Interpreting Bayesian Logic Programs

Total Page:16

File Type:pdf, Size:1020Kb

Interpreting Bayesian Logic Programs From: AAAI Technical Report WS-00-06. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved. Interpreting Bayesian Logic Programs Kristian Kersting and Luc De Raedt and Stefan Kramer Institute for Computer Science, Machine Learning Lab University Freiburg, AmFlughafen 17, D-79110 Freiburg/Brg., Germany {kersting, deraedt, skramer}@informatik.uni-freiburg.de Abstract This paper is laid out as follows. The next three Various proposals for combiningfirst order logic with sections present the authors’ solution: Bayesian logic Bayesian nets exist. Weintroduce the formalism of programs. Section 5 shows a kernel implementation of Bayesianlogic programs,which is basically a simplifi- them in Prolog. In the following section we give sug- cation and reformulation of Ngoand Haddawysprob- gestions for learning Bayesian logic programs. abilistic logic programs. However,Bayesian logic pro- Weassume some familiarity with Prolog or logic pro- gramsare sufficiently powerfulto represent essentially gramming(see e.g. (Sterling & Shapiro 1986)) as well the same knowledgein a more elegant manner. The el- with Bayesian nets (see e.g. (Russell & Norvig 1995)). eganceis illustrated by the fact that they can represent both Bayesian nets and definite clause programs(as in "pure" Prolog) and that their kernel in Prolog is actu- Bayesian logic programs ally an adaptation of an usual Prolog meta-interpreter. Bayesian logic programs consist of two components. The first componentis the logical one. It consists of a set of Bayesian clauses (cf. below) which captures Introduction the qualitative structure of the domain and is based A Bayesian net (Pearl 1991) specifies a probability dis- on"pure" Prolog. The second component is the quan- tribution over a fixed set of randomvariables. As such, titative one. It encodes the quantitative information Bayesian nets essentially provide an elegant probabilis- about the domain and employs - as in Bayesian nets tic extension of propositional logic. However, the lim- - the notions of a conditional probability table (CPT) itations of propositional logic, which Bayesian nets in- and a combining rule. herit, are well-known. These limitations motivated the A Bayesian predicate is a predicate r to which a finite development of knowledge representation mechanisms domain Dr is associated. We define a Bayesian defi- employing first order logic, such as e.g. in logic pro- nite clause as an expression of the form A [ A1,... , An grammingand Prolog. In this context, it is no surprise where the A, A1,... ,An are atoms and all variables that various researchers have proposed various first or- are (implicitly) universally quantified. Whenwriting der extensions of Bayesian nets: e.g. probabilistic logic down Bayesian definite clauses, we will closely fol- programs (Ngo & Haddawy 1997), relational Bayesian low Prolog notation (with the exception that Prolog’s nets (Jaeger 1997) and probabilistic relational mod- ¯ - is replaced by [). So, variables start with a cap- els (Koller 1999). Manyof these techniques employ the ital, constant and functor symbols start with a lower- notion of Knowledge-Based Model Construction (Had- case character. The main difference between Bayesian dawy 1999) (KBMC),where first-order rules with and classical clauses is that Bayesian atoms represent sociated uncertainty parameters are used as a basis for classes of similar random variables. More precisely, generating Bayesian nets for particular queries. each ground atom in a Bayesian logic program repre- Wetried to identify a formalism that is as simple as sents a random variable. Each random variable can possible. While introducing Bayesian logic program- take on various possible values from the (finite) do- ming we employed one key design principle. The prin- main Dr of the corresponding Bayesian predicate r. ciple states that the resulting formalism should be as In any state of the world, a random variable takes close as possible to both Bayesian nets and to some exactly one value. E.g., we paraphrase that James’ well-founded first order logic knowledge representation house is not burglarized with burglary(james) = false. mechanism, in our case, "pure" Prolog programs. Any Therefore, a logical predicate r is a special case of a formalism designed according to this principle should Bayesian one with Dr = {true, false). An example of a be easily accessible and usable by researchers in both Bayesian definite clause inspired on (Ngo & Haddawy communities. 