<<

Optical Atomic – Opening New Perspectives on the Quantum World , JILA, NIST & University of Colorado 26th CGPM Open Session, November 16 2018

Ultra-coherence Quantum sensing New on table top Many-body dynamics

Credit:NIST

7 SI Base Units

Almost all units, base or derived, can be traced to

133Cs

s NA e • Fundamental laws & constants A are our units mol • “For all timestimes,, For all people.”

C k B m K cd kg

h Kcd Probes for Fundamental Physics

Unruly spiral galaxies Dark halo Space-time ripples

Credit:NASA

Credit:NASA Credit:NASA

 Network of Standardclocks (10 Model-21): SI units

long baseline interferometry But, it is INCOMPLETE :

& energy Kómár• etMatter al., Nat.- antimatterPhys. 10, 582 asymmetry(2014); Kolkowitz et al., Phys. Rev. D 94, 124043 (2016). Time Scales

Quantum pendulum period: 10-15 s 0.000 000 000 000 001 second The geometric mean ~30 s Sr atoms: 1 3 • S0 ↔ P0 (160 s)

• Q ~ 1017

Credit:NASA

Life of the Universe: 15 billion years (1018 s) 1,000,000,000,000,000,000 seconds Quantum Certainty and Uncertainty

|e> 12 11 1 10 2 1 푖휙 푒 |푒 + |푔 9 3 2 8 4 7 6 5 |g>

|e>

Quantized transition frequency

|g> The Strength of MANY – when you are certain

Quantum Phase Noise of Atoms Classical Phase Noise of Probe

12 11 1 10 2 9 3 8 4 7 5 6

1 Quantization of Motion & Interaction DfSQL = rad (Quantum Certainty) N Laser is the Central Ruler of Time & Space

Matei et al., PRL 118, 0.5 Optical Coherence time ~ 1 minute 263202 (2017); Stability: -17 0.4 4 x 10 PTB Zhang et al., PRL 119, 243601 (2017). 0.3 JILA

0.2

Signal amplitudeSignal 0.1

0 -0.10 -0.05 0 0.05 0.10 Beat frequency (Hz) Hänsch & Hall: A ruler for the Universe Cooling Atoms with Chu, Cohen-Tannoudji, Phillips Holding Atoms in a Magic Light Bowl Ashkin, … Ye, Kimble, Katori, Science 320, 1734 (2008).

e Incident laser

g laser Udipole 87Sr Laser beam |e>

698 nm

|g> |g> |e> Quantizing the Doppler Effect

Kolkowitz et al., Nature 542, 66 (2017).

T = 1 mK Control Haroche, Wineland Ludlow et al., Rev. Mod. Phys. 87, 647 (2015).

|e> 0.8 Linewidth ~ Hz |g> 0.6

0.4

ω Fraction Excitation trap 0.2

0 -15 -10 -5 0 5 10 15 Detuning (Hz) • Doppler shift = 0 (motion quantized)

• Precision improvement by N1/2

JILA Sr Clock II : 2.1 x 10-18 Nicholson et al., Nature Comm. 6 (2015). : Sensors of Space-time

Nicholson et al., Nature Comm. 6 (2015). Sr: 10-20 t ~ 160 s Quantization Q ~ 1017 Poli et al. La rivista del Nuovo Cimento, 36, 555 (2013). along x & y 3D Fermi Gas Clock Quantum gases: Cornell, Ketterle, Wieman; Jin Scaling up the Sr : Pauli Exclusion Principle 1 million atoms  1 atom (clock) per site (100 x 100 x 100 cells) Coherence 160 s Precision 3 x 10-20 Hz-1/2 A Fermi Gas Mott Insulator Clock

Goban et al., Nature 563, 369 – 373 (2018).

