1603623259 Aghalibrary.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

1603623259 Aghalibrary.Pdf Aghalibrary.com Aghalibrary.com Aghalibrary.com ﺧﻄﻲ اﻟﺠﺒﺮ ---------------------------------------------------------------------- Linear Algebra "ر! $ط ا%ر ن ړۍ & د ر* وو/م ز.ر-د دی ، واړم $ط ا %ر -0 و*و2ت & ز ت 2وت ري او ر ر*0 "$ ورو *و & ر ی ھم ډره ز ا5ده ږي ، د را6ول او رر & راوړم . ددي 8 %7 د %وور"9 د ور5و :وو-0 8رو ، & ا!:05 اور0 ژ%ود$ط0 ا%ري %ر$ 0 ور.ړل >ودي ، مھ >ل دی . آرزو رم & 5ب و$ت & دي @ل ډول و5?ت ور ړم ر "و $ط ا%ر د ز& ا5دي وړ و.ر-ول >0 . $ط ا %ر رو5م ړۍ وري د و A5ل *ون >8ل وود و . %:8 و 5ت د :: ھد5 و . د Bل ډول Leibniz 1690 ل & و Cرول د و ر8س د در ت 5E راو5:و ره دا ړ . !ر ن $ط ا %ر وازی وه / %ر$ د ر*و .ر-د0 ده ، %:8 $ط ا %ر "$ د 55 وا ا @دی 5:و ل & ھم ری ډره ا5ده ږي . د Fو Hښ >وی دی & ھI ر*0 5%و و ا5?ل >&، & ن ړۍ & روج او %و & ھI "$ ا5ده ږي او 7% د وي ?0 ژ%& وي . ھ دار! د ووو ا5?ل & وHښ >وی دی & د دو ژ%و ( Hو ا و اK:5 ) رو ووو "$ ا5ده و>0 . ا% ھI ھم 0 وږ $:و:0 ژ%و 0 ھI ووا د او5 درد وم رو، ا!:5 8ل >ودي . دا دھIو 5 وره & د ر* اوور 2و :و % و %ن ا::0 ژ%و ط? وي ، د .& وړ% ھم وي . ھI 5 %و و ا و ا$@رات & د ا5?ل >وی دي ، ا$ر & & >رL ړ ی دی. د DAAD اM و55 "$ >8ر وم & د درس و 7 را د !رھراوھرات د وھوو د 5س وھ-و & 25ده ړي وه . ھدار! د Afghanic و505 "$ وم وو را5ره ر5 ړده . ا 8ن ری & 8:وا و د N و وړHت & ا>%/ت :طM وود ي وي ، ?ذرت واړم . "ر.ده ده ھ ر0:2 اBر 8ل ږي -0 !ړ:وي رې، ود روو5و8و "$ ھ: وم & دا !ړوي د$ل وړادز ډول ز Eدي ا8رو8& & راو5وي، ر "و را:و08 & م & وول >0 . درHت [email protected] ډ ارد د 2 ﺧﻄﻲ اﻟﺠﺒﺮ ---------------------------------------------------------------------- Linear Algebra رت ړی ل ( &روع $#" 6 ): ): ر ' ات : و" (set) : : ?ن 5ت (finite set) ، ر?ن 5ت (infinite set) ، countible set ( د >ر وړ 5ت ) ، infinite countible set ( د >رش وړ ر?ن 5ت ) ، uncountible set : ( mapping) ) ا8ب (injective) ، 5ور8ف (surjective)، %8ف (bijective) ار (algebra) : : دو .و0 را%ط (binary operation) ، ا%ری وړHت ( 5$ن ) (algebraic structure) ، . روپ (field) 5 ، (ring) A: ، (group) راط" (relation) : : ا?8س را%ط ( reflexive ) ، ظره را%ط (symmetric) ، اtransitive) A) را%ط ، ?د را%ط ( equivalence relation )، ر%وط ا55 *وي دو م ل ( &روع $#" 31 ): ): 31 د ط ,د+و م ( System of linear Equation ): ): د $ط 5و (homgen) ?دEو او ر5و (inhomogen) ل ، Q وس طرGaussian Algorithm ) A )، ر%وط ا55 *وي در م ل ( &روع $#" 43 ): ): ر س ا و د ر ت ( Matrix and Determinant): ر8س ، درت ، د ?8وس ر8س ددا ووطر0A ، ل 55م د $ط ?دE و ل د ر8س وا5ط ، د cramer طرA ، ور (minor) ، وCور (cofactor) ر8س /.