Bidirected Graph from Wikipedia, the Free Encyclopedia Contents

Total Page:16

File Type:pdf, Size:1020Kb

Bidirected Graph from Wikipedia, the Free Encyclopedia Contents Bidirected graph From Wikipedia, the free encyclopedia Contents 1 Bidirected graph 1 1.1 Other meanings ............................................ 1 1.2 See also ................................................ 2 1.3 References ............................................... 2 2 Bipartite double cover 3 2.1 Construction .............................................. 3 2.2 Examples ............................................... 3 2.3 Matrix interpretation ......................................... 4 2.4 Properties ............................................... 4 2.5 Other double covers .......................................... 4 2.6 See also ................................................ 5 2.7 Notes ................................................. 5 2.8 References ............................................... 5 2.9 External links ............................................. 6 3 Complex question 7 3.1 Implication by question ........................................ 7 3.2 Complex question fallacy ....................................... 7 3.2.1 Similar questions and fallacies ................................ 8 3.3 Notes ................................................. 8 4 Directed graph 10 4.1 Basic terminology ........................................... 11 4.2 Indegree and outdegree ........................................ 11 4.3 Degree sequence ............................................ 12 4.4 Digraph connectivity .......................................... 12 4.5 Classes of digraphs .......................................... 13 4.6 See also ................................................ 14 4.7 Notes ................................................. 15 4.8 References ............................................... 15 5 Downward entailing 16 5.1 Strawson-DE ............................................. 16 i ii CONTENTS 5.2 See also ................................................ 17 5.3 References ............................................... 17 6 Entailment (pragmatics) 18 6.1 Types of entailment .......................................... 18 6.2 See also ................................................ 18 6.3 References ............................................... 18 6.4 Further reading ............................................ 18 7 Fallacy 19 7.1 Formal fallacy ............................................. 19 7.1.1 Common examples ...................................... 19 7.2 Aristotle's Fallacies .......................................... 19 7.3 Whately's grouping of fallacies .................................... 20 7.4 Intentional fallacies .......................................... 20 7.5 Deductive fallacy ........................................... 20 7.6 Paul Meehl's Fallacies ......................................... 20 7.7 Fallacies of Measurement ....................................... 21 7.8 Other systems of classification .................................... 22 7.9 Assessment of Fallacies - Pragmatic Theory ............................. 22 7.10 See also ................................................ 22 7.11 References .............................................. 23 7.12 Further reading ............................................ 24 7.13 External links ............................................. 25 8 Fixed point (mathematics) 26 8.1 Attractive fixed points ......................................... 27 8.2 Applications .............................................. 28 8.3 Topological fixed point property .................................... 28 8.4 Generalization to partial orders: prefixpoint and postfixpoint ..................... 29 8.5 See also ................................................ 29 8.6 Notes ................................................. 29 8.7 External links ............................................. 30 9 Graph isomorphism 31 9.1 Variations ............................................... 31 9.2 Motivation ............................................... 31 9.3 Whitney theorem ........................................... 32 9.4 Recognition of graph isomorphism .................................. 32 9.5 See also ................................................ 33 9.6 Notes ................................................. 33 9.7 References ............................................... 33 CONTENTS iii 10 Graph theory 34 10.1 Definitions ............................................... 35 10.1.1 Graph ............................................. 35 10.2 Applications .............................................. 35 10.3 History ................................................. 37 10.4 Graph drawing ............................................. 38 10.5 Graph-theoretic data structures .................................... 38 10.6 Problems in graph theory ....................................... 39 10.6.1 Enumeration ......................................... 39 10.6.2 Subgraphs, induced subgraphs, and minors .......................... 39 10.6.3 Graph coloring ........................................ 39 10.6.4 Subsumption and unification ................................. 40 10.6.5 Route problems ........................................ 40 10.6.6 Network flow ......................................... 40 10.6.7 Visibility problems ...................................... 40 10.6.8 Covering problems ...................................... 40 10.6.9 Decomposition problems ................................... 41 10.6.10 Graph classes ......................................... 