UC Berkeley) Y. Lin (NIM) L. Sonderhouse S. Kolkowitz (U. Wisconsin) M. Boyd (AO Sense) W. Milner X. Zhang (Peking U.) J. Thomsen (U. Copenhagen) E. Oelker T. Nicholson (NUS) T. Zanon (Univ. Paris 6) M. Bishof (Argonne) S. Foreman (U. San Fran) J. Robinson B. Bloom (Atom Compute) X. Huang (WIPM) M. Martin (Los Alamos) T. Ido (NICT Tokyo) Collaboration: NIST Time & Frequency, J. Williams (JPL/Caltech) X. Xu (ECNU) PTB (Riehle, Sterr, Legero) M. Swallows (Honeywell) T. Loftus (Honeywell) S. Blatt (MPQ, Garching) Theory: A. M. Rey, M. Safronova, P. Julienne, M. Lukin, P. Zoller, … Laser is the Central Ruler of Time & Space -16 -14 CavityLaser length Cavity L ~ 1 m DL ~ 10 m (size of a nucleus: 10 m) Laser Cavity Intensity 0 1 2 3 4 5 Time (ns) Length is linked to Time via c Hänsch & Hall: Optical frequency comb Intensity 0 1 2 3 4 5 Time (ns) Clock Meets Atomic Interactions Martin et al., Science 341, 632 (2013). Zhang et al., Science 345, 1467 (2014). U nj U ni Quantum fluctuations correlated 1 ) 15 U t >> 1 - 0 |↑↓ + × |n1 n2 ‒ |n2 1 - |↓↑ n1 Fractional Shift (10 Shift Fractional 2 - Excitation angle Credit: Ye Group Ye Credit: Credit: NIST Credit: Quantum sensing Table-top search for new physics Many-body dynamics Credit: Ye Group Ye Credit: Atomic Clock: Sensors of Space-time Important innovations: Current accuracy ~10-18 : gravitational redshift 1 cm Higher Q optical transitions Quantum many-body and coherence New laser phase control: optical coherence > 1 s Trapped atoms/ions: high N, long coherence Optical frequency comb Nicholson et al., Nature Comm. 6 (2015). Sr: 10-20 t ~ 160 s Quantization Q ~ 1017 Poli et al. La rivista del Nuovo Cimento, 36, 555 (2013). along x & y .
Recommended publications
  • Winter/Spring 2019 | Jila.Colorado.Edu
    Winter/Spring 2019 | jila.colorado.edu p.1 JILA Light & Matter On February 20th, from 9am–2pm in the Reception Lobby, all JILAns had the chance to review the pet photos submitted by Fellows and Staff and then attempt to match the pet with the Fellow/Staff person they thought it belonged to. Congratulations to the WINNERS of the contest: Amy Allison (JILA Staff), Rebecca Hirsch (JILA Graduate Student), and Leah Dodson (JILA Postdoc). JILA Light & Matter is published quarterly by the Science Communications Office at JILA, a joint in- stitute of the University of Colorado Boulder and the National Institute of Standards and Technology. The science communicators do their best to track down recently published journal articles and great research photos and graphics. If you have an image or a recent paper that you’d like to see featured, contact us at: [email protected]. Kristin Conrad, Project Manager, Design & Production Catherine Klauss, Science Writer Steven Burrows, Art & Photography Gwen Dickinson, Editor Winter/Spring 2019 | jila.colorado.edu Stories The Strontium Optical Tweezer 1 Buckyballs Play by Quantum Rules 5 Taming Chemistry at the Quantum Level 7 Quiet Drumming: Reducing Noise for the.... 9 Turn it Up to 11–The XUV Comb 11 First Quantum Degenerate Polar Molecules 13 Features Women of JILA Event 3 In the News 16 Puzzle 20 Atomic & Molecular Physics JILA researchers have, for the first time, trapped and cooled single alkaline-earth atoms. Alkaline-earth atoms are more difficult to cool than alkali atoms because of their dual outer electrons. For this experiment, researchers trapped single strontium atoms (red) in optical tweezers (green) before cooling the atoms to their quantum ground state (blue).