ورم ل ( &روع $#" 75 ): ): ووری ' (Vectorspace): و وری C ، *Cرsubspace) *C 2 )، $ط ر ب ( ) ، span ، Linear Combination 3 ﺧﻄﻲ اﻟﺠﺒﺮ ---------------------------------------------------------------------- Linear Algebra $ط واLinearly dependent ) 5% ) ، $ط A5ل Linearly independent ) ، ر%وط ا55 *وي 01م ل ( &روع $#" 92 ): ): د 'ی وور 2 ده ا و ,د : : ( basis and dimension of a vectorspace ) 2ده (basis) دوی و وری C* ، ا55 2ده ( canonical basis )، 2ده (basis) د وی Cرsubspace) *C 2) ، د ر8س رrank) R) ، %?د (dimension) دوی و وری C* ، ر%وط ا55 *وي &1ږم ل ( &روع $#" 118 ): د ر 'و و" (sum of subspaces) : : %?د Cرول د CرC 2* .و ( Dimension Formel for subspaces ) د CرC 2* .و A5 وdirect sum of subspaces) 2 ) ، ر%وط ا55 *وی اوم ل ( &روع $#" 127 ): ط 1 5 ( 7ش ) ( linear mapping :) :) ھوورCزم (homomorphism) ، ووورCزم ( Monomorphism ) ، اوورCزم ( epimorphism ) ، ازوورCزم ( ismorphism ) ، ادوورCزم ( Endomorphism ) ، اووورCزم ( Automorphism ) Image او د و $ط kernel S ، %?د Cرول د $ط Dimension Formel for linear mapping ) 9 ) ، اوارت ( C ( InvariantرC 2* ام ل ( &روع $#" 154 ): د ر س ا وط 51 ر 8 راط" : : (Linear Mapping and Matrix ) د$ط 9 ر%وط ر8س ظرا55 2دي د ر8س ر%وط $ط 9 ظرا55 2دي را%ط د$ط ) 9Aش ) اور8س رT ظر دو $:و 2دو ، skew Hermitain matrix ، Hermitain matrix ، adjiont matrix ، idempotent matrix ، nilpotent matrix ، involutory matrix ، permutation matrix ، ر%وط ا55 *وي م ل ( &رو ع $#" 176 ): & " 2 و" او & " وور و" : : 4 ﺧﻄﻲ اﻟﺠﺒﺮ ---------------------------------------------------------------------- Linear Algebra ( Eigenvalues and Eigenvectors ) >$@ و ور و ( eigenvectors ) >$@ و ( eigenvalues) ( eigenspace ) *C @$< (characteristic function ) 7% @$< ھد5 @ل *رب ( geometric multiplicity ) ا%ری @ل *رب ( algebraic multiplicity ) ) ارو Qو ل ( orthogonal ) ر8س ، د.ول ( diagonal ) ر8س ، diagonalizable ر8س ، ?دل ( equivalence) ر8س، >% ( similar) ر8س ، upper triangular matrix ( ور B:B ر8س ) ، ر%وط ا55 *وی م ل ( &روع $#" 199 ): ا2. دی ' (euclidean space) : : Bilinearform ، 85ری @ل *رب ( scalar product )، ا :دی normed vector space ، norm ، ( euclidean space ) * C ، رR و وری ortogonal ، ( metric space ) *C و ورو ، orthonormal و ورو ، اوروورل 2ده ( orthonormalbasis ) ، gram-schmidt process ، و وری @ل *رب ( vectorproduct)، hermitian ، unitary vector space ، semi-bilinear ، ر%وط ا55 *وي وم ل ( &روع $#" 214 ): د ر و ډوو" او ا,ل : : Quadratic Form ( دو در Cورم او ر%? Cورم ) ) negative definite ، positive definite ، positive semidefinite principal minor ، indefinite ، negative