41 10.7 See also ................................................ 41 10.7.1 Related topics ......................................... 41 10.7.2 Algorithms .......................................... 42 10.7.3 Subareas ........................................... 43 10.7.4 Related areas of mathematics ................................. 43 10.7.5 Generalizations ........................................ 43 10.7.6 Prominent graph theorists ................................... 43 10.8 Notes ................................................. 44 10.9 References ............................................... 45 10.10External links ............................................. 45 10.10.1 Online textbooks ....................................... 45 11 Implication graph 46 11.1 Applications .............................................. 47 11.2 References ............................................... 47 12 Implicational hierarchy 48 12.1 Phonology ............................................... 48 12.2 Morphology .............................................. 48 12.3 Syntax ................................................. 48 12.4 Bibliography .............................................. 49 13 Implicational propositional calculus 50 13.1 Virtual completeness as an operator .................................. 50 iv CONTENTS 13.2 Axiom system ............................................. 50 13.3 Basic properties of derivation ..................................... 51 13.4 Completeness ............................................. 51 13.4.1 Proof ............................................. 51 13.5 The Bernays–Tarski axiom system .................................. 53 13.6 Testing whether a formula of the implicational propositional calculus is a tautology ......... 53 13.7 Adding an axiom schema ....................................... 54 13.8 An alternative axiomatization ..................................... 54 13.9 See also ................................................ 56 13.10References ............................................... 56 14 Implicature 57 14.1 Types of implicature .......................................... 57 14.1.1 Conversational implicature .................................. 57 14.1.2 Conventional implicature ................................... 58 14.2 Implicature vs entailment ....................................... 58 14.3 See also ................................................ 58 14.4 References ............................................... 58 14.5 Bibliography .............................................. 59 14.6 Further reading ............................................ 59 14.7 External links ............................................. 59 15 Implicit 60 15.1 Mathematics ............................................. 60 15.2 Computer science ........................................... 60 15.3 Other uses ............................................... 60 15.4 See also ................................................ 60 16 Informal fallacy 61 16.1 Formal deductive fallacies and informal fallacies ........................... 61 16.2 See also ................................................ 61 16.3 References ............................................... 62 16.4 Further reading ............................................ 62 16.5 External links ............................................. 62 17 Involution (mathematics) 63 17.1 General properties ........................................... 63 17.2 Involution throughout the fields of mathematics ............................ 64 17.2.1 Euclidean geometry ...................................... 64 17.2.2 Projective geometry ...................................... 64 17.2.3 Linear algebra ......................................... 64 17.2.4 Quaternion algebra, groups, semigroups ........................... 64 17.2.5 Ring theory .......................................... 65 CONTENTS v 17.2.6 Group theory ......................................... 65 17.2.7 Mathematical logic ...................................... 65 17.2.8 Computer science .....................................
Recommended publications
  • Automorphisms of the Double Cover of a Circulant Graph of Valency at Most 7
    AUTOMORPHISMS OF THE DOUBLE COVER OF A CIRCULANT GRAPH OF VALENCY AT MOST 7 ADEMIR HUJDUROVIC,´ ¯DOR¯DE MITROVIC,´ AND DAVE WITTE MORRIS Abstract. A graph X is said to be unstable if the direct product X × K2 (also called the canonical double cover of X) has automorphisms that do not come from automorphisms of its factors X and K2. It is nontrivially unstable if it is unstable, connected, and non-bipartite, and no two distinct vertices of X have exactly the same neighbors. We find all of the nontrivially unstable circulant graphs of valency at most 7. (They come in several infinite families.) We also show that the instability of each of these graphs is explained by theorems of Steve Wilson. This is best possible, because there is a nontrivially unstable circulant graph of valency 8 that does not satisfy the hypotheses of any of Wilson's four instability theorems for circulant graphs. 1. Introduction Let X be a circulant graph. (All graphs in this paper are finite, simple, and undirected.) Definition 1.1 ([16]). The canonical bipartite double cover of X is the bipartite graph BX with V (BX) = V (X) 0; 1 , where × f g (v; 0) is adjacent to (w; 1) in BX v is adjacent to w in X: () Letting S2 be the symmetric group on the 2-element set 0; 1 , it is clear f g that the direct product Aut X S2 is a subgroup of Aut BX. We are interested in cases where this subgroup× is proper: Definition 1.2 ([12, p.