Interaction quantized |e>

푥 푦 |g> 푧

Nuclear spin 9/2

Excitation fraction Excitation 0 0 0

Clock laser frequency (kHz) Long Atom-Light Coherence

S. Campbell et al., Science 358, 90 (2017).

6s, 83 mHz Atom-Light coherence: 10 s

Quality factor: 8 x 1015

Limit: photon scattering ; need shallow lattices Excitation fraction Excitation

Laser detuning (Hz) A Fermi Band/Mott Insulator Clock

l clock lclock

t t

푒푖2휋 푎/휆푐푙표푐푘 ≠ 1 푒푖2휋 푎/휆푐푙표푐푘 = 1

Kolkowitz et al., Nature 542, 66 (2017); Bromley et al., Nature Phys. 14, 399 (2018).

Lattice spacing = 813 nm / 2sin(휃/2) Change the interference angle q , but need to have 훿휃 < 3표 × 10−5

푎 = Clock under a Microscope

Marti et al., Phys Rev Lett 120, 103201 (2018).

-19 10-17 2.5⨉10 @ 3 hours

10-18 Quality factor 8 x 1015

Allan Deviation Allan -19 10 훻퐵푥 10 102 103 104 Average time (s)

Imaging resolution ≈ 1 μm ≈ 2 lattice sites Gravitational Potential & Atomic Coherence

Extreme spatial resolution & precision

10 μm height: 10-21 effect

Unexplored regime: with post-Newtonian effects. . GR entangles a clock with its spatial degrees of freedom via . Spatial coherence modulated due to which-way information Sr optical clock – a big playground Current Sr Group T. Bothwell A. Goban E. Marti (Stanford U) A. Ludlow (NIST) S. Bromley (U. Durham) G. Campbell (JQI, NIST) D. Kedar R. Hutson W. Zhang (NIST) T. Zelevinsky (Columbia U.) C. Kennedy C. Sanner S. Campbell (UC Berkeley) Y. Lin (NIM) L. Sonderhouse S. Kolkowitz (U. Wisconsin) M. Boyd (AO Sense) W. Milner X. Zhang (Peking U.) J. Thomsen (U. Copenhagen) E. Oelker T. Nicholson (NUS) T. Zanon (Univ. Paris 6) M. Bishof (Argonne) S. Foreman (U. San Fran) J. Robinson B. Bloom (Atom Compute) X. Huang (WIPM) M. Martin (Los Alamos) T. Ido (NICT Tokyo) Collaboration: NIST Time & Frequency, J. Williams (JPL/Caltech) X. Xu (ECNU) PTB (Riehle, Sterr, Legero) M. Swallows (Honeywell) T. Loftus (Honeywell) S. Blatt (MPQ, Garching) Theory: A. M. Rey, M. Safronova, P. Julienne, M. Lukin, P. Zoller, … Laser is the Central Ruler of Time & Space

-16 -14 CavityLaser length Cavity L ~ 1 m  DL ~ 10 m (size of a nucleus: 10 m)

Laser Cavity

Intensity

0 1 2 3 4 5 Time (ns)

Length is linked to Time via c

Hänsch & Hall: Optical frequency comb

Intensity

0 1 2 3 4 5 Time (ns) Clock Meets Atomic Interactions

Martin et al., Science 341, 632 (2013). Zhang et al., Science 345, 1467 (2014).

U nj

U ni

Quantum fluctuations correlated

1

)

15 U t >> 1

-

0

|↑↓ + × |n1 n2 ‒ |n2

1

- |↓↑ n1

Fractional Shift (10 Shift Fractional

2 - Excitation angle

Credit:Ye Group

Credit:NIST

Quantum sensing Table-top search for new physics Many-body dynamics

Credit:Ye Group

Atomic Clock: Sensors of Space-time

Important innovations:  Current accuracy ~10-18 : gravitational redshift 1 cm  Higher Q optical transitions  Quantum many-body and coherence  New laser phase control: optical coherence > 1 s

 Trapped atoms/: high N, long coherence

 Optical frequency comb

Nicholson et al., Nature Comm. 6 (2015). Sr: 10-20 t ~ 160 s Quantization Q ~ 1017 Poli et al. La rivista del Nuovo Cimento, 36, 555 (2013). along x & y