semidefinite ، Hessian Matrix ، jacobian matrix ( ھس ر8س ) ) local maximum ( و*? ا2ظ او 5% ا2ظ ) ) local minimum ( ا@Iری و*? ا@Iری %5 ) ) wronskian matrix ، Cayley-Hamilton theorem ر%وط ا55 *وي دو م ل ( &روع $#" 237 ): 9و" او ر و" 5 ﺧﻄﻲ اﻟﺠﺒﺮ ---------------------------------------------------------------------- Linear Algebra ړی ل ( و" , ا0ور( و ر) او اړ ( راط") ) ( Set , Mapping and Relation ) دې C@ل H واړم - ھم او *وی & وور 5 $ط ا %ری H ور - ا5ده ږی $@رډول >رL ړم . ,ر ف 1.1: 5ت ( set ) د Georg Cantor $وا 1874Nدي ل & Eدې ډول ?ر ف >وی دی : : Set وه و2 د او%8وو ( Objects ) ده & 6ول و ?ن >$@ت وری !ر و %ل "$ Cرق ري . دBل ډول X 5ت 5س د وھ- @:ن وي . ?ن >$@ت د د5س دوھ- @ل دل دي . !رھر @ل و%ل "$ Cرق ری. وږ و 5ت Eدی ډ ول Hو : : ͒ = {ͬͥ, ͬͦ,………….} د Objects يد & د X د 5ت د 2@رو cardinality X . (elements) ͥͬ ,ͦͬ ,ͧͬ . وم . دږی دوه 5ت د 2@ر و>رد وم د ږي اووږ ھI 5ره Hو . $ 5ت 5ره Hودل ږي. : : 1. 2 , ر ف |͒| ∅ ( a ) ری X او Y دوه 5 وی . C Xر2 5ت (subset) د Y ول ږی ېد >رط & : : (͒ ⊆ ͓) و Cر2 5ت (proper ⟹ x ∈ subset) Y X X د ∋ x Y ∀ ول ږي ېد . X Y >رط & H - 2@ر وود وي &( ⊂ Y X) & >ل وی a ; a X :? د Bل ډول∌ Y ∋ ∃ X = { 2,4,5}, Y = {2,4,5,a,b} ھر5ت و$ ͓ ⊃ Cر2 5͒ت ⟹ری . X او Y 5ره 5وی دی ېد >رط & او وی . ?: ͓ ⊆ ͒ ͒ ⊆ ͓ 6 ͒ = ͓ ⇔ (͒ ⊆ ͓) ∧ (͓ ⊆ ͒) ﺧﻄﻲ اﻟﺠﺒﺮ ---------------------------------------------------------------------- Linear Algebra ( b ) د?ن 5ت ( finite set) ره ډول ډول ?ر و و ود دي R . Dedekind (1916-1831) ?ن 5 ت ( finite set) دار ! ?رف ړی : و5ت X ?ن ول ږي دې >رط & X ھU و Cر2 5ت (proper subset) وود وې & Cardinality (د 2@ر و >ر ) د X 5ره 5وی وی . ? A X ; اودا& : |͒| = |̻| ⊃ ∄ A X ; | | | | وږ ?ن 5ت ͒ > ̻ ⊃5ره Hو . ∀ د د X د 2@ر و >ر 5وی ∞ n دی{ . (ͬ , ? … , ͦͬ ,ͥͬ} = ͒ . (infinite set) ھر ھI 5ت ≠ & ?ن و ي د͢ = |͒|ر?ن 5ت وم دږي ∞ : ? : : 9ل = |͒| ℕ = { 1,2,3 ,3,4,…} ℕͤ = { 0,1,2,3 ,3,4,…} ℤ = { ...,−3,−2,−1 ,0,1,2,3 ,…} 2ℤ = { ...,−6,−4,−2 ,0,2,4,6 ,…}+ ℚ = {, │ͤ,ͥ ∈ ℤ,ͥ ≠ 0} : : . ور 5 و 6ول ر?نℂ يد⊇ ℕ ⊆ ℤ ⊆ ℚ 8- ⊆ ℝ ( ( ℕ ⊂ ℤ∞ ⊂ ℚ ⊂ ℝ∞ ⊂ ℂ , 2ℤ ∞ ⊂ ℤ ) ∧∞ ∞ = ∞ ) |ℕ| = , |ℤ| = , |2ℤ| = , |ℚ| = , |ℝ| = , |ℂ| 9ل : د اEدی 5و ?ن دي و % ر دی ͒ = ƣ ͬ ɳ │ ͬƧ X ا و Y ھر و 5 {2 ≥ 2@ر ه ͭ ≥ ری − . 2? ℤ ∋ ͭ } = ͓ !