    [Show full text]
  • A Brief History of Edge-Colorings — with Personal Reminiscences
    Discrete Mathematics Letters Discrete Math. Lett. 6 (2021) 38–46 www.dmlett.com DOI: 10.47443/dml.2021.s105 Review Article A brief history of edge-colorings – with personal reminiscences∗ Bjarne Toft1;y, Robin Wilson2;3 1Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark 2Department of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes, UK 3Department of Mathematics, London School of Economics and Political Science, London, UK (Received: 9 June 2020. Accepted: 27 June 2020. Published online: 11 March 2021.) c 2021 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/). Abstract In this article we survey some important milestones in the history of edge-colorings of graphs, from the earliest contributions of Peter Guthrie Tait and Denes´ Konig¨ to very recent work. Keywords: edge-coloring; graph theory history; Frank Harary. 2020 Mathematics Subject Classification: 01A60, 05-03, 05C15. 1. Introduction We begin with some basic remarks. If G is a graph, then its chromatic index or edge-chromatic number χ0(G) is the smallest number of colors needed to color its edges so that adjacent edges (those with a vertex in common) are colored differently; for 0 0 0 example, if G is an even cycle then χ (G) = 2, and if G is an odd cycle then χ (G) = 3. For complete graphs, χ (Kn) = n−1 if 0 0 n is even and χ (Kn) = n if n is odd, and for complete bipartite graphs, χ (Kr;s) = max(r; s).
    [Show full text]
  • Cliques, Degrees, and Coloring: Expanding the Ω, ∆, Χ Paradigm
    Cliques, Degrees, and Coloring: Expanding the !; ∆; χ paradigm by Thomas Kelly A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Combinatorics & Optimization Waterloo, Ontario, Canada, 2019 c Thomas Kelly 2019 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner: Alexandr Kostochka Professor, Dept. of Mathematics, University of Illinois at Urbana-Champaign. Supervisor: Luke Postle Associate Professor, Dept. of Combinatorics & Optimization, University of Waterloo. Internal Members: Penny Haxell Professor, Dept. of Combinatorics & Optimization, University of Waterloo. Jim Geelen Professor, Dept. of Combinatorics & Optimization, University of Waterloo. Internal-External Member: Lap Chi Lau Associate Professor, Cheriton School of Computer Science, University of Waterloo. ii I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Abstract Many of the most celebrated and influential results in graph coloring, such as Brooks' Theorem and Vizing's Theorem, relate a graph's chromatic number to its clique number or maximum degree. Currently, several of the most important and enticing open problems in coloring, such as Reed's !; ∆; χ Conjecture, follow this theme. This thesis both broadens and deepens this classical paradigm. In PartI, we tackle list-coloring problems in which the number of colors available to each vertex v depends on its degree, denoted d(v), and the size of the largest clique containing it, denoted !(v).
    [Show full text]
  • Graph Operations and Upper Bounds on Graph Homomorphism Counts
    Graph Operations and Upper Bounds on Graph Homomorphism Counts Luke Sernau March 9, 2017 Abstract We construct a family of countexamples to a conjecture of Galvin [5], which stated that for any n-vertex, d-regular graph G and any graph H (possibly with loops), n n d d hom(G, H) ≤ max hom(Kd,d,H) 2 , hom(Kd+1,H) +1 , n o where hom(G, H) is the number of homomorphisms from G to H. By exploiting properties of the graph tensor product and graph exponentiation, we also find new infinite families of H for which the bound stated above on hom(G, H) holds for all n-vertex, d-regular G. In particular we show that if HWR is the complete looped path on three vertices, also known as the Widom-Rowlinson graph, then n d hom(G, HWR) ≤ hom(Kd+1,HWR) +1 for all n-vertex, d-regular G. This verifies a conjecture of Galvin. arXiv:1510.01833v3 [math.CO] 8 Mar 2017 1 Introduction Graph homomorphisms are an important concept in many areas of graph theory. A graph homomorphism is simply an adjacency-preserving map be- tween a graph G and a graph H. That is, for given graphs G and H, a function φ : V (G) → V (H) is said to be a homomorphism from G to H if for every edge uv ∈ E(G), we have φ(u)φ(v) ∈ E(H) (Here, as throughout, all graphs are simple, meaning without multi-edges, but they are permitted 1 to have loops).
