Cold Seeps: Marine Ecosystems Based on Hydrocarbons

Total Page:16

File Type:pdf, Size:1020Kb

Cold Seeps: Marine Ecosystems Based on Hydrocarbons sis_16_RZ.qxq:Layout 1 31.08.2010 18:41 Uhr Seite 60 Image courtesy of MARUM, Bremen University Cold seeps: marine ecosystems based on hydrocarbons Thousands of white crabs grazing on an extensive mussel bed at a cold seep off the coast of Pakistan Glossary Chemosymbiosis: a symbi- David Fischer takes us on a trip to the bot- otic association between a tom of the sea to learn about cold seeps – multi-cellular organism (the host), which provides a their ecosystems, potential fuels, and pos- protected environment, and a bacterium that oxidises sible involvement in global warming. specific chemicals to obtain energy and synthe- What are cold seeps? These hydrocarbons form up to sev- sise organic carbon that is Cold seeps are often oases for eral kilometres below the surface of required by the host microbial and macrofaunal life on the the sediment when organic matter is Methanotrophic: a methan- sea floor – similar to hydrothermal degraded by either high temperatures otrophic organism vents, where hot water emerges or micro-organisms. When the hydro- metabolises methane as its under high pressure, several kilome- carbons are produced in very large only source of energy and tres below the sea (see Little, 2010). In quantities, or where tectonic stress carbon contrast to hydrothermal vents, how- Pore water: the water that ever, cold seeps can occur at water fills the space between depths of between a few metres and individual grains of sedi- several kilometres, often along conti- ment nental margins. Thiotrophic: a thiotrophic They are places where hydrocarbons organism oxidises sulphur – mostly methane but also ethane, compounds propane, or even oil – seep from the sediment. Unlike at hydrothermal Trophosome: a specialised vents, the emanating fluids (gases and internal organ in tube Microbes covering cold seeps in an liquids) are no hotter than the sur- worms, hosting symbiotic anoxic region, which does not support BACKGROUND bacteria rounding seawater, and they are not macrofauna necessarily under high pressure. Image courtesy of MARUM, Bremen University 60 Science in School Issue 16 : Autumn 2010 www.scienceinschool.org sis_16_RZ.qxq:Layout 1 31.08.2010 18:41 Uhr Seite 61 Science topics squeezes the sediments, the fluids rise One such energy source is methane, surface of the sediment (as in cold to the sediment surface through released at cold seeps. The anaerobic seeps), the sulphide produced by the cracks and fissures. The fluids may oxidation of methane (AOM) is a meta- micro-organisms can fuel an entire seep out at a continuous, low rate or bolic process with sulphate as the final ecosystem. Microbial or faunal the rate may vary. electron acceptor, mediated by a sym- colonies at cold seeps can be between biosis of methane-oxidising (methan- 100 cm2 and several hundred square Life at cold seeps: anybody home? otrophic) archaeans and sulphate- metres in diameter. Where the sul- Some fascinating creatures can be reducing bacteria. phide-rich pore water escapes from 2- → - - found at deep-water cold seeps, CH4 + SO4 HCO3 + HS + H2O the sea floor, the seep site will be including giant tube worms, mussels, AOM takes place in anoxic marine colonised concentrically around these clams and crabs. How are these sediments, wherever methane from spots: closest to them will be those ecosystems supported? deep down and sulphate from the organisms which tolerate the highest Almost the entire seabed is home to seawater meet. The end products of concentrations of otherwise toxic sul- micro-organisms. However, to sup- AOM, bicarbonate and sulphide ions, phide (see upper image on page 62). port significant levels of microfauna are released into the surrounding sed- At the basis of these ecosystems in deep water, where the sunlight iment and pore water (see glossary are methanotrophic and thiotrophic does not reach, requires oxygen-rich for all terms in bold). bacteria. Some of them live in water and an alternative energy At locations where high methane chemosymbiosis with mussels source – such as hydrocarbons. concentrations are found close to the (methanotropic bacteria), clams and Biology The text also provides valuable background reading to Chemistry introduce the origin of life at the bottom of the sea, for example with a comparison to hydrothermal vents. Earth science Marine environments In addition, the article provides references to content- rich websites (MARUM, NOAA) where the reader can Ecosystems find further information and resources (including Energy teaching materials) on the topic. Therefore, I suggest Biodiversity completing the teaching unit with an activity from Climate change one of the cited web resources. Ages 15+ The article can also be used as a comprehension exer- cise. Possible questions include: If you are curious about the extremes of life on Earth, In AOM this is the article for you. David Fischer reports on a) sulphate is oxidised to sulphide exotic biological communities living at the bottom of the sea and on