1997) is burglary(X) [ neighborhood(X), where Copyright (~) 2000, AmericanAssociation for Artificial In- domains are Db~gtar~= {true, false) and Dn,lghbou.hood = telligence (www.aaai.org).All rights reserved. { bad, average, good). Roughlyspeaking, a Bayesian def- 29 inite clause specifies that for each substitution 8 that of the definition given in (Ngo & Haddawy1997) 3. As grounds the clause the random variable A0 depends on an example we consider the combining rule max. The A10,... ,An~. For instance, let 8 = {X +-- james}, functional formulation is then the random variable burglary(james) depends on neighbourhood(james). P(A [ UT=lA~1,... ,A~n,) As for Bayesian nets there is a table of condi- m:lax{P(AI Ail,... ,Ain,)} tional probabilities associated to each Bayesian definite clause.1 It is remarkable that a combining rule has full knowl- edge about the input, i.e., it knowsall the appearing neighbourhood(X burglary(X) burglary(X) ground atoms or rather random variables and the asso- true /alse bad 0.6 0.4 ciated domains of the random variables. average 0.4 0.6 We assume that for each Bayesian predicate there is good 0.3 0.7 a corresponding combining rule and that the combined CPTstill specifies a conditional probability distribu- The CPT specifies our knowledge about the condi- tion. From a practical perspective, the combining rules tional probability distribution 2 P(AOI A10,... ,An0) used in Bayesian logic programs will be those commonly for every ground instance ~ of the clause. We assume employedin Bayesian nets, such as e.g. noisy-or, max. total CPTs, i.e. for each tuple of values u E DA1×.. ¯ × DAnthe CPT specifies a distribution P(DA I u). For Semantics of Bayesian logic programs this reason we write P(A I A1,... ,An) to denote the Following the principles of KBMC,each Bayesian logic CPTassociated to the Bayesian clause A I A1,... , An. program essentially specifies a propositional Bayesian For instance, the above Bayesian definite clause and net that can be queried using usual Bayesian net in- CPT together imply that IP(burglary(james) = true ference engines. This view implicitly assumes that all neighbourhood(james) = bad) 0. 6. Ea ch Ba yesian knowledge about the domain of discourse is encoded in predicate is defined by a set of definite Bayesianclauses, the Bayesian logic program (e.g. the persons belong- e.g. ing to a family). If the domain of discourse changes alarm(X)I burglary(X). (e.g. the family under consideration), then part of the alarm(X) a tornado(X). Bayesian logic program has to be changed. Usually, these modifications will only concern ground facts (e.g. If a ground atom A is influenced directly (see be- the Bayesian predicates "person", "parent" and "sex"). low) only by the ground atoms of the body of one The structure of the corresponding Bayesian net fol- ground instance of one clause, then the associated lows from the semantics of the logic program, whereas CPTspecified a conditional probability distribution the quantitative aspects are encoded in the CPTs and over A given the atoms of the body. But, if there combining rules. are more than one different ground instances of rules The set of random variables specified by a Bayesian which all have A as head, we have multiple condi- logic program is the least Herbrand model of the pro- tional probability distribution over A - in particular gram4. The least Herbrand model LH(L) of a definite this is the normal situation if a Bayesian atom is de- clause program L contains the set of all ground atoms fined by several clauses. E.g., given the clauses for that are logically entailed by the program5, it repre- alarm, the random variable alarm(james) depends on sents the intended meaning of the program. By varying both burglary(james) and tornado(james). However, the evidence (some of the ground facts) one also mod- the CPT for alarm do not specify P(alarm(james) ifies the set of random variables. Inference for logic burglary(james), tornado(james). The standard solu- programs has been well-studied (see e.g. (Lloyd 1989)) tion to obtain the desired probability distribution from and various methods exist to answer queries or to com- the given CPTs is to use a so called combining rule. pute the least Herbrand model. All of these methods Theoretically speaking, a combination rule is any al- can essentially be adapted to our context. Here, we as- gorithm which maps every finite set of CPTs (P(A sume that the computation of LH(L) relies on the use Ail,...,A~n,) I 1 < i < m, ni >_ 0) over ground 3It differs mainly in the restriction of the input set to atoms onto one CP-T, called combined CPT, P(A m be finite. Wemake this assumption in order to keep things B1,... ,Bn) with {B1,... ,Bn} C_ ~Ji=l Ail,... ,Ain,. simple. The output is empty iff the input is empty. Our defi- 4Formallyit is the least Herbrandmodel of the logical nition of a combining rule is basically a reformulation program L’, which one gets from L by omitting the asso- ciated CPTsand combination rules as well as interpreting 1In the examples,we use a naive representation as a ta- all predicates as classical, logical predicates. For the benefit ble, because it is the simplest representation. Westress, of greater readability, in the sequel we do not distinguish however, that other representations are possible and known between’.