    [Show full text]
  • On the Metric Dimension of Imprimitive Distance-Regular Graphs
    On the metric dimension of imprimitive distance-regular graphs Robert F. Bailey Abstract. A resolving set for a graph Γ is a collection of vertices S, cho- sen so that for each vertex v, the list of distances from v to the members of S uniquely specifies v. The metric dimension of Γ is the smallest size of a resolving set for Γ. Much attention has been paid to the metric di- mension of distance-regular graphs. Work of Babai from the early 1980s yields general bounds on the metric dimension of primitive distance- regular graphs in terms of their parameters. We show how the metric dimension of an imprimitive distance-regular graph can be related to that of its halved and folded graphs, but also consider infinite families (including Taylor graphs and the incidence graphs of certain symmetric designs) where more precise results are possible. Mathematics Subject Classification (2010). Primary 05E30; Secondary 05C12. Keywords. Metric dimension; resolving set; distance-regular graph; imprimitive; halved graph; folded graph; bipartite double; Taylor graph; incidence graph. 1. Introduction Let Γ = (V; E) be a finite, undirected graph without loops or multiple edges. For u; v 2 V , the distance from u to v is the least number of edges in a path from u to v, and is denoted dΓ(u; v) (or simply d(u; v) if Γ is clear from the context). A resolving set for a graph Γ = (V; E) is a set of vertices R = fv1; : : : ; vkg such that for each vertex w 2 V , the list of distances (d(w; v1);:::; d(w; vk)) uniquely determines w.
    [Show full text]
  • Results on Domination Number and Bondage Number for Some Families of Graphs
    International Journal of Pure and Applied Mathematics Volume 107 No. 3 2016, 565-577 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu AP doi: 10.12732/ijpam.v107i3.5 ijpam.eu RESULTS ON DOMINATION NUMBER AND BONDAGE NUMBER FOR SOME FAMILIES OF GRAPHS G. Hemalatha1, P. Jeyanthi2 § 1Department of Mathematics Shri Andal Alagar College of Engineering Mamandur, Kancheepuram, Tamil Nadu, INDIA 2Research Centre, Department of Mathematics Govindammal Aditanar College for Women Tiruchendur 628 215, Tamil Nadu, INDIA Abstract: Let G = (V, E) be a simple graph on the vertex set V . In a graph G, A set S ⊆ V is a dominating set of G if every vertex in VS is adjacent to some vertex in S. The domination number of a graph Gγ(G)] is the minimum size of a dominating set of vertices in G. The bondage number of a graph G[Bdγ(G)] is the cardinality of a smallest set of edges whose removal results in a graph with domination number larger than that of G. In this paper we establish domination number and the bondage number for some families of graphs. AMS Subject Classification: 05C69 Key Words: dominating set, bondage number, domination number, cocktail party graph, coxeter graph, crown graph, cubic symmetric graph, doyle graph, folkman graph, levi graph, icosahedral graph 1. Introduction The domination in graphs is one of the major areas in graph theory which attracts many researchers because it has the potential to solve many real life problems involving design and analysis of communication network, social net- Received: October 17, 2015 c 2016 Academic Publications, Ltd.
    [Show full text]
  • Elementary Graph Algorithms (Chapter 22) of Graphs
    CSCE423/823 Computer Science & Engineering 423/823 Introduction Design and Analysis of Algorithms Types of Graphs Representations Lecture 03 | Elementary Graph Algorithms (Chapter 22) of Graphs Elementary Graph Algorithms Applications Stephen Scott (Adapted from Vinodchandran N. Variyam) 1 / 29 [email protected] Introduction CSCE423/823 Introduction Types of Graphs are abstract data types that are applicable to numerous Graphs problems Representations of Graphs Can capture entities, relationships between them, the degree of the Elementary relationship, etc. Graph Algorithms This chapter covers basics in graph theory, including representation, Applications and algorithms for basic graph-theoretic problems We'll build on these later this semester 2 / 29 Types of Graphs CSCE423/823 Introduction A (simple, or undirected) graph G = (V; E) consists of V , a Types of nonempty set of vertices and E a set of unordered pairs of distinct Graphs Representations vertices called edges of Graphs D E Elementary V={A,B,C,D,E} Graph Algorithms Applications E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} A B C 3 / 29 Types of Graphs (2) CSCE423/823 A directed graph (digraph) G = (V; E) consists of V , a nonempty set of vertices and E a set of ordered pairs of distinct vertices called Introduction edges Types of Graphs Representations of Graphs Elementary Graph Algorithms Applications 4 / 29 Types of Graphs (3) CSCE423/823 A weighted graph is an undirected or directed graph with the Introduction additional property that each edge e has associated with it a real Types of number w(e) called its weight Graphs 3 Representations of Graphs Elementary 12 Graph Algorithms 0 Applications -6 7 4 3 Other variations: multigraphs, pseudographs, etc.