the exploration of these environments. b) sulphide is reduced to sulphate The language is easy enough to understand, with a c) methane is reduced to bicarbonate glossary for technical terms. The article can be used in d) methane is oxidised to bicarbonate. different subjects (biology, earth science, chemistry) Gas hydrates to address a whole range of topics, such as: ecosys- a) consist of water molecules surrounded by gas tems, energy metabolism, food chains, natural molecules resources, sedimentary rocks, non-renewable energy b) consist of gas molecules surrounded by water sources, marine environments and biodiversity, air molecules pollution and the greenhouse effect, oceanographic c) are formed under high-temperature and research, hydrocarbons, clathrates, or redox reac- low-pressure conditions tions. Some of these topics (e.g. ecosystems, energy d) are formed under high-temperature and sources) are particularly suitable for an interdiscipli- high-pressure conditions. nary approach. REVIEW Giulia Realdon, Italy www.scienceinschool.org Science in School Issue 16 : Autumn 2010 61 sis_16_RZ.qxq:Layout 1 31.08.2010 18:41 Uhr Seite 62 our increasing energy demands. Cold Cold seeps are often Gas bubbles seeps generally indicate large colonised in a concentric amounts of hydrocarbons below the fashion Tube worms seabed, and they are comparably easy Chemosynthetic to identify because of their typical bacteria colonisation by specialised organisms. Most interesting in this respect are Carbonate gas hydrates. In these ice-like crys- Mussels and clams talline compounds, water molecules form a cage structure called a clathrate around individual gas molecules (see image on page 63) – in natural gas hydrates, this is mostly methane. Gas Gas hydrate hydrates form where pore water is Image courtesy of BGR, after Sahling et al. (2002) Low / high sulphide concentration saturated with methane gas, within a narrow window of low-temperature Plume: sucks in oxygen, carbon and high-pressure conditions found dioxide, and hydrogen sulphide so only in deep permafrost soils – and in that microbes living inside the trophosome can process it as food marine sediments at depths below about 400 m (see lower image on page 63). At atmospheric pressure, gas Heart Ventral blood vessel hydrates are unstable and rapidly Dorsal blood vessel decompose into water and free gas. Gas hydrates store large amounts of Trophosome: micro-organisms that have a symbiotic relationship with chemically bound energy: because of Trophosome the tube worm live here. They gener- the specific molecular structure, one Capillary ate food for the tube worm through a process called chemosynthesis litre of gas hydrate holds 0.8 l of Worm water and 164 l of methane gas. The Tube Tube: hard cylinder made of a total energy resources in gas hydrates chitin proteoglycan / protein on Earth are estimated to be greater complex that protects the soft than those of all other known fossil insides of the tube worm fuels combined – ever. Several countries, including the Capillary Trunk: the tube worm has no USA, Japan, South Korea, India and anus; all of the waste from the microbial reactions are China, are exploring ways to harvest stored here gas hydrates – safely, which is not a trivial matter. More importantly, how- ever, it is essential to stop the gas Chemosynthethic bacteria: These bacteria use sulphides hydrates from melting. Global warm- and carbon dioxide to pro- ing is increasing the oceans’ tempera- duce oxygen and nutrients tures, and this could cause a large- Image courtesy of Enduring Resources for Earth Science Education (ERESE) Image courtesy of Enduring Resources to be used by the tube worm scale melting of gas hydrates in the sediment. Tube worms host chemosymbiotic bacteria in their trophosome. This is a cross-section If they were to melt, the methane of Riftia pachyptila, which is found at hydrothermal vents released into the atmosphere would react with atmospheric oxygen to tube worms (thiotrophic bacteria). The formation and fate of gas form CO2, very efficiently enhancing The mussels and clams harbour the hydrates the greenhouse effect. Left undam- bacteria in their gills, whereas the Cold seeps are not only interesting aged, gas hydrates act as stabilising tube worms shelter the bacteria in because of the ecosystems they host: agents for the continental slopes. If their trophosome; the bacteria, in they could be important contributors they were to melt, the slopes could return, supply their host with organic to climate change and valuable new destabilise, resulting in huge subma- carbon (see image above). sources of hydrocarbons, to satisfy rine landslides and tsunamis. 62 Science in School Issue 16 : Autumn 2010 www.scienceinschool.org sis_16_RZ.qxq:Layout 1 31.08.2010 18:41 Uhr Seite 63 Science topics Gas Images courtesy of MARUM, Bremen University molecules Image courtesy of IfM-Geomar, Kiel, Germany Image courtesy of IfM-Geomar, White gas hydrates consolidate Water molecules Burning gas hydrates sea floor sediments Clathrate structure of gas hydrates How do we study cold seeps? they had filled with sample material.
