Photometric and Spectroscopic Observations, and Abundance

Total Page:16

File Type:pdf, Size:1020Kb

Photometric and Spectroscopic Observations, and Abundance Photometric and spectroscopic observations, and abundance tomography modelling of the Type Ia supernova SN 2014J located in M82 Ashall, C., Mazzali, P., Bersier, D., Hachinger, S., Phillips, M., Percival, S., James, P., & Maguire, K. (2014). Photometric and spectroscopic observations, and abundance tomography modelling of the Type Ia supernova SN 2014J located in M82. Monthly Notices of the Royal Astronomical Society, 445(4), 4427-4434. https://doi.org/10.1093/mnras/stu1995 Published in: Monthly Notices of the Royal Astronomical Society Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2014 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:05. Oct. 2021 MNRAS 445, 4424–4434 (2014) doi:10.1093/mnras/stu1995 Photometric and spectroscopic observations, and abundance tomography modelling of the Type Ia supernova SN 2014J located in M82 C. Ashall,1‹ P. Mazzali,1,2,3 D. Bersier,1 S. Hachinger,4,5 M. Phillips,6 S. Percival,1 Downloaded from https://academic.oup.com/mnras/article-abstract/445/4/4424/1078876 by Queen's University of Belfast user on 16 November 2018 P. James1 and K. Maguire7 1Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK 2Istituto Nazionale di Astrofisica-OAPd, vicolo dell’Osservatorio 5, I-35122 Padova, Italy 3Max-Planck-Institut fur¨ Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany 4Institut fur¨ Theoretische Physik und Astrophysik, Universitat¨ Wurzburg,¨ Emil-Fischer-Str. 31, D-97074 Wurzburg,¨ Germany 5Institut fur¨ Mathematik, Universitat¨ Wurzburg,¨ Emil-Fischer-Str. 30, D-97074 Wurzburg,¨ Germany 6Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile 7European Southern Observatory, D-85748 Garching bei Munchen,¨ Germany Accepted 2014 September 22. Received 2014 September 8; in original form 2014 July 29 ABSTRACT Spectroscopic and photometric observations of the nearby Type Ia Supernova (SN Ia) SN 2014J are presented. Spectroscopic observations were taken −8to+10 d relative to B- band maximum, using FRODOSpec, a multipurpose integral-field unit spectrograph. The observations range from 3900 to 9000 Å. SN 2014J is located in M82 which makes it the closest SN Ia studied in at least the last 28 yr. It is a spectroscopically normal SN Ia with high-velocity features. We model the spectra of SN 2014J with a Monte Carlo radiative transfer code, using the abundance tomography technique. SN 2014J is highly reddened, with a host galaxy extinction of E(B − V) = 1.2 (RV = 1.38). It has a m15(B)of1.08± 0.03 when corrected for extinction. As SN 2014J is a normal SN Ia, the density structure of the classical W7 model was selected. The model and photometric luminosities are both consistent with B-band maximum occurring on JD 245 6690.4 ± 0.12. The abundance of the SN 2014J behaves like other normal SN Ia, with significant amounts of silicon (12 per cent by mass) and sulphur (9 per cent by mass) at high velocities (12 300 km s−1) and the low-velocity ejecta (v<6500 km s−1) consists almost entirely of 56Ni. Key words: radiative transfer – techniques: spectroscopic – supernovae: general – supernovae: individual: SN 2014J. (WD) which accretes mass from a non-electron-degenerate com- 1 INTRODUCTION panion star (Nomoto, Iwamoto & Kishimoto 1997). In this single Supernovae are important and much-studied astrophysical events. degenerate (SD) scenario (Hoyle & Fowler 1960), the WD can ex- For example, they are the main producers of heavy elements in the plode when it approaches the Chandrasekhar mass. There are several Universe, and Type Ia supernovae (SNe Ia) produce most of the suggested ways in which this can occur, including a subsonic ex- iron-group materials (Iwamoto 1999).SNeIahavealsobeencon- plosion (a deflagration) and a supersonic explosion (a detonation) firmed as the best cosmological ‘standard candles’ and as a result as well as an explosion with a transition to a detonation. In the there has been a dramatic increase in the rate at which they are fully subsonic explosion there is not enough energy to fully power observed. They were integral in the discovery of the acceleration the SN Ia and in supersonic explosion there is too much 56Ni in of the universe (Riess 1998; Perlmutter et