    [Show full text]
  • Report Release Webinar Slides
    BOARD ON PHYSICS AND ASTRONOMY (BPA) Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Science in the United States A study under the auspices of the U.S. National Academies of Sciences, Engineering, and Medicine Jun Ye & Nergis Mavalvala, Co-Chairs The study is supported by funding from the DOE, NSF, and AFOSR. (Further information can be found at: https://www.nap.edu) What is AMO? ● Basic fabric of light-matter interactions & window to the quantum world ● Plays a central role for other physical sciences and beyond ● Foundation for critical everyday technologies: such as lasers, MRI, GPS, fiber networks. ● Critical to emerging fields such as quantum computing, fundamental physics beyond standard model, astrophysics. ● Strong cycles between basic science, practical technologies, economic development, and societal impacts ● Unique training ground for future workforce. 2 Statement of Task - from the Agencies to AMO2020 The committee is charged with producing a comprehensive report on the status and future directions of atomic, molecular, and optical (AMO) science. The committee's report shall: ● Review the field of AMO science as a whole, emphasize recent accomplishments, and identify new opportunities and compelling scientific questions. ● Use case studies in selected, non-prioritized fields in AMO science to describe the impact that AMO science has on other scientific fields, identify opportunities and challenges associated with pursuing research in these fields because of their interdisciplinary nature, and
    [Show full text]
  • Light & Matter
    JILA: LIGHT & MATTER SPECIAL ISSUE_2011 Paul Arpin, Matt Seaberg, Qing Li, and Jonathas de Paula Siqueira work on developing laser technology in the Kapteyn/ Murnane lab. Credit: Brad Baxley, JILA T EAMWORK AT JILA A defining characteristic of JILA is teamwork. Our scientists not only collaborate on pioneering physics research, but also work together to secure and manage major grant Teamwork at the Frontiers of Physics p. 4 funding as well as collaboratively oversee the operations of the Institute. The JILA staff shops, including the Supply Office, are also teamwork operations. Partners in Physics p. 6 JILA scientists regularly partner with our shop staffs to create exemplary new technologies in support of the Institute’s First Contact p. 8 experimental research. The Institute also supports an unusual amount of flexibility and creativity in assembling top-notch research teams to tackle challenging research In Theory, Team Players Win p. 12 in atomic, molecular, and optical physics; astrophysics; precision measurement; and other scientific areas. This special issue of JILA Light & Matter showcases many The Day the Lab Stood Still p. 14 of the ways in which teamwork enhances JILA’s research on the frontiers of physics. We hope you enjoy it. Exploring the frontiers of quantum mechanics funding for JILA. Plus, NIST’s JILA Fellows teach at CU for restrictions of the NIST Boulder site just a mile away. “Part free and fully participate in training graduate students and of my job is to be both a liaison and a buffer with NIST,” postdocs. It’s simply wonderful for the university to have JILA explained O’Brian.
    [Show full text]
  • Information and Entropy in Quantum Theory
    Information and Entropy in Quantum Theory O J E Maroney Ph.D. Thesis Birkbeck College University of London Malet Street London WC1E 7HX arXiv:quant-ph/0411172v1 23 Nov 2004 Abstract Recent developments in quantum computing have revived interest in the notion of information as a foundational principle in physics. It has been suggested that information provides a means of interpreting quantum theory and a means of understanding the role of entropy in thermodynam- ics. The thesis presents a critical examination of these ideas, and contrasts the use of Shannon information with the concept of ’active information’ introduced by Bohm and Hiley. We look at certain thought experiments based upon the ’delayed choice’ and ’quantum eraser’ interference experiments, which present a complementarity between information gathered from a quantum measurement and interference effects. It has been argued that these experiments show the Bohm interpretation of quantum theory is untenable. We demonstrate that these experiments depend critically upon the assumption that a quantum optics device can operate as a measuring device, and show that, in the context of these experiments, it cannot be consistently understood in this way. By contrast, we then show how the notion of ’active information’ in the Bohm interpretation provides a coherent explanation of the phenomena shown in these experiments. We then examine the relationship between information and entropy. The thought experiment connecting these two quantities is the Szilard Engine version of Maxwell’s Demon, and it has been suggested that quantum measurement plays a key role in this. We provide the first complete description of the operation of the Szilard Engine as a quantum system.