Recommended publications
  • Tube Worm Riftia Pachyptila to Severe Hypoxia
    l MARINE ECOLOGY PROGRESS SERIES Vol. 174: 151-158,1998 Published November 26 Mar Ecol Prog Ser Metabolic responses of the hydrothermal vent tube worm Riftia pachyptila to severe hypoxia Cordelia ~rndt',~.*,Doris Schiedek2,Horst Felbeckl 'University of California San Diego, Scripps Institution of Oceanography. La Jolla. California 92093-0202. USA '~alticSea Research Institute at the University of Rostock, Seestrasse 15. D-181 19 Rostock-Warnemuende. Germany ABSTRACT: The metabolic capabilit~esof the hydrothermal vent tube worm Riftia pachyptila to toler- ate short- and long-term exposure to hypoxia were investigated After incubating specimens under anaerobic conditions the metabolic changes in body fluids and tissues were analyzed over time. The tube worms tolerated anoxic exposure up to 60 h. Prior to hypoxia the dicarboxylic acid, malate, was found in unusually high concentrations in the blood (up to 26 mM) and tissues (up to 5 pm01 g-' fresh wt). During hypoxia, most of the malate was degraded very quickly, while large quantities of succinate accumulated (blood: about 17 mM; tissues: about 13 pm01 g-l fresh wt). Volatile, short-chain fatty acids were apparently not excreted under these conditions. The storage compound, glycogen, was mainly found in the trophosome and appears to be utilized only during extended anaerobiosis. The succinate formed during hypoxia does not account for the use of malate and glycogen, which possibly indicates the presence of yet unidentified metabolic end products. Glutamate concentration in the trophosome decreased markedly durlng hypoxia, presumably due to a reduction in the autotrophic function of the symb~ontsduring hypoxia. In conclusion, R. pachyptila is phys~ologicallywell adapted to the oxygen fluctuations freq.uently occurring In the vent habitat.
    [Show full text]
  • Hydrothermal Vents. Teacher's Notes
    Hydrothermal Vents Hydrothermal Vents. Teacher’s notes. A hydrothermal vent is a fissure in a planet's surface from which geothermally heated water issues. They are usually volcanically active. Seawater penetrates into fissures of the volcanic bed and interacts with the hot, newly formed rock in the volcanic crust. This heated seawater (350-450°) dissolves large amounts of minerals. The resulting acidic solution, containing metals (Fe, Mn, Zn, Cu) and large amounts of reduced sulfur and compounds such as sulfides and H2S, percolates up through the sea floor where it mixes with the cold surrounding ocean water (2-4°) forming mineral deposits and different types of vents. In the resulting temperature gradient, these minerals provide a source of energy and nutrients to chemoautotrophic organisms that are, thus, able to live in these extreme conditions. This is an extreme environment with high pressure, steep temperature gradients, and high concentrations of toxic elements such as sulfides and heavy metals. Black and white smokers Some hydrothermal vents form a chimney like structure that can be as 60m tall. They are formed when the minerals that are dissolved in the fluid precipitates out when the super-heated water comes into contact with the freezing seawater. The minerals become particles with high sulphur content that form the stack. Black smokers are very acidic typically with a ph. of 2 (around that of vinegar). A black smoker is a type of vent found at depths typically below 3000m that emit a cloud or black material high in sulphates. White smokers are formed in a similar way but they emit lighter-hued minerals, for example barium, calcium and silicon.