ر او 5 = |͓| = | ͒| ͒ ⊈ ͓ ͓ ⊈ ͒ ͑ ͥ : = {ͫ ∈ ℤ |−15 ≤ ͫ ≤ 16 } 7 ﺧﻄﻲ اﻟﺠﺒﺮ ---------------------------------------------------------------------- Linear Algebra ت ͑ͦ: = ƣͫ ∈ ℤ ɳ1 ≤ ͫ ≤ 16 ∧ (͙͙ͪ͢) ͫ Ƨ دل ږی & ا و {6,8,10,12,14,16 ,2,4} = دا Eدی 5 و ͥ $͑ دی⊇ ͦ͑ 8 = |ͦ͑| , ͦ ͧ { | } { | } ا و = 0 x = 3 = ͬ ∈ ℤ W4: n < 0 ℕ ∋ ͢ = : ͑ | ͧ| | ͨ| | ͩ| ,ر ف 1.3 : ͑ =ری͑ = ͑ 5 و وي : : ͒ͥ, ͒ͦ, … , ͒) اﺗﺤﺎد : (±Ä¿ÅÄ ) ͒ͥ ∪ ͒ͦ ∪ … ∪ ͒) ≔ {ͬ | ∃͝ ∈ {1,2,3, . , ͢}; ͬ ∈ ͒$} Aط7 : (¿ÄÊ»ÈÉ»¹Ê¿ÅÄ ) ͒ͥ ∩ ͒ͦ ∩ … ∩ ͒) ≔ ƣͬ ɳ ͬ ∈ ͒$, ∀͝ ∈ {1,2, … , ͢}Ƨ ور Bل = ا و = دی 9ل : 5ت ͥ͑دھA ͑ͦ IA ∪ 2͑ͥددو وي ͦ &͑ د@ͦ͑ ∩ر"$ ͥ͑زت او 5وی دی او 5ͮتℝ دھA IA 2ددو وي & د@ ر"$ م او 5وی دی . ? ℝͯ = ͮ ℝ = {ͬ ∈ ℝ | ͬ ≥ 0 } دھIوی ا د د AA ا2داد و 5ت وا {دھIوی A ≤ 0ط 7 ͬ | ℝ @ر ∋ دیͬ .} ℝͯ ? = وا {0} = 9ل : ℝͯ ℝ ∪ ℝͯ ℝͮ ∩ ℝͮ │ ͒ ≔ {x ∈ ℤ │ (−8 ≤ ͬ ≤ 8)} 8 8 Y ͓ ≔ {x ∈ ℤ (−8 < ͬ < 8)} -8∈ X ⟹ -8 ∈ Y X ∪ -8 X Y 5 ∈ X ∧ 5 ∉ ⟹ 5∉ X∩Y 9ل : ∩ ∋ ⟹ X ∧ ∈ Y ∋ 8 ﺧﻄﻲ اﻟﺠﺒﺮ ---------------------------------------------------------------------- Linear Algebra A = {a,b,c,d} , B = {d,e,f}, C = {a,b } A B = {a,b,c,d,e,f} , A B = {d} C ∪ A , A C = {a,b,c,d} ∩ = A , A C = {a,b} = C ⊆ ∪ ∩ A B = { a A │ a B } = {a,b,c} ∖ ∈ ∉ A C = { a A │ a C } = { c, d } , C A = "ر ! & C A ∅دی .
Recommended publications
  • Matrices That Are Similar to Their Inverses
    116 THE MATHEMATICAL GAZETTE Matrices that are similar to their inverses GRIGORE CÃLUGÃREANU 1. Introduction In a group G, an element which is conjugate with its inverse is called real, i.e. the element and its inverse belong to the same conjugacy class. An element is called an involution if it is of order 2. With these notions it is easy to formulate the following questions. 1) Which are the (finite) groups all of whose elements are real ? 2) Which are the (finite) groups such that the identity and involutions are the only real elements ? 3) Which are the (finite) groups in which the real elements form a subgroup closed under multiplication? According to specialists, these (general) questions cannot be solved in any reasonable way. For example, there are numerous families of groups all of whose elements are real, like the symmetric groups Sn. There are many solvable groups whose elements are all real, and one can prove that any finite solvable group occurs as a subgroup of a solvable group whose elements are all real. As for question 2, note that in any Abelian group (conjugations are all the identity function), the only real elements are the identity and the involutions, and they form a subgroup. There are non-abelian examples as well, like a Suzuki 2-group. Question 3 is similar to questions 1 and 2. Therefore the abstract study of reality questions in finite groups is unlikely to have a good outcome. This may explain why in the existing bibliography there are only specific studies (see [1, 2, 3, 4]).