    [Show full text]
  • Optical Frequency Standards and Measurement John L
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 52, NO. 2, APRIL 2003 227 Optical Frequency Standards and Measurement John L. Hall and Jun Ye Abstract—This paper celebrates the progress in optical dense spectra and the likelihood of spectral overlap is greatly frequency standards and measurement, won by the 40 years enhanced. The first and still one of the better systems used a of dedicated work of world-wide teams working in frequency Methane absorption cell with the HeNe laser gain at 3.39 m. standards and frequency measurement. Amazingly, after this time interval, the field is now simply exploding with new mea- The first report showed relative frequency stability of 1 10 surements and major advances of convenience and precision, with at 300 s and frequency reproducibility of 1 10 , the latter the best fractional frequency stability and potential frequency a factor 400 better than the length standard of that day, the accuracy now being offered by optical systems. The new “magic” 605.7-nm spectral line emitted by a Krypton discharge held at technology underlying the rf/optical connection is the capability the triple point of nitrogen 63 K . Modern HeNe/CH and of using femtosecond (fs) laser pulses to produce optical pulses so short their Fourier spectrum covers an octave bandwidth in CO OsO systems [2] show reproducibilities near 1 10 the visible. These “white light” pulses are repeated at stable rates and stabilities better than 1 10 . Similar systems using the ( 100 MHz to 1 GHz, set by design), leading to an optical “comb” HeNe 633-nm red line and intra-cavity absorption by molec- of frequencies with excellent phase coherence and stability and ular Iodine were soon described.
    [Show full text]
  • Notes on the Theory of Quantum Clock
    NOTES ON THE THEORY OF QUANTUM CLOCK I.Tralle1, J.-P. Pellonp¨a¨a2 1Institute of Physics, University of Rzesz´ow,Rzesz´ow,Poland e-mail:[email protected] 2Department of Physics, University of Turku, Turku, Finland e-mail:juhpello@utu.fi (Received 11 March 2005; accepted 21 April 2005) Abstract In this paper we argue that the notion of time, whatever complicated and difficult to define as the philosophical cat- egory, from physicist’s point of view is nothing else but the sum of ’lapses of time’ measured by a proper clock. As far as Quantum Mechanics is concerned, we distinguish a special class of clocks, the ’atomic clocks’. It is because at atomic and subatomic level there is no other possibility to construct a ’unit of time’ or ’instant of time’ as to use the quantum transitions between chosen quantum states of a quantum ob- ject such as atoms, atomic nuclei and so on, to imitate the periodic circular motion of a clock hand over the dial. The clock synchronization problem is also discussed in the paper. We study the problem of defining a time difference observable for two-mode oscillator system. We assume that the time dif- ference obsevable is the difference of two single-mode covariant Concepts of Physics, Vol. II (2005) 113 time observables which are represented as a time shift covari- ant normalized positive operator measures. The difficulty of finding the correct value space and normalization for time dif- ference is discussed. 114 Concepts of Physics, Vol. II (2005) Notes on the Theory of Quantum Clock And the heaven departed as a scroll when it is rolled together;..