Recommended publications
  • Probabilistic Logic Programming
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias ProbLog2: Probabilistic logic programming Anton Dries, Angelika Kimmig, Wannes Meert, Joris Renkens, Guy Van den Broeck, Jonas Vlasselaer, and Luc De Raedt KU Leuven, Belgium, [email protected], https://dtai.cs.kuleuven.be/problog Abstract. We present ProbLog2, the state of the art implementation of the probabilistic programming language ProbLog. The ProbLog language allows the user to intuitively build programs that do not only encode complex interactions between a large sets of heterogenous components but also the inherent uncertainties that are present in real-life situations. The system provides efficient algorithms for querying such models as well as for learning their parameters from data. It is available as an online tool on the web and for download. The offline version offers both command line access to inference and learning and a Python library for building statistical relational learning applications from the system's components. Keywords: probabilistic programming, probabilistic inference, param- eter learning 1 Introduction Probabilistic programming is an emerging subfield of artificial intelligence that extends traditional programming languages with primitives to support proba- bilistic inference and learning. Probabilistic programming is closely related to statistical relational learning (SRL) but focusses on a programming language perspective rather than on a graphical model one. The common goal is to pro- vide powerful tools for modeling of and reasoning about structured, uncertain domains that naturally arise in applications such as natural language processing, bioinformatics, and activity recognition. This demo presents the ProbLog2 system, the state of the art implementa- tion of the probabilistic logic programming language ProbLog [2{4].
    [Show full text]
  • Probabilistic Boolean Logic, Arithmetic and Architectures
    PROBABILISTIC BOOLEAN LOGIC, ARITHMETIC AND ARCHITECTURES A Thesis Presented to The Academic Faculty by Lakshmi Narasimhan Barath Chakrapani In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Computer Science, College of Computing Georgia Institute of Technology December 2008 PROBABILISTIC BOOLEAN LOGIC, ARITHMETIC AND ARCHITECTURES Approved by: Professor Krishna V. Palem, Advisor Professor Trevor Mudge School of Computer Science, College Department of Electrical Engineering of Computing and Computer Science Georgia Institute of Technology University of Michigan, Ann Arbor Professor Sung Kyu Lim Professor Sudhakar Yalamanchili School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Gabriel H. Loh Date Approved: 24 March 2008 College of Computing Georgia Institute of Technology To my parents The source of my existence, inspiration and strength. iii ACKNOWLEDGEMENTS आचायातर् ्पादमादे पादं िशंयः ःवमेधया। पादं सॄचारयः पादं कालबमेणच॥ “One fourth (of knowledge) from the teacher, one fourth from self study, one fourth from fellow students and one fourth in due time” 1 Many people have played a profound role in the successful completion of this disser- tation and I first apologize to those whose help I might have failed to acknowledge. I express my sincere gratitude for everything you have done for me. I express my gratitude to Professor Krisha V. Palem, for his energy, support and guidance throughout the course of my graduate studies. Several key results per- taining to the semantic model and the properties of probabilistic Boolean logic were due to his brilliant insights.