    [Show full text]
  • Centro-Invertible Matrices Linear Algebra and Its Applications, 434 (2011) Pp144-151
    References • R.S. Wikramaratna, The centro-invertible matrix:a new type of matrix arising in pseudo-random number generation, Centro-invertible Matrices Linear Algebra and its Applications, 434 (2011) pp144-151. [doi:10.1016/j.laa.2010.08.011]. Roy S Wikramaratna, RPS Energy [email protected] • R.S. Wikramaratna, Theoretical and empirical convergence results for additive congruential random number generators, Reading University (Conference in honour of J. Comput. Appl. Math., 233 (2010) 2302-2311. Nancy Nichols' 70th birthday ) [doi: 10.1016/j.cam.2009.10.015]. 2-3 July 2012 Career Background Some definitions … • Worked at Institute of Hydrology, 1977-1984 • I is the k by k identity matrix – Groundwater modelling research and consultancy • J is the k by k matrix with ones on anti-diagonal and zeroes – P/t MSc at Reading 1980-82 (Numerical Solution of PDEs) elsewhere • Worked at Winfrith, Dorset since 1984 – Pre-multiplication by J turns a matrix ‘upside down’, reversing order of terms in each column – UKAEA (1984 – 1995), AEA Technology (1995 – 2002), ECL Technology (2002 – 2005) and RPS Energy (2005 onwards) – Post-multiplication by J reverses order of terms in each row – Oil reservoir engineering, porous medium flow simulation and 0 0 0 1 simulator development 0 0 1 0 – Consultancy to Oil Industry and to Government J = = ()j 0 1 0 0 pq • Personal research interests in development and application of numerical methods to solve engineering 1 0 0 0 j =1 if p + q = k +1 problems, and in mathematical and numerical analysis
    [Show full text]
  • On the Construction of Lightweight Circulant Involutory MDS Matrices⋆
    On the Construction of Lightweight Circulant Involutory MDS Matrices? Yongqiang Lia;b, Mingsheng Wanga a. State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China b. Science and Technology on Communication Security Laboratory, Chengdu, China [email protected] [email protected] Abstract. In the present paper, we investigate the problem of con- structing MDS matrices with as few bit XOR operations as possible. The key contribution of the present paper is constructing MDS matrices with entries in the set of m × m non-singular matrices over F2 directly, and the linear transformations we used to construct MDS matrices are not assumed pairwise commutative. With this method, it is shown that circulant involutory MDS matrices, which have been proved do not exist over the finite field F2m , can be constructed by using non-commutative entries. Some constructions of 4 × 4 and 5 × 5 circulant involutory MDS matrices are given when m = 4; 8. To the best of our knowledge, it is the first time that circulant involutory MDS matrices have been constructed. Furthermore, some lower bounds on XORs that required to evaluate one row of circulant and Hadamard MDS matrices of order 4 are given when m = 4; 8. Some constructions achieving the bound are also given, which have fewer XORs than previous constructions. Keywords: MDS matrix, circulant involutory matrix, Hadamard ma- trix, lightweight 1 Introduction Linear diffusion layer is an important component of symmetric cryptography which provides internal dependency for symmetric cryptography algorithms. The performance of a diffusion layer is measured by branch number.