    [Show full text]
  • Small Integral Trees
    Small integral trees A. E. Brouwer Dept. of Math., Techn. Univ. Eindhoven P.O. Box 513, 5600MB Eindhoven, Netherlands [email protected] Submitted: Dec 31, 2007; Accepted: Jan 18, 2008; Published: Jan 28, 2008 Mathematics Subject Classification: 05C05, 05C30, 05E99 Abstract We give a table with all integral trees on at most 50 vertices, and characterize integral trees with a single eigenvalue 0. 1 Integral trees A finite graph is called integral if the spectrum of its adjacency matrix has only integral eigenvalues. A tree is a connected undirected graph without cycles. In this note we give a table with all integral trees on at most 50 vertices, and a further table with all known integral trees on at most 100 vertices. (For an on-line version, possibly with updates, see [1].) In particular, we find the smallest integral trees of diameter 6, and the smallest known integral tree of diameter 8. The nicest result about integral trees is that by Watanabe [12] that says that an integral tree different from K2 does not have a complete matching. Here we give a gener- alization. All `starlike' integral trees, that is, all integral trees with at most one vertex of degree larger than 2, were given by Watanabe and Schwenk [13]. All integral trees of diameter at most 3 were given in [13, 4]. See also [10, 3]. Several people have worked on constructing integral trees with large diameter, and examples with diameters 0{8 and 10 are known, see [13, 9, 3, 8, 6, 7]. It is unknown whether integral trees can have arbitrarily large diameter.
    [Show full text]
  • Matrices That Are Similar to Their Inverses
    116 THE MATHEMATICAL GAZETTE Matrices that are similar to their inverses GRIGORE CÃLUGÃREANU 1. Introduction In a group G, an element which is conjugate with its inverse is called real, i.e. the element and its inverse belong to the same conjugacy class. An element is called an involution if it is of order 2. With these notions it is easy to formulate the following questions. 1) Which are the (finite) groups all of whose elements are real ? 2) Which are the (finite) groups such that the identity and involutions are the only real elements ? 3) Which are the (finite) groups in which the real elements form a subgroup closed under multiplication? According to specialists, these (general) questions cannot be solved in any reasonable way. For example, there are numerous families of groups all of whose elements are real, like the symmetric groups Sn. There are many solvable groups whose elements are all real, and one can prove that any finite solvable group occurs as a subgroup of a solvable group whose elements are all real. As for question 2, note that in any Abelian group (conjugations are all the identity function), the only real elements are the identity and the involutions, and they form a subgroup. There are non-abelian examples as well, like a Suzuki 2-group. Question 3 is similar to questions 1 and 2. Therefore the abstract study of reality questions in finite groups is unlikely to have a good outcome. This may explain why in the existing bibliography there are only specific studies (see [1, 2, 3, 4]).