al. 1999), and are now the ejecta. Therefore, the transition may be the correct explosion an important cosmological probe in improving the understanding model for SN Ia (Khokhlov 1991). Two further SD explosion mod- of the nature of the positive cosmological constant. However, the els are fast deflagration and sub-Chandrasekhar-mass explosions true intrinsic properties of SN Ia are not yet fully understood, in- (Nomoto, Thielemann & Yokoi 1984; Livne & Arnett 1995). The cluding their progenitor system and diversity in luminosity (e.g. SN other suggested progenitor model is a double degenerate (DD) sce- 1991bg; Leibundgut et al. 1993). There are currently two favoured nario, where the SN results from the merger of two WDs (Iben & progenitor scenarios. The first is a carbon/oxygen White Dwarf Tutukov 1984). Thanks to the dramatic increase in observations of SN Ia, in the last two decades, it is now possible to obtain good spectral time E-mail: [email protected] series of them. These time series can span from before B-band C 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society SN 2014J models 4425 maximum to the nebular phase. One approach to fully understand Table 1. Log of spectroscopic observations of SN 2014J. the composition and progenitor system of an individual SN Ia, is to use Monte Carlo (MC) radiative transfer code and the abundance Epoch MJDa Phaseb Exp. time Instrument tomography technique (Mazzali 2000; Stehle et al. 2005). This (d) (s) approach models early-time observed spectra, by changing input 2014-01-26 56684.12 −8 500 FRODOSpec parameters such as the chemical abundance, bolometric luminos- 2014-01-27 56685.12 −7 500 FRODOSpec ity, photospheric velocity and time since explosion. The abundance 2014-02-03 56692.01 +0 600 FRODOSpec Downloaded from https://academic.oup.com/mnras/article-abstract/445/4/4424/1078876 by Queen's University of Belfast user on 16 November 2018 tomography approach exploits the fact that with time deeper and 2014-02-04 56692.90 +1 600 FRODOSpec deeper layers of the ejecta become visible. By modelling time series, 2014-02-04 56693.13 +13× 120 INT spectral information about the abundances at different depths can be 2014-02-05 56693.89 +2 600 FRODOSpec extracted, with this it is possible to reconstruct the abundance strat- 2014-02-06 56694.96 +3 600 FRODOSpec ification from the observational data. This approach directly links 2014-02-07 56695.89 +4 500 FRODOSpec + × the theoretical models and observed spectra to help one get a true 2014-02-07 56696.13 43120 INT + understanding of the early-time evolution of a SN Ia. The MC ra- 2014-02-08 56696.92 5 500 FROSOSpec 2014-02-09 56697.97 +6 500 FRODOSpec diative transfer code has been successfully used in modelling many 2014-02-11 56699.88 +8 500 FRODOSpec SNe Ia including 2003du (Tanaka et al. 2011), 2004eo (Mazzali 2014-02-13 56701.877 +10 500 FRODOSpec et al. 2008) and 2011fe (Mazzali, Sullivan & Hachinger 2014). a We present photometric and spectroscopic data taken with the Notes: Observation in MJD date. bRelative to B-band maximum. Liverpool Telescope (LT) and Isaac Newton Telescope (INT) for SN 2014J, and then apply the aforementioned modelling techniques Palma. Photometric observations were obtained using IO:O, an op- with the aim of inferring the ejecta properties on the SN. SN 2014J is tical imaging camera which has a field of view (FOV) of 10 arcmin2. a spectroscopically normal SN Ia, which has high-velocity features. The photometric images were acquired in three pass-bands (SDSS It is of particular interest as it is the closest SN Ia in at least the g r i). Spectra were obtained using FRODOSpec, a multipurpose last 28 yr, and possibly the closest in the last 410 yr (Foley et al. integral-field unit spectrograph, at 10 epochs from −8to+10 d 2014). As technology has dramatically improved in this time, this relative to B-band maximum. FRODOSpec consists of blue and red SN gives us a unique opportunity to intensely observe, analyse and arms which cover 3900–5700 Å and 5800–9400 Å, respectively. model a SN Ia with modern technology. SN 2014J is located at The IO:O pipeline carries out basic reduction of photometric = = RA 9:55:42 Dec. 69:40:26.0 (J2000), and is in M82 which is data; this consists of bias subtraction, trimming of the overscan ± at a distance of 3.77 0.66 Mpc.