    [Show full text]
  • A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics
    FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 FLORENTIN SMARANDACHE A UNIFYING FIELD IN LOGICS: NEUTROSOPHIC LOGIC. NEUTROSOPHY, NEUTROSOPHIC SET, NEUTROSOPHIC PROBABILITY AND STATISTICS (fourth edition) NL(A1 A2) = ( T1 ({1}T2) T2 ({1}T1) T1T2 ({1}T1) ({1}T2), I1 ({1}I2) I2 ({1}I1) I1 I2 ({1}I1) ({1} I2), F1 ({1}F2) F2 ({1} F1) F1 F2 ({1}F1) ({1}F2) ). NL(A1 A2) = ( {1}T1T1T2, {1}I1I1I2, {1}F1F1F2 ). NL(A1 A2) = ( ({1}T1T1T2) ({1}T2T1T2), ({1} I1 I1 I2) ({1}I2 I1 I2), ({1}F1F1 F2) ({1}F2F1 F2) ). ISBN 978-1-59973-080-6 American Research Press Rehoboth 1998, 2000, 2003, 2005 1 Contents: Preface by C. Le: 3 0. Introduction: 9 1. Neutrosophy - a new branch of philosophy: 15 2. Neutrosophic Logic - a unifying field in logics: 90 3. Neutrosophic Set - a unifying field in sets: 125 4. Neutrosophic Probability - a generalization of classical and imprecise probabilities - and Neutrosophic Statistics: 129 5. Addenda: Definitions derived from Neutrosophics: 133 2 Preface to Neutrosophy and Neutrosophic Logic by C.
    [Show full text]
  • Probabilistic Logic Programming and Bayesian Networks
    Probabilistic Logic Programming and Bayesian Networks Liem Ngo and Peter Haddawy Department of Electrical Engineering and Computer Science University of WisconsinMilwaukee Milwaukee WI fliem haddawygcsuwmedu Abstract We present a probabilistic logic programming framework that allows the repre sentation of conditional probabilities While conditional probabilities are the most commonly used metho d for representing uncertainty in probabilistic exp ert systems they have b een largely neglected bywork in quantitative logic programming We de ne a xp oint theory declarativesemantics and pro of pro cedure for the new class of probabilistic logic programs Compared to other approaches to quantitative logic programming weprovide a true probabilistic framework with p otential applications in probabilistic exp ert systems and decision supp ort systems We also discuss the relation ship b etween such programs and Bayesian networks thus moving toward a unication of two ma jor approaches to automated reasoning To appear in Proceedings of the Asian Computing Science Conference Pathumthani Thailand December This work was partially supp orted by NSF grant IRI Intro duction Reasoning under uncertainty is a topic of great imp ortance to many areas of Computer Sci ence Of all approaches to reasoning under uncertainty probability theory has the strongest theoretical foundations In the quest to extend the framwork of logic programming to represent and reason with uncertain knowledge there havebeenseveral attempts to add numeric representations of uncertainty
    [Show full text]
  • Generalising the Interaction Rules in Probabilistic Logic
    Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Generalising the Interaction Rules in Probabilistic Logic Arjen Hommersom and Peter J. F. Lucas Institute for Computing and Information Sciences Radboud University Nijmegen Nijmegen, The Netherlands {arjenh,peterl}@cs.ru.nl Abstract probabilistic logic hand in hand such that the resulting logic supports this double, logical and probabilistic, view. The re- The last two decades has seen the emergence of sulting class of probabilistic logics has the advantage that it many different probabilistic logics that use logi- can be used to gear a logic to the problem at hand. cal languages to specify, and sometimes reason, In the next section, we first review the basics of ProbLog, with probability distributions. Probabilistic log- which is followed by the development of the main methods ics that support reasoning with probability distri- used in generalising probabilistic Boolean interaction, and, butions, such as ProbLog, use an implicit definition finally, default logic is briefly discussed. We will use prob- of an interaction rule to combine probabilistic ev- abilistic Boolean interaction as a sound and generic, alge- idence about atoms. In this paper, we show that braic way to combine uncertain evidence, whereas default this interaction rule is an example of a more general logic will be used as our language to implement the interac- class of interactions that can be described by non- tion operators, again reflecting this double perspective on the monotonic logics. We furthermore show that such probabilistic logic. The new probabilistic logical framework local interactions about the probability of an atom is described in Section 3 and compared to other approaches can be described by convolution.