    [Show full text]
  • Engineering Ultrafast Quantum Frequency Conversion
    Engineering ultrafast quantum frequency conversion Der Naturwissenschaftlichen Fakultät der Universität Paderborn zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von BENJAMIN BRECHT aus Nürnberg To Olga for Love and Support Contents 1 Summary1 2 Zusammenfassung3 3 A brief history of ultrafast quantum optics5 3.1 1900 – 1950 ................................... 5 3.2 1950 – 2000 ................................... 6 3.3 2000 – today .................................. 8 4 Fundamental theory 11 4.1 Waveguides .................................. 11 4.1.1 Waveguide modelling ........................ 12 4.1.2 Spatial mode considerations .................... 14 4.2 Light-matter interaction ........................... 16 4.2.1 Nonlinear polarisation ........................ 16 4.2.2 Three-wave mixing .......................... 17 4.2.3 More on phasematching ...................... 18 4.3 Ultrafast pulses ................................. 21 4.3.1 Time-bandwidth product ...................... 22 4.3.2 Chronocyclic Wigner function ................... 22 4.3.3 Pulse shaping ............................. 25 5 From classical to quantum optics 27 5.1 Speaking quantum .............................. 27 iii 5.1.1 Field quantisation in waveguides ................. 28 5.1.2 Quantum three-wave mixing .................... 30 5.1.3 Time-frequency representation .................. 32 5.1.3.1 Joint spectral amplitude functions ........... 32 5.1.3.2 Schmidt decomposition ................. 35 5.2 Understanding quantum ........................... 36 5.2.1 Parametric
    [Show full text]
  • Operating a 87Sr Optical Lattice Clock with High Precision and at High Density Matthew D
    416 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol. 59, no. 3, MARCH 2012 Operating a 87Sr Optical Lattice Clock With High Precision and at High Density Matthew D. Swallows, Michael J. Martin, Michael Bishof, Craig Benko, Yige Lin, Sebastian Blatt, Ana Maria Rey, and Jun Ye (Invited Paper) Abstract—We describe recent experimental progress with ity. In this article, we will discuss a state-of-the-art laser the JILA Sr optical frequency standard, which has a system- system recently constructed at JILA. −16 atic uncertainty at the 10 fractional frequency level. An The quantum projection noise-limited stability of a fre- upgraded laser system has recently been constructed in our lab which may allow the JILA Sr standard to reach the stan- quency standard operating with two-pulse Ramsey spec- dard quantum measurement limit and achieve record levels of troscopy is given by stability. To take full advantage of these improvements, it will be necessary to operate a lattice clock with a large number of 1 11− p t σ ()τ = e c, (1) atoms, and systematic frequency shifts resulting from atomic y 2πνCT pNτ interactions will become increasingly important. We discuss 0 e how collisional frequency shifts can arise in an optical lattice clock employing fermionic atoms and describe a novel method where C is the contrast of the Ramsey fringes, T is the by which such systematic effects can be suppressed. Ramsey interrogation time, ν0 is the optical transition fre- quency, pe is the excited state fraction at the operating points, N is the number of atoms interrogated, tc is the I.
    [Show full text]
  • Notes on the Theory of Quantum Clock
    NOTES ON THE THEORY OF QUANTUM CLOCK I.Tralle1, J.-P. Pellonp¨a¨a2 1Institute of Physics, University of Rzesz´ow,Rzesz´ow,Poland e-mail:[email protected] 2Department of Physics, University of Turku, Turku, Finland e-mail:juhpello@utu.fi (Received 11 March 2005; accepted 21 April 2005) Abstract In this paper we argue that the notion of time, whatever complicated and difficult to define as the philosophical cat- egory, from physicist’s point of view is nothing else but the sum of ’lapses of time’ measured by a proper clock. As far as Quantum Mechanics is concerned, we distinguish a special class of clocks, the ’atomic clocks’. It is because at atomic and subatomic level there is no other possibility to construct a ’unit of time’ or ’instant of time’ as to use the quantum transitions between chosen quantum states of a quantum ob- ject such as atoms, atomic nuclei and so on, to imitate the periodic circular motion of a clock hand over the dial. The clock synchronization problem is also discussed in the paper. We study the problem of defining a time difference observable for two-mode oscillator system. We assume that the time dif- ference obsevable is the difference of two single-mode covariant Concepts of Physics, Vol. II (2005) 113 time observables which are represented as a time shift covari- ant normalized positive operator measures. The difficulty of finding the correct value space and normalization for time dif- ference is discussed. 114 Concepts of Physics, Vol. II (2005) Notes on the Theory of Quantum Clock And the heaven departed as a scroll when it is rolled together;..