Recommended publications
  • Curriculum Vitae Avishay Gal-Yam
    January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award.
    [Show full text]
  • Deaths of Stars
    Deaths of stars • Evolution of high mass stars • Where were the elements in your body made? • Stellar remnants • Degenerate gases • White dwarfs • Neutron stars In high mass stars, nuclear burning continues past Helium 1. Hydrogen burning: 10 Myr 2. Helium burning: 1 Myr 3. Carbon burning: 1000 years 4. Neon burning: ~10 years 5. Oxygen burning: ~1 year 6. Silicon burning: ~1 day Finally builds up an inert Iron core Structure of an Old High-Mass Star Why does nuclear fusion stop at Iron? Fusion versus Fission Fusion in massive stars makes elements like Ne, Si, S, Ca, Fe Core collapse • Iron core is degenerate • Core grows until it is too heavy to support itself • Core collapses, density increases, normal iron nuclei are converted into neutrons with the emission of neutrinos • Core collapse stops, neutron star is formed • Rest of the star collapses in on the core, but bounces off the new neutron star If I drop a ball, will it bounce higher than it began? Supernova explosion Core-Collapse Supernova SN 2011fe in M101 (Pinwheel) In 1987 a nearby supernova gave us a close-up look at the death of a massive star An Unusual Supernova • SN 1987A appears to have a set of three glowing rings • Relics of a hydrogen-rich outer atmosphere, ejected by gentle stellar winds from the star when it was a red supergiant. • The gas expanded in a hourglass shape because it was blocked from expanding around the star’s equator either by a preexisting ring of gas or by the orbit of an as-yet- unseen companion star.
    [Show full text]
  • A SWIFT LOOK at SN 2011Fe: the EARLIEST ULTRAVIOLET OBSERVATIONS of a TYPE Ia SUPERNOVA
    The Astrophysical Journal, 753:22 (9pp), 2012 July 1 doi:10.1088/0004-637X/753/1/22 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A SWIFT LOOK AT SN 2011fe: THE EARLIEST ULTRAVIOLET OBSERVATIONS OF A TYPE Ia SUPERNOVA Peter J. Brown1,2, Kyle S. Dawson1, Massimiliano de Pasquale3, Caryl Gronwall4,5, Stephen Holland6, Stefan Immler7,8,9, Paul Kuin10, Paolo Mazzali11,12, Peter Milne13, Samantha Oates10, and Michael Siegel4 1 Department of Physics & Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, UT 84112, USA; [email protected] 2 Department of Physics and Astronomy, George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, Texas A. & M. University, 4242 TAMU, College Station, TX 77843, USA 3 Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA 4 Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA 5 Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA 6 Space Telescope Science Center, 3700 San Martin Dr., Baltimore, MD 21218, USA 7 Astrophysics Science Division, Code 660.1, 8800 Greenbelt Road, Goddard Space Flight Centre, Greenbelt, MD 20771, USA 8 Department of Astronomy, University of Maryland, College Park, MD 20742, USA 9 Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD 20771,
    [Show full text]
  • Qt7gs801md.Pdf