    [Show full text]
  • Cold Seep Benthic Communities in Japan Subduction Zones: Spatial Organization, Trophic Strategies and Evidence for Temporal Evolution*
    MARINE ECOLOGY - PROGRESS SERIES Vol. 40: 115-126. 1987 Published October 7 Mar. Ecol. Prog. Ser. Cold seep benthic communities in Japan subduction zones: spatial organization, trophic strategies and evidence for temporal evolution* S. Kim Juniper", Myriam Sibuet IFREMER, Centre de Brest. BP 337. F-29273 Brest Cedex. France ABSTRACT: Submersible exploration of the Japan subduction zones has revealed benthic communities dominated by clams (Calyptogena spp.) around sed~mentporewater seeps at depths from 3850 to 6000 m. Photographic and video records were used to produce microcartographlc reconstructions of 3 contrasting cold seep sites. Spatial and abundance relations of megafauna lead us to propose several hypotheses regard~ngthe ecological functioning of these cold seep communities. We dlst~nguish between the likely direct use of reducing substances in venting fluids by Calyptogena-bacteria symbioses and indirect usage by accompanying abyssal species not known to harbour symbionts. Microdistribution and known or presumed feedmg modes of the accompanying species indicate 2 different sources of organic matter enrichment within cold seep sites: organic debris originating from bivalve colonies, and enrichment of extensive areas of surrounding surface sediments where weaker, more hffuse porewater seepage may support chemosynthetic production by free-living bacteria. The occurrence of colony-like groupings of empty Calyptogena valves indicates that cold seeps are ephemeral, with groups of living clams, mixed living and dead clams, and empty dissolving shells marlung the course of a cycle of porewater venting and offering clues to the recent history of cold seep activity. INTRODUCTION al. 1985). One of the bivalve species from this area has been shown to harbour symbiotic bacteria in its gill The discovery of deep-sea hydrothermal vents has tissue and to oxidise methane (Childress et al.
    [Show full text]
  • Introduction to Co2 Chemistry in Sea Water
    INTRODUCTION TO CO2 CHEMISTRY IN SEA WATER Andrew G. Dickson Scripps Institution of Oceanography, UC San Diego Mauna Loa Observatory, Hawaii Monthly Average Carbon Dioxide Concentration Data from Scripps CO Program Last updated August 2016 2 ? 410 400 390 380 370 2008; ~385 ppm 360 350 Concentration (ppm) 2 340 CO 330 1974; ~330 ppm 320 310 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Year EFFECT OF ADDING CO2 TO SEA WATER 2− − CO2 + CO3 +H2O ! 2HCO3 O C O CO2 1. Dissolves in the ocean increase in decreases increases dissolved CO2 carbonate bicarbonate − HCO3 H O O also hydrogen ion concentration increases C H H 2. Reacts with water O O + H2O to form bicarbonate ion i.e., pH = –lg [H ] decreases H+ and hydrogen ion − HCO3 and saturation state of calcium carbonate decreases H+ 2− O O CO + 2− 3 3. Nearly all of that hydrogen [Ca ][CO ] C C H saturation Ω = 3 O O ion reacts with carbonate O O state K ion to form more bicarbonate sp (a measure of how “easy” it is to form a shell) M u l t i p l e o b s e r v e d indicators of a changing global carbon cycle: (a) atmospheric concentrations of carbon dioxide (CO2) from Mauna Loa (19°32´N, 155°34´W – red) and South Pole (89°59´S, 24°48´W – black) since 1958; (b) partial pressure of dissolved CO2 at the ocean surface (blue curves) and in situ pH (green curves), a measure of the acidity of ocean water.