    [Show full text]
  • Equivalent Conditions for Singular and Nonsingular Matrices Let a Be an N × N Matrix
    Equivalent Conditions for Singular and Nonsingular Matrices Let A be an n × n matrix. Any pair of statements in the same column are equivalent. A is singular (A−1 does not exist). A is nonsingular (A−1 exists). Rank(A) = n. Rank(A) = n. |A| = 0. |A| = 0. A is not row equivalent to In. A is row equivalent to In. AX = O has a nontrivial solution for X. AX = O has only the trivial solution for X. AX = B does not have a unique AX = B has a unique solution solution (no solutions or for X (namely, X = A−1B). infinitely many solutions). The rows of A do not form a The rows of A form a basis for Rn. basis for Rn. The columns of A do not form The columns of A form abasisforRn. abasisforRn. The linear operator L: Rn → Rn The linear operator L: Rn → Rn given by L(X) = AX is given by L(X) = AX not an isomorphism. is an isomorphism. Diagonalization Method To diagonalize (if possible) an n × n matrix A: Step 1: Calculate pA(x) = |xIn − A|. Step 2: Find all real roots of pA(x) (that is, all real solutions to pA(x) = 0). These are the eigenvalues λ1, λ2, λ3, ..., λk for A. Step 3: For each eigenvalue λm in turn: Row reduce the augmented matrix [λmIn − A | 0] . Use the result to obtain a set of particular solutions of the homogeneous system (λmIn − A)X = 0 by setting each independent variable in turn equal to 1 and all other independent variables equal to 0.
    [Show full text]
  • Zero-Sum Triangles for Involutory, Idempotent, Nilpotent and Unipotent Matrices
    Zero-Sum Triangles for Involutory, Idempotent, Nilpotent and Unipotent Matrices Pengwei Hao1, Chao Zhang2, Huahan Hao3 Abstract: In some matrix formations, factorizations and transformations, we need special matrices with some properties and we wish that such matrices should be easily and simply generated and of integers. In this paper, we propose a zero-sum rule for the recurrence relations to construct integer triangles as triangular matrices with involutory, idempotent, nilpotent and unipotent properties, especially nilpotent and unipotent matrices of index 2. With the zero-sum rule we also give the conditions for the special matrices and the generic methods for the generation of those special matrices. The generated integer triangles are mostly newly discovered, and more combinatorial identities can be found with them. Keywords: zero-sum rule, triangles of numbers, generation of special matrices, involutory, idempotent, nilpotent and unipotent matrices 1. Introduction Zero-sum was coined in early 1940s in the field of game theory and economic theory, and the term “zero-sum game” is used to describe a situation where the sum of gains made by one person or group is lost in equal amounts by another person or group, so that the net outcome is neutral, or the sum of losses and gains is zero [1]. It was later also frequently used in psychology and political science. In this work, we apply the zero-sum rule to three adjacent cells to construct integer triangles. Pascal's triangle is named after the French mathematician Blaise Pascal, but the history can be traced back in almost 2,000 years and is referred to as the Staircase of Mount Meru in India, the Khayyam triangle in Persia (Iran), Yang Hui's triangle in China, Apianus's Triangle in Germany, and Tartaglia's triangle in Italy [2].
    [Show full text]
  • Matrix Algebra and Control
    Appendix A Matrix Algebra and Control Boldface lower case letters, e.g., a or b, denote vectors, boldface capital letters, e.g., A, M, denote matrices. A vector is a column matrix. Containing m elements (entries) it is referred to as an m-vector. The number of rows and columns of a matrix A is nand m, respectively. Then, A is an (n, m)-matrix or n x m-matrix (dimension n x m). The matrix A is called positive or non-negative if A>, 0 or A :2:, 0 , respectively, i.e., if the elements are real, positive and non-negative, respectively. A.1 Matrix Multiplication Two matrices A and B may only be multiplied, C = AB , if they are conformable. A has size n x m, B m x r, C n x r. Two matrices are conformable for multiplication if the number m of columns of the first matrix A equals the number m of rows of the second matrix B. Kronecker matrix products do not require conformable multiplicands. The elements or entries of the matrices are related as follows Cij = 2::;;'=1 AivBvj 'Vi = 1 ... n, j = 1 ... r . The jth column vector C,j of the matrix C as denoted in Eq.(A.I3) can be calculated from the columns Av and the entries BVj by the following relation; the jth row C j ' from rows Bv. and Ajv: column C j = L A,vBvj , row Cj ' = (CT),j = LAjvBv, (A. 1) /1=1 11=1 A matrix product, e.g., AB = (c: c:) (~b ~b) = 0 , may be zero although neither multipli­ cand A nor multiplicator B is zero.