    Lawrence Berkeley National Laboratory Recent Work Title Constraining the progenitor companion of the nearby Type Ia SN 2011fe with a nebular spectrum at +981 d Permalink https://escholarship.org/uc/item/7gs801md Journal Monthly Notices of the Royal Astronomical Society, 454(2) ISSN 0035-8711 Authors Graham, ML Nugent, PE Sullivan, M et al. Publication Date 2015-12-01 DOI 10.1093/mnras/stv1888 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Mon. Not. R. Astron. Soc. 000, 1{11 (2014) Printed 13 November 2015 (MN LATEX style file v2.2) Constraining the Progenitor Companion of the Nearby Type Ia SN 2011fe with a Nebular Spectrum at +981 Days M. L. Graham1?, P. E. Nugent1;2, M. Sullivan3, A. V. Filippenko1, S. B. Cenko4;5, J. M. Silverman6, K. I. Clubb1, W. Zheng1 1 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA 2 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90R4000, Berkeley, CA 94720, USA 3 Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom 4 Astrophysics Science Division, NASA Goddard Space Flight Center, MC 661, Greenbelt, MD 20771, USA 5 Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA 6 Department of Astronomy, University of Texas, Austin, TX 78712, USA 13 November 2015 ABSTRACT We present an optical nebular spectrum of the nearby Type Ia supernova 2011fe, obtained 981 days after explosion. SN 2011fe exhibits little evolution since the +593 day optical spectrum, but there are several curious aspects in this new extremely late-time regime.
    [Show full text]
  • SN 2011Fe: a Laboratory for Testing Models of Type Ia Supernovae
    SN 2011fe: A Laboratory for Testing Models of Type Ia Supernovae Laura ChomiukA;B;C A Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 B National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 C Email: [email protected] Abstract: SN 2011fe is the nearest supernova of Type Ia (SN Ia) discovered in the modern multi- wavelength telescope era, and it also represents the earliest discovery of a SN Ia to date. As a normal SN Ia, SN 2011fe provides an excellent opportunity to decipher long-standing puzzles about the nature of SNe Ia. In this review, we summarize the extensive suite of panchromatic data on SN 2011fe, and gather interpretations of these data to answer four key questions: 1) What explodes in a SN Ia? 2) How does it explode? 3) What is the progenitor of SN 2011fe? and 4) How accurate are SNe Ia as standardizeable candles? Most aspects of SN 2011fe are consistent with the canonical picture of a massive CO white dwarf undergoing a deflagration-to-detonation transition. However, there is minimal evidence for a non-degenerate companion star, so SN 2011fe may have marked the merger of two white dwarfs. Keywords: supernovae: general | supernovae: individual (SN 2011fe) | white dwarfs | novae, cataclysmic variables 1 Introduction 2 SN 2011fe: A normal SN Ia The multi-band light curve of SN 2011fe, measured in Discovered on 2011 August 24 by the Palomar Tran- exquisite detail at UV through IR wavelengths, is typ- sient Factory, SN 2011fe1 was announced as a Type ical of SNe Ia (Figure 2; Vink´oet al.