    [Show full text]
  • Probabilistic Logic Learning
    Probabilistic Logic Learning Luc De Raedt Kristian Kersting Institut fur¨ Informatik, Albert-Ludwigs-University, Institut fur¨ Informatik, Albert-Ludwigs-University, Georges-Koehler-Allee, Building 079, D-79110 Georges-Koehler-Allee, Building 079, D-79110 Freiburg, Germany Freiburg, Germany [email protected] [email protected] ABSTRACT The past few years have witnessed an significant interest in probabilistic logic learning, i.e. in research lying at the in- Probability Logic tersection of probabilistic reasoning, logical representations, and machine learning. A rich variety of different formalisms and learning techniques have been developed. This paper Probabilistic provides an introductory survey and overview of the state- Logic Learning Learning of-the-art in probabilistic logic learning through the identi- fication of a number of important probabilistic, logical and learning concepts. Figure 1: Probabilistic Logic Learning as the intersection of Keywords Probability, Logic, and Learning. data mining, machine learning, inductive logic program- ing, diagnostic and troubleshooting, information retrieval, ming, multi-relational data mining, uncertainty, probabilis- software debugging, data mining and user modelling. tic reasoning The term logic in the present overview refers to first order logical and relational representations such as those studied 1. INTRODUCTION within the field of computational logic. The primary advan- One of the central open questions in data mining and ar- tage of using first order logic or relational representations tificial intelligence, concerns probabilistic logic learning, i.e. is that it allows one to elegantly represent complex situa- the integration of relational or logical representations, prob- tions involving a variety of objects as well as relations be- abilistic reasoning mechanisms with machine learning and tween the objects.
    [Show full text]
  • New Challenges to Philosophy of Science NEW CHALLENGES to PHILOSOPHY of SCIENCE
    The Philosophy of Science in a European Perspective Hanne Andersen · Dennis Dieks Wenceslao J. Gonzalez · Thomas Uebel Gregory Wheeler Editors New Challenges to Philosophy of Science NEW CHALLENGES TO PHILOSOPHY OF SCIENCE [THE PHILOSOPHY OF SCIENCE IN A EUROPEAN PERSPECTIVE, VOL. 4] [email protected] Proceedings of the ESF Research Networking Programme THE PHILOSOPHY OF SCIENCE IN A EUROPEAN PERSPECTIVE Volume 4 Steering Committee Maria Carla Galavotti, University of Bologna, Italy (Chair) Diderik Batens, University of Ghent, Belgium Claude Debru, École Normale Supérieure, France Javier Echeverria, Consejo Superior de Investigaciones Cienticas, Spain Michael Esfeld, University of Lausanne, Switzerland Jan Faye, University of Copenhagen, Denmark Olav Gjelsvik, University of Oslo, Norway Theo Kuipers, University of Groningen, The Netherlands Ladislav Kvasz, Comenius University, Slovak Republic Adrian Miroiu, National School of Political Studies and Public Administration, Romania Ilkka Niiniluoto, University of Helsinki, Finland Tomasz Placek, Jagiellonian University, Poland Demetris Portides, University of Cyprus, Cyprus Wlodek Rabinowicz, Lund University, Sweden Miklós Rédei, London School of Economics, United Kingdom (Co-Chair) Friedrich Stadler, University of Vienna and Institute Vienna Circle, Austria Gregory Wheeler, New University of Lisbon, FCT, Portugal Gereon Wolters, University of Konstanz, Germany (Co-Chair) www.pse-esf.org [email protected] Gregory Wheeler Editors New Challenges to Philosophy of Science
    [Show full text]