    [Show full text]
  • Bidirected Graph from Wikipedia, the Free Encyclopedia Contents
    Bidirected graph From Wikipedia, the free encyclopedia Contents 1 Bidirected graph 1 1.1 Other meanings ............................................ 1 1.2 See also ................................................ 2 1.3 References ............................................... 2 2 Bipartite double cover 3 2.1 Construction .............................................. 3 2.2 Examples ............................................... 3 2.3 Matrix interpretation ......................................... 4 2.4 Properties ............................................... 4 2.5 Other double covers .......................................... 4 2.6 See also ................................................ 5 2.7 Notes ................................................. 5 2.8 References ............................................... 5 2.9 External links ............................................. 6 3 Complex question 7 3.1 Implication by question ........................................ 7 3.2 Complex question fallacy ....................................... 7 3.2.1 Similar questions and fallacies ................................ 8 3.3 Notes ................................................. 8 4 Directed graph 10 4.1 Basic terminology ........................................... 11 4.2 Indegree and outdegree ........................................ 11 4.3 Degree sequence ............................................ 12 4.4 Digraph connectivity .......................................... 12 4.5 Classes of digraphs .........................................
    [Show full text]
  • About Circulant Involutory MDS Matrices Victor Cauchois, Pierre Loidreau
    About Circulant Involutory MDS Matrices Victor Cauchois, Pierre Loidreau To cite this version: Victor Cauchois, Pierre Loidreau. About Circulant Involutory MDS Matrices. International Workshop on Coding and Cryptography, Sep 2017, Saint-Pétersbourg, Russia. hal-01673463 HAL Id: hal-01673463 https://hal.archives-ouvertes.fr/hal-01673463 Submitted on 29 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. About Circulant Involutory MDS Matrices Victor Cauchois ∗ Pierre Loidreau y DGA MI and Universit´ede Rennes 1 Abstract We give a new algebraic proof of the non-existence of circulant involutory MDS matrices with coefficients in fields of even characteristic. For odd characteristics we give parameters for the potential existence. If we relax circulancy to θ-circulancy, then there is no restriction to the existence of θ-circulant involutory MDS matrices even for fields of even characteristic. Finally, we relax further the involutory defi- nition and propose a new direct construction of almost involutory θ-circulant MDS matrices. We show that they can be interesting in hardware implementations. 1 Introduction MDS matrices offer the maximal diffusion of symbols for cryptographic applications. To reduce implementation costs, research focuses on circulant and recursive matri- ces, which need only a linear number of multipliers to compute the matrix-vector product.
    [Show full text]
  • Matrices and Determinants Matrices 1
    MATRICES AND DETERMINANTS MATRICES 1. Matrix :- Arrangement of the elements in rows and column 2. Order of the matrix :- (number of rows) (number of columns) 3. Types Of Matrix 1. Zero matrix :- A matrix in which each element is zero, is called zero matrix or null matrix 2. Row matrix :- A matrix having only one row 3. Column matrix :- A matrix having only one column 4. Square matrix:- A matrix in which the number of rows is equal to the number of columns Principle diagonal: - The diagonal from top left to bottom right 5. Diagonal matrix :- A matrix in which all the elements except the principle diagonal elements are zero 6. Scalar matrix :- A diagonal matrix in which all the principle diagonal elements are equal 7. Unit matrix or Identity matrix :- A diagonal matrix in which each principle diagonal entries is one 8. Idempotent matrix :- A matrix is said to be idempotent if 9. Nilpotent: A square matrix is called nilpotent matrix if there exist a positive integer ‘n’ such that . If ‘m’ is the least positive integer such that , them ‘m’ is called the index of the nilpotent matrix. 10. Involutory matrix :- A matrix is said to be involutory if 11. Upper triangular matrix :- A matrix in which all the elements below the principle diagonal are zero 12. Lower triangular matrix :- A matrix in which all the elements above the principle diagonal are zero 4. Trace of a matrix: - Trace of a matrix is defined and denoted as ( ) sum of principal diagonal element. 5. Two matrices are said to be equal if they have the same order and the corresponding elements are also equal.