    [Show full text]
  • Strong Near-Infrared Carbon in the Type Ia Supernova Iptf13ebh⋆⋆⋆
    A&A 578, A9 (2015) Astronomy DOI: 10.1051/0004-6361/201425297 & c ESO 2015 Astrophysics Strong near-infrared carbon in the Type Ia supernova iPTF13ebh?;?? E. Y. Hsiao1;2, C. R. Burns3, C. Contreras2;1, P. Höflich4, D. Sand5, G. H. Marion6;7, M. M. Phillips2, M. Stritzinger1, S. González-Gaitán8;9, R. E. Mason10, G. Folatelli11;12, E. Parent13, C. Gall1;14, R. Amanullah15, G. C. Anupama16, I. Arcavi17;18, D. P. K. Banerjee19, Y. Beletsky2, G. A. Blanc3;9, J. S. Bloom20, P. J. Brown21, A. Campillay2, Y. Cao22, A. De Cia26, T. Diamond4, W. L. Freedman3, C. Gonzalez2, A. Goobar15, S. Holmbo1, D. A. Howell17;18, J. Johansson15, M. M. Kasliwal3, R. P. Kirshner7, K. Krisciunas21, S. R. Kulkarni22, K. Maguire24, P. A. Milne25, N. Morrell2, P. E. Nugent23;20, E. O. Ofek26, D. Osip2, P. Palunas2, D. A. Perley22, S. E. Persson3, A. L. Piro3, M. Rabus27, M. Roth2, J. M. Schiefelbein21, S. Srivastav16, M. Sullivan28, N. B. Suntzeff21, J. Surace29, P. R. Wo´zniak30, and O. Yaron26 (Affiliations can be found after the references) Received 7 November 2014 / Accepted 7 March 2015 ABSTRACT We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia su- pernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2:3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C i lines, and the C i λ1.0693 µm line is the strongest ever observed in a SN Ia.
    [Show full text]
  • How to Light a Cosmic Candle
    NEWS FEATURE NEWS FEATURE News Feature: How to light a cosmic candle Astronomers are still struggling to identify the companions that help white dwarf stars self-destruct in violent supernovae explosions. Nadia Drake Science Writer elements transformed the billowing mate- rial into a blinding beacon of light. In its second death, the star blazed with the Billions of years ago, an ill-fated star not so That was the first time the star died. How- brilliance of three billion suns. different from our Sun began to age and ever, a spectacular resurrection was at hand. Photons expelled by this terminal stellar balloon outward. As it grew, the star’sglow Material stolen from a nearby stellar spasm zoomed across space. For 21 million darkened to a deep, foreboding red, and its companion ignited the dwarf’s carbon and years, they traveled from their home in the outer layers sloughed off into space. Eventu- oxygen layers and triggered a ferocious Pinwheel Galaxy through dust and clouds — — ally, the star’s nuclear furnace blinked out. All thermonuclear explosion that flung smol- until quite improbably they collided that remained was a dense, lifeless core about dering material outward at about 10% of with a telescope perched atop a mountain thesizeofEarth:awhitedwarfstar. the speed of light. Decaying radioactive in southern California. It was August 24, 2011, and the Palomar Transient Factory had just seen the nearest, freshest type 1a supernova that had yet been detected (1, 2). In the days and weeks that followed, that twice-dead star—now called supernova 2011fe—was the most studied ob- ject in the sky.
    [Show full text]
  • Arxiv:1209.4692V1 [Astro-Ph.SR] 21 Sep 2012 Rpitsbitdt E Astronomy New to Submitted Preprint a Bursts)
    BVRI lightcurves of supernovae SN 2011fe in M101, SN 2012aw in M95, and SN 2012cg in NGC 4424 U. Munaria, A. Hendenb, R. Belligolic, F. Castellanic, G. Cherinic, G. L. Righettic, A. Vagnozzic aINAF Astronomical Observatory of Padova, 36012 Asiago (VI), Italy; [email protected] bAAVSO, 49 Bay State Road, Cambridge, MA 02138, USA cANS Collaboration, c/o Osservatorio Astronomico, via dell’Osservatorio 8, 36012 Asiago (VI), Italy Abstract Accurate and densely populated BVRCIC lightcurves of supernovae SN 2011fe in M101, SN 2012aw in M95 and SN 2012cg in NGC 4424 are presented and discussed. The SN 2011fe lightcurves span a total range of 342 days, from 17 days pre- to 325 days post-maximum. The observations of both SN 2012aw and SN 2012cg were stopped by solar conjunction, when the objects were still bright. The lightcurve for SN 2012aw covers 92 days, that of SN 2012cg spans 44 days. Time and brightness of maxima are measured, and from the lightcurve shapes and decline rates the absolute magnitudes are obtained, and the derived distances are compared to that of the parent galaxies. The color evolution and the bolometric lightcurves are evaluated in comparison with those of other well observed supernovae, showing no significant deviations. Keywords: stars: supernovae – individual: SN 2011fe – individual: 2012aw – individual: 2012cg 1. Introduction rate BVRCIC photometric measurements of SN 2011fe, covering 342 days, augmented by similar photometry Most supernovae are discovered at cosmological dis- of other two recent and bright supernovae, SN 2012aw tances. Rarely do they become as bright as SN 2011fe, (type IIP) and SN 2012cg (type Ia), whose monitoring a type Ia supernova that recently erupted in M101 and was stopped by solar conjunction while they were still peaked at B=9.9.