  • Estimating Accuracy from Unlabeled Data: a Probabilistic Logic Approach
    Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach Emmanouil A. Platanios Hoifung Poon Carnegie Mellon University Microsoft Research Pittsburgh, PA Redmond, WA [email protected] [email protected] Tom M. Mitchell Eric Horvitz Carnegie Mellon University Microsoft Research Pittsburgh, PA Redmond, WA [email protected] [email protected] Abstract We propose an efficient method to estimate the accuracy of classifiers using only unlabeled data. We consider a setting with multiple classification problems where the target classes may be tied together through logical constraints. For example, a set of classes may be mutually exclusive, meaning that a data instance can belong to at most one of them. The proposed method is based on the intuition that: (i) when classifiers agree, they are more likely to be correct, and (ii) when the classifiers make a prediction that violates the constraints, at least one classifier must be making an error. Experiments on four real-world data sets produce accuracy estimates within a few percent of the true accuracy, using solely unlabeled data. Our models also outperform existing state-of-the-art solutions in both estimating accuracies, and combining multiple classifier outputs. The results emphasize the utility of logical constraints in estimating accuracy, thus validating our intuition. 1 Introduction Estimating the accuracy of classifiers is central to machine learning and many other fields. Accuracy is defined as the probability of a system’s output agreeing with the true underlying output, and thus is a measure of the system’s performance. Most existing approaches to estimating accuracy are supervised, meaning that a set of labeled examples is required for the estimation.
    [Show full text]
  • Probabilistic Logic Neural Networks for Reasoning
    Probabilistic Logic Neural Networks for Reasoning Meng Qu1,2, Jian Tang1,3,4 1Mila - Quebec AI Institute 2University of Montréal 3HEC Montréal 4CIFAR AI Research Chair Abstract Knowledge graph reasoning, which aims at predicting the missing facts through reasoning with the observed facts, is critical to many applications. Such a problem has been widely explored by traditional logic rule-based approaches and recent knowledge graph embedding methods. A principled logic rule-based approach is the Markov Logic Network (MLN), which is able to leverage domain knowledge with first-order logic and meanwhile handle the uncertainty. However, the inference in MLNs is usually very difficult due to the complicated graph structures. Different from MLNs, knowledge graph embedding methods (e.g. TransE, DistMult) learn effective entity and relation embeddings for reasoning, which are much more effective and efficient. However, they are unable to leverage domain knowledge. In this paper, we propose the probabilistic Logic Neural Network (pLogicNet), which combines the advantages of both methods. A pLogicNet defines the joint distribution of all possible triplets by using a Markov logic network with first-order logic, which can be efficiently optimized with the variational EM algorithm. In the E-step, a knowledge graph embedding model is used for inferring the missing triplets, while in the M-step, the weights of logic rules are updated based on both the observed and predicted triplets. Experiments on multiple knowledge graphs prove the effectiveness of pLogicNet over many competitive baselines. 1 Introduction Many real-world entities are interconnected with each other through various types of relationships, forming massive relational data.