    [Show full text]
  • Constructing Arbitrarily Large Graphs with a Specified Number Of
    Electronic Journal of Graph Theory and Applications 4 (1) (2019), 1–8 Constructing Arbitrarily Large Graphs with a Specified Number of Hamiltonian Cycles Michael Haythorpea aSchool of Computer Science, Engineering and Mathematics, Flinders University, 1284 South Road, Clovelly Park, SA 5042, Australia michael.haythorpe@flinders.edu.au Abstract A constructive method is provided that outputs a directed graph which is named a broken crown graph, containing 5n − 9 vertices and k Hamiltonian cycles for any choice of integers n ≥ k ≥ 4. The construction is not designed to be minimal in any sense, but rather to ensure that the graphs produced remain non-trivial instances of the Hamiltonian cycle problem even when k is chosen to be much smaller than n. Keywords: Hamiltonian cycles, Graph Construction, Broken Crown Mathematics Subject Classification : 05C45 1. Introduction The Hamiltonian cycle problem (HCP) is a famous NP-complete problem in which one must determine whether a given graph contains a simple cycle traversing all vertices of the graph, or not. Such a simple cycle is called a Hamiltonian cycle (HC), and a graph containing at least one arXiv:1902.10351v1 [math.CO] 27 Feb 2019 Hamiltonian cycle is said to be a Hamiltonian graph. Typically, randomly generated graphs (such as Erdos-R˝ enyi´ graphs), if connected, are Hamil- tonian and contain many Hamiltonian cycles. Although HCP is an NP-complete problem, for these graphs it is often fairly easy for a sophisticated heuristic (e.g. see Concorde [1], Keld Helsgaun’s LKH [4] or Snakes-and-ladders Heuristic [2]) to discover one of the multitude of Hamiltonian cy- cles through a clever search.
    [Show full text]
  • Centro-Invertible Matrices Linear Algebra and Its Applications, 434 (2011) Pp144-151
    References • R.S. Wikramaratna, The centro-invertible matrix:a new type of matrix arising in pseudo-random number generation, Centro-invertible Matrices Linear Algebra and its Applications, 434 (2011) pp144-151. [doi:10.1016/j.laa.2010.08.011]. Roy S Wikramaratna, RPS Energy [email protected] • R.S. Wikramaratna, Theoretical and empirical convergence results for additive congruential random number generators, Reading University (Conference in honour of J. Comput. Appl. Math., 233 (2010) 2302-2311. Nancy Nichols' 70th birthday ) [doi: 10.1016/j.cam.2009.10.015]. 2-3 July 2012 Career Background Some definitions … • Worked at Institute of Hydrology, 1977-1984 • I is the k by k identity matrix – Groundwater modelling research and consultancy • J is the k by k matrix with ones on anti-diagonal and zeroes – P/t MSc at Reading 1980-82 (Numerical Solution of PDEs) elsewhere • Worked at Winfrith, Dorset since 1984 – Pre-multiplication by J turns a matrix ‘upside down’, reversing order of terms in each column – UKAEA (1984 – 1995), AEA Technology (1995 – 2002), ECL Technology (2002 – 2005) and RPS Energy (2005 onwards) – Post-multiplication by J reverses order of terms in each row – Oil reservoir engineering, porous medium flow simulation and 0 0 0 1 simulator development 0 0 1 0 – Consultancy to Oil Industry and to Government J = = ()j 0 1 0 0 pq • Personal research interests in development and application of numerical methods to solve engineering 1 0 0 0 j =1 if p + q = k +1 problems, and in mathematical and numerical analysis
    [Show full text]
  • Lombardi Drawings of Graphs 1 Introduction
    Lombardi Drawings of Graphs Christian A. Duncan1, David Eppstein2, Michael T. Goodrich2, Stephen G. Kobourov3, and Martin Nollenburg¨ 2 1Department of Computer Science, Louisiana Tech. Univ., Ruston, Louisiana, USA 2Department of Computer Science, University of California, Irvine, California, USA 3Department of Computer Science, University of Arizona, Tucson, Arizona, USA Abstract. We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs. 1 Introduction The American artist Mark Lombardi [24] was famous for his drawings of social net- works representing conspiracy theories. Lombardi used curved arcs to represent edges, leading to a strong aesthetic quality and high readability. Inspired by this work, we intro- duce the notion of a Lombardi drawing of a graph, in which edges are drawn as circular arcs with perfect angular resolution: consecutive edges are evenly spaced around each vertex. While not all vertices have perfect angular resolution in Lombardi’s work, the even spacing of edges around vertices is clearly one of his aesthetic criteria; see Fig. 1. Traditional graph drawing methods rarely guarantee perfect angular resolution, but poor edge distribution can nevertheless lead to unreadable drawings. Additionally, while some tools provide options to draw edges as curves, most rely on straight-line edges, and it is known that maintaining good angular resolution can result in exponential draw- ing area for straight-line drawings of planar graphs [17,25].
    [Show full text]