    [Show full text]
  • No Surviving Evolved Companions to the Progenitor of Supernova SN 1006
    No surviving evolved companions to the progenitor of supernova SN 1006 JonayI.Gonz´alez Hern´andez1,2, Pilar Ruiz-Lapuente3,4, Hugo M. Tabernero5,David Montes5, Ramon Canal4, Javier M´endez4,6, Luigi R. Bedin7 1 Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 2 Departamento de Astrof´ısica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain 3 Instituto de F´ısica Fundamental, CSIC, E-28006 Madrid, Spain 4 Department of Astronomy, Institut de Ci`encies del Cosmos, Universitat de Barcelona (UB-IEEC), Mart´ıiFranqu`es 1, E-08028 Barcelona, Spain 5 Departamento de Astrof´ısica y Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain 6 Isaac Newton Group of Telescopes, P.O. Box 321; E-38700 Santa Cruz de La Palma, Spain. 7 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy Type Ia supernovae are thought to occur as a white dwarf made of car- 1 bon and oxygen accretes sufficient mass to trigger a thermonuclear explosion1. The accretion could occur slowly from an unevolved (main-sequence) or evolved (subgiant or giant) star2,3, that being dubbed the single-degenerate channel, or rapidly as it breaks up a smaller orbiting white dwarf (the double- degener- ate channel)3,4. Obviously, a companion will survive the explosion only in the single-degenerate channel5. Both channels might contribute to the production of type Ia supernovae6,7 but their relative proportions still remain a funda- mental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 15728,9, though that has been criticized10.
    [Show full text]
  • Arxiv:1403.6825V2 [Astro-Ph.HE] 29 Mar 2014
    A Mid-life crisis? Sudden Changes in Radio and X-Ray Emission from SN 1970G J. A. Dittmann1, A. M. Soderberg1, L. Chomiuk2, R. Margutti1, W. M. Goss3, D. Milisavljevic1, R. A. Chevalier4 [1] Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, 02138; [email protected] [2] Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 [3] National Radio Astronomy Observatory, Domenici Science Operations Center , Socorro, New Mexico 87801 [4] Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 ABSTRACT Supernovae provide a backdrop from which we can probe the end state of stellar evolution in the final years before the progenitor star explodes. As the shock from the supernova expands, the timespan of mass loss history we are able to probe also extends, providing insight to rapid time-scale processes that govern the end state of massive stars. While supernovae transition into remnants on timescales of decades to centuries, observations of this phase are currently limited. Here we present observations of SN 1970G, serendipitously observed during the monitoring campaign of SN 2011fe that shares the same host galaxy. Utilizing the new Jansky Very Large Array upgrade and a deep X-ray exposure taken by the Chandra Space Telescope, we are able to recover this middle-aged supernova and distinctly resolve it from the HII cloud with which it is associated. We find that arXiv:1403.6825v2 [astro-ph.HE] 29 Mar 2014 the flux density of SN 1970G has changed significantly since it was last observed - the X-ray luminosity has increased by a factor of ∼ 3, while we observe a significantly lower radio flux of only 27:5µJy at 6.75 GHz, a level only detectable through the upgrades now in operation at the Jansky Very Large Array.