    [Show full text]
  • The Boundaries of Nature: Special & General Relativity and Quantum
    “The Boundaries of Nature: Special & General Relativity and Quantum Mechanics, A Second Course in Physics” Edwin F. Taylor's acceptance speech for the 1998 Oersted medal presented by the American Association of Physics Teachers, 6 January 1998 Edwin F. Taylor Center for Innovation in Learning, Carnegie Mellon University, Pittsburgh, PA 15213 (Now at 22 Hopkins Road, Arlington, MA 02476-8109, email [email protected] , web http://www.artsaxis.com/eftaylor/ ) ABSTRACT Public hunger for relativity and quantum mechanics is insatiable, and we should use it selectively but shamelessly to attract students, most of whom will not become physics majors, but all of whom can experience "deep physics." Science, engineering, and mathematics students, indeed anyone comfortable with calculus, can now delve deeply into special and general relativity and quantum mechanics. Big chunks of general relativity require only calculus if one starts with the metric describing spacetime around Earth or black hole. Expressions for energy and angular momentum follow, along with orbit predictions for particles and light. Feynman's Sum Over Paths quantum theory simply commands the electron: Explore all paths. Students can model this command with the computer, pointing and clicking to tell the electron which paths to explore; wave functions and bound states arise naturally. A second full year course in physics covering special relativity, general relativity, and quantum mechanics would have wide appeal -- and might also lead to significant advancements in upper-level courses for the physics major. © 1998 American Association of Physics Teachers INTRODUCTION It is easy to feel intimidated by those who have in the past received the Oersted Medal, especially those with whom I have worked closely in the enterprise of physics teaching: Edward M.
    [Show full text]
  • From Becto Forever
    Winter 2016 | jila.colorado.edu From BEC to Forever p.1 JILA Light & Matter Smiling faces at JILAday, December 8, 2015. Credit: Steve Burrows, JILA JILA Light & Matter is published quarterly by the Scientific Communications Office at JILA, a joint in- stitute of the University of Colorado Boulder and the National Institute of Standards and Technology. The editors do their best to track down recently published journal articles and great research photos and graphics. If you have an image or a recent paper that you’d like to see featured, contact us at: [email protected]. Please check out this issue of JILA Light & Matter online at https://jila.colorado.edu/publications/jila/ light-matter. Kristin Conrad, Project Manager, Design & Production Julie Phillips, Science Writer Steven Burrows, Art & Photography Gwen Dickinson, Editor Winter 2016 | jila.colorado.edu Stories From BEC to Breathing Forever 1 Turbulence: An Unexpected Journey 3 The Guiding Light 5 A Thousand Splendid Pairs 9 Born of Frustration 13 The Land of Enhancement: AFM Spectroscopy 15 Natural Born Entanglers 17 Dancing to the Quantum Drum Song 19 Features NIST Boulder Lab Building Renamed for Katharine Blodgett Gebbie 7 JILA Puzzle 11 In the News 21 How Did They Get Here? 23 Atomic & Molecular Physics From BEC to Forever The storied history of JILA’s Top Trap t took Eric Cornell three years to build JILA’s spherical Top Trap with his own two hands in the lab. The innovative trap relied primarily on magnetic Ifields and gravity to trap ultracold atoms. In 1995, Cornell and his colleagues used the Top Trap to make the world’s first Bose-Einstein condensate (BEC), an achievement that earned Cornell and Carl Wieman the Nobel Prize in 2001.
    [Show full text]
  • Time and Frequency Division Report
    Time and Frequency Division Goal The broad mission of the Time and Frequency Division is to provide official U.S. time and related quantities to support a wide range of uses in industry, national infrastructure, research, and among the general public. DIVISION STRATEGY The division’s research and metrology ac- tivities comprise three vertically integrated components, each of which constitutes a strategic element: 1. Official time: Accurate and precise realization of official U.S. time (UTC) and frequency. 2. Dissemination: A wide range of mea- surement services to efficiently and effectively distribute U.S. time and frequency and related quantities – pri- marily through free broadcast services available to any user 24/7/365. 3. Research: Research and technolo- gy development to improve time and frequency standards and dissemination. Part of this research includes high-impact programs in areas such as quantum information processing, atom-based sensors, and laser development and applications, which evolved directly from research to make better frequency standards (atomic clocks). Overview These three components – official time, dissemination, and research – are closely integrated. For example, all Division dissemination services tie directly to the Division’s realization of official time (UTC), and much of the Division’s research is enabled by the continual availability of precision UTC. Our modern technology and economy depend critically on the broad availability of precision timing, frequency, and synchronization. NIST realization and dissemination of time and frequency – continually improved by NIST research and development – is a crucial part of a series of informal national timing infrastructures that enable such essential technologies as: • Telecommunications and computer networks • Utility distribution • GPS, widely available in every cell phone and smartphone as well as GPS receivers • Electronic financial transactions 1 • National security and intelligence applications • Research Strategic Goal: Official Time Intended Outcome and Background U.S.
    [Show full text]