    [Show full text]
  • Unifying Logic and Probability
    review articles DOI:10.1145/2699411 those arguments: so one can write rules Open-universe probability models show merit about On(p, c, x, y, t) (piece p of color c is on square x, y at move t) without filling in unifying efforts. in each specific value for c, p, x, y, and t. Modern AI research has addressed BY STUART RUSSELL another important property of the real world—pervasive uncertainty about both its state and its dynamics—using probability theory. A key step was Pearl’s devel opment of Bayesian networks, Unifying which provided the beginnings of a formal language for probability mod- els and enabled rapid progress in rea- soning, learning, vision, and language Logic and understanding. The expressive power of Bayes nets is, however, limited. They assume a fixed set of variables, each taking a value from a fixed range; Probability thus, they are a propositional formal- ism, like Boolean circuits. The rules of chess and of many other domains are beyond them. What happened next, of course, is that classical AI researchers noticed the perva- sive uncertainty, while modern AI research- ers noticed, or remembered, that the world has things in it. Both traditions arrived at the same place: the world is uncertain and it has things in it. To deal with this, we have to unify logic and probability. But how? Even the meaning of such a goal is unclear. Early attempts by Leibniz, Bernoulli, De Morgan, Boole, Peirce, Keynes, and Carnap (surveyed PERHAPS THE MOST enduring idea from the early by Hailperin12 and Howson14) involved days of AI is that of a declarative system reasoning attaching probabilities to logical sen- over explicitly represented knowledge with a general tences.
    [Show full text]
  • Learning Probabilistic Logic Models from Probabilistic Examples
    Learning Probabilistic Logic Models from Probabilistic Examples Jianzhong Chen1, Stephen Muggleton1, and Jos¶e Santos2 1 Department of Computing, Imperial College London, London SW7 2AZ, UK fcjz, [email protected] 2 Division of Molecular BioSciences, Imperial College London, London SW7 2AZ, UK [email protected] Abstract. We revisit an application developed originally using Induc- tive Logic Programming (ILP) by replacing the underlying Logic Pro- gram (LP) description with Stochastic Logic Programs (SLPs), one of the underlying Probabilistic ILP (PILP) frameworks. In both the ILP and PILP cases a mixture of abduction and induction are used. The abductive ILP approach used a variant of ILP for modelling inhibition in metabolic networks. The example data was derived from studies of the e®ects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). The ILP approach learned logic models from non-probabilistic examples. The PILP approach applied in this paper is based on a gen- eral approach to introducing probability labels within a standard sci- enti¯c experimental setting involving control and treatment data. Our results demonstrate that the PILP approach not only leads to a signi¯- cant decrease in error accompanied by improved insight from the learned result but also provides a way of learning probabilistic logic models from probabilistic examples. 1 Introduction One of the key open questions of Arti¯cial Intelligence concerns Probabilistic Logic Learning (PLL) [4], i.e. the integration of probabilistic reasoning with ¯rst order logic representations and machine learning.
    [Show full text]
  • Probabilistic Logic Programming Under the Distribution Semantics
    Probabilistic Logic Programming Under the Distribution Semantics Fabrizio Riguzzi1 and Terrance Swift2 1 Dipartimento di Matematica e Informatica, University of Ferrara Ferrara, Italy 2 Coherent Knowledge Systems, Mercer Island, Washington, USA Abstract. The combination of logic programming and probability has proven useful for modeling domains with complex and uncertain rela- tionships among elements. Many probabilistic logic programming (PLP) semantics have been proposed, among these the distribution semantics has recently gained an increased attention and is adopted by many lan- guages such as the Independent Choice Logic, PRISM, Logic Programs with Annotated Disjunctions, ProbLog and P-log. This paper reviews the distribution semantics, beginning in the sim- plest case with stratified Datalog programs, and showing how the defi- nition is extended to programs that include function symbols and non- stratified negation. The languages that adopt the distribution semantics are also discussed and compared both to one another and to Bayesian networks. We then survey existing approaches for inference in PLP lan- guages that follow the distribution semantics. We concentrate on the PRISM, ProbLog and PITA systems. PRISM was one of the first such algorithms and can be applied when certain restrictions on the program hold. ProbLog introduced the use of Binary Decision Diagrams that pro- vide a computational basis for removing these restrictions and so per- forming inferences over more general classes of logic programs. PITA speeds up inference by using tabling and answer subsumption. It sup- ports general probabilistic programs, but can easily be optimized for simpler settings and even possibilistic uncertain reasoning. The paper also discusses the computational complexity of the various approaches together with techniques for limiting it by resorting to approximation.
    [Show full text]