    [Show full text]
  • Factorizations Into Normal Matrices in Indefinite Inner Product Spaces
    Factorizations into Normal Matrices in Indefinite Inner Product Spaces Xuefang Sui1, Paolo Gondolo2 Department of Physics and Astronomy, University of Utah, 115 South 1400 East #201, Salt Lake City, UT 84112-0830 Abstract We show that any nonsingular (real or complex) square matrix can be factor- ized into a product of at most three normal matrices, one of which is unitary, another selfadjoint with eigenvalues in the open right half-plane, and the third one is normal involutory with a neutral negative eigenspace (we call the latter matrices normal neutral involutory). Here the words normal, uni- tary, selfadjoint and neutral are understood with respect to an indefinite inner product. Keywords: Indefinite inner product, Polar decomposition, Sign function, Normal matrix, Neutral involution 2010 MSC: 15A23, 15A63, 47B50, 15A21, 15B99 1. Introduction We consider two kinds of indefinite inner products: a complex Hermitian inner product and a real symmetric inner product. Let K denote either the field of complex numbers K = C or the field of real numbers K = R. Let arXiv:1610.09742v1 [math.RA] 31 Oct 2016 n n the nonsingular matrix H K × be either a complex Hermitian matrix n n ∈ T H C × defining a complex Hermitian inner product [x, y]H =x ¯ Hy for ∈ n n n x, y C , or a real symmetric matrix H R × defining a real symmetric inner∈ product [x, y] = xT Hy for x, y R∈n. Herex ¯T indicates the complex H ∈ conjugate transpose of x and xT indicates the transpose of x. 1Email address: [email protected] 2Email address: [email protected] Preprint submitted to Linear Algebra and its Applications May 11, 2018 n n In a Euclidean space, H K × is the identity matrix.
    [Show full text]
  • Linear Algebra and Its Applications G-Matrices
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 436 (2012) 731–741 Contents lists available at SciVerse ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa G-matrices ∗ Miroslav Fiedler a, ,1,FrankJ.Hallb a Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou vˇeží2,18207Praha8,CzechRepublic b Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA ARTICLE INFO ABSTRACT Article history: We define a new type of matrix called G-matrix as a real nonsin- Received 17 June 2011 gular matrix A for which there exist nonsingular diagonal matrices Accepted 25 July 2011 −1 T D1 and D2 such that (A ) = D1AD2. Many special matrices are Available online 7 September 2011 G-matrices including (generalized) Cauchy matrices and orthogonal SubmittedbyR.A.Brualdi matrices. A number of properties of G-matrices are obtained. Sign patterns of G-matrices are also investigated. AMS classification: 15A23 © 2011 Elsevier Inc. All rights reserved. 15B05 15B35 Keywords: G-matrix Cauchy matrix Sign pattern matrix Potentially orthogonal sign pattern 1. Introduction In this paper, some ideas stemming from earlier observations are used for defining a new type of matrix. All matrices in the paper are real. For simplicity, we denote the transpose of the inverse of a non- − singular matrix A as A T . We call a matrix A a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D1 and D2 such that −T A = D1AD2.
    [Show full text]
  • Each N-By-N Matrix with N> 1 Is a Sum of 5 Coninvolutory Matrices
    Each n-by-n matrix with n > 1isasumof5 coninvolutory matrices Ma. Nerissa M. Abarab, Dennis I. Merino1,∗, Vyacheslav I. Rabanovichc, Vladimir V. Sergeichukc, John Patrick Sta. Mariab aInstitute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines. bDepartment of Mathematics, Southeastern Louisiana University, Hammond, LA 70402-0687, USA. cInstitute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine Abstract An n × n complex matrix A is called coninvolutory if AA¯ = In and skew- coninvolutory if AA¯ = −In (which implies that n is even). We prove that each matrix of size n × n with n > 1 is a sum of 5 coninvolutory matrices and each matrix of size 2m × 2m is a sum of 5 skew-coninvolutory matrices. We also prove that each square complex matrix is a sum of a coninvolutory matrix and a condiagonalizable matrix. A matrix M is called condiagonaliz- able if M = S¯−1DS in which S is nonsingular and D is diagonal. Keywords: Coninvolutory matrices, Skew-coninvolutory matrices, Condiagonalizable matrices 2000 MSC: 15A21, 15A23 1. Introduction arXiv:1608.02503v1 [math.RA] 8 Aug 2016 An n × n complex matrix A is called coninvolutory if AA¯ = In and skew- coninvolutory if AA¯ = −In (and so n is even since det(AA¯ ) > 0). We prove that each matrix of size n×n with n > 2 is a sum of 5 coninvolutory matrices and each matrix of size 2m × 2m is a sum of 5 skew-coninvolutory matrices. ∗Corresponding author Email addresses: [email protected] (Ma. Nerissa M. Abara), [email protected] (Dennis I. Merino), [email protected] (Vyacheslav I.
    [Show full text]