    [Show full text]
  • Nucleosynthesis and Gamma-Ray Line Spectroscopy with INTEGRAL
    Nucleosynthesis and Gamma-Ray Line Spectroscopy with INTEGRAL Roland Diehl∗ Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany E-mail: [email protected] Cosmic nucleosynthesis co-produces unstable isotopes, which emit characteristic gamma-ray emission lines upon their radioactive decay that can be measured with SPI on INTEGRAL. High spectral resolution allows to derive velocity constraints on nucleosynthesis ejecta down to ' 100 km s−1. Supernova explosions generate gamma-rays from radioactive decays of 56Ni and 44Ti, which can reveal details of the explosion mechanism. Core-collapse supernovae ap- parently do not always produce significant amounts of 44Ti, as in the Galaxy fewer sources than expected from the supernova rate have been found. INTEGRAL’s 44Ti data on the well-observed Cas A and SN1987A events are evidence that non-spherical explosions and 44Ti production may be correlated. INTEGRAL may have the chance to see directly for a SNIa the 56Ni decay chain which powers the supernova light curve: SN2011fe at only 6.4 Mpc distance may be close enough. Characteristic gamma-ray lines from radioactive decays of long-lived 26Al and 60Fe isotopes have been exploited to obtain information on the structure and dynamics of massive stars in their late evolution and supernovae, as their yields are sensitive to those details. The extended INTE- GRAL mission establishes a database of sufficiently-deep observations of several specific regions of massive star groups, such as Cygnus, Carina, and Sco-Cen. In the inner Galaxy, 26Al nucle- osynthesis gamma-rays help to unravel the Galaxy’s structure and the role of a central bar, as the kinematically-shifted 26Al gamma-ray line energy records the longitude-velocity behavior of hot interstellar gas.
    [Show full text]
  • Identifying Type Ia Supernovae in Extragalactic Spectra
    University of Rochester Senior Thesis Identifying Type Ia Supernovae in Extragalactic Spectra Author: Supervisor: Ryan Rubenzahl Professor Segev BenZvi A thesis submitted to the Department of Physics and Astronomy gaining a full enrichment of the bachelor’s degree. Supervised by Professor Segev BenZvi in the Department of Physics and Astronomy University of Rochester Rochester, New York 2018 iii Abstract Identifying Type Ia Supernovae in Extragalactic Spectra by Ryan Rubenzahl Bachelor of Science Department of Physics and Astronomy Professor Segev BenZvi, Advisor With future astronomical surveys expecting to see millions of transient events per night (such as LSST), there is a need to develop efficient means of identifying interesting objects. One such class of interesting objects are type Ia supernovae. I investigate the optical spectral footprint of type Ia supernovae with the goal of understanding how these objects may be identified within the spectra of their host galaxies. I describe and compare several machine learning and data-driven approaches for identifying type Ia supernovae spectroscopically. Finally, I detail the application of these methods to the Dark Energy Spectroscopic Instrument (DESI), which will observe 30 million galaxy spectra over the next ten years and as such is a prime instrument for finding supernovae and other interesting phenomena spectroscopically. v Contents 1 Type Ia Supernovae1 1.1 Phenomenology.................................2 1.1.1 Explosion Mechanism and Progenitor Models............4 1.2 Optical Spectrum................................7 1.3 Motivation for Spectroscopic Searches.................... 10 2 DESI 13 2.1 Overview of the Survey............................. 13 2.2 Time-Domain Science with DESI....................... 14 3 Dataset 17 3.1 DESI Simulation Pipeline..........................
    [Show full text]