    [Show full text]
  • School of Ocean and Earth Science and Technology
    School of Ocean and Earth Science and Technology Administration established in SOEST under the U.S.- Japan Common Pacific Ocean Science and Technology 802 Agenda. The center is jointly supported by the state, Japanese, 1680 East-West Road and federal funds. Honolulu, HI 96822 Although the Department of Ocean and Resources Engi- Tel: (808) 956-6182 neering offers several undergraduate courses, baccalaureate Fax: (808) 956-9152 degrees are not offered in this area. The Department of Web: www.soest.hawaii.edu/ Oceanography offers the BS in global environmental science. Baccalaureate degree programs are offered in the Department of Dean: C. Barry Raleigh Geology and Geophysics and the Department of Meteorology. E-mail: [email protected] Those with long-range plans for graduate work in oceanogra- phy or ocean and resources engineering should prepare Interim Associate Dean: Patricia A. Cooper themselves with an undergraduate course of study that will E-mail: [email protected] satisfy the entry requirements for admission to these graduate programs. Information on entrance and degree or certificate requirements for all SOEST graduate programs (MS and PhD General Information in geology and geophysics, meteorology, ocean and resources The School of Ocean and Earth Science and Technology engineering, and oceanography, and a certificate in Graduate (SOEST) was established in 1988. It combines and integrates Ocean policy) is in this Catalog. Candidates for advanced the Departments of Geology and Geophysics, Meteorology, degrees and the graduate certificate program apply through the Ocean and Resources Engineering, and Oceanography, as well Graduate Division of the University. The school has developed as the Hawai‘i Institute of Geophysics and Planetology, the a number of interdisciplinary courses at both the undergradu- Hawai‘i Institute of Marine Biology, and the Hawai‘i Natural ate and the graduate levels, which are listed under OEST Energy Institute.
    [Show full text]
  • Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future
    Sea-Level Rise for the Coasts of California, Oregon, and Washington: Past, Present, and Future As more and more states are incorporating projections of sea-level rise into coastal planning efforts, the states of California, Oregon, and Washington asked the National Research Council to project sea-level rise along their coasts for the years 2030, 2050, and 2100, taking into account the many factors that affect sea-level rise on a local scale. The projections show a sharp distinction at Cape Mendocino in northern California. South of that point, sea-level rise is expected to be very close to global projections; north of that point, sea-level rise is projected to be less than global projections because seismic strain is pushing the land upward. ny significant sea-level In compliance with a rise will pose enor- 2008 executive order, mous risks to the California state agencies have A been incorporating projec- valuable infrastructure, devel- opment, and wetlands that line tions of sea-level rise into much of the 1,600 mile shore- their coastal planning. This line of California, Oregon, and study provides the first Washington. For example, in comprehensive regional San Francisco Bay, two inter- projections of the changes in national airports, the ports of sea level expected in San Francisco and Oakland, a California, Oregon, and naval air station, freeways, Washington. housing developments, and sports stadiums have been Global Sea-Level Rise built on fill that raised the land Following a few thousand level only a few feet above the years of relative stability, highest tides. The San Francisco International Airport (center) global sea level has been Sea-level change is linked and surrounding areas will begin to flood with as rising since the late 19th or to changes in the Earth’s little as 40 cm (16 inches) of sea-level rise, a early 20th century, when climate.
    [Show full text]
  • Deep-Sea Mining: the Basics
    A fact sheet from June 2018 NOAA Office of Ocean Exploration and Research Deep-sea Mining: The Basics Overview The deepest parts of the world’s ocean feature ecosystems found nowhere else on Earth. They provide habitat for multitudes of species, many yet to be named. These vast, lightless regions also possess deposits of valuable minerals in rich concentrations. Deep-sea extraction technologies may soon develop to the point where exploration of seabed minerals can give way to active exploitation. The International Seabed Authority (ISA) is charged with formulating and enforcing rules for all seabed mining that takes place in waters beyond national jurisdictions. These rules are now under development. Environmental regulations, liability and financial rules, and oversight and enforcement protocols all must be written and approved within three to five years. Figure 1 Types of Deep-sea Mining Production support vessel Return pipe Riser pipe Cobalt Seafloor massive Polymetallic crusts sulfides nodules Subsurface plumes 800-2,500 from return water meters deep Deposition 1,000-4,000 meters deep 4,000-6,500 meters deep Cobalt-rich Localized plumes Seabed pump Ferromanganeseferromanganese from cutting crusts Seafloor production tool Nodule deposit Massive sulfide deposit Sediment Source: New Zealand Environment Guide © 2018 The Pew Charitable Trusts 2 The legal foundations • The United Nations Convention on the Law of the Sea (UNCLOS). Also known as the Law of the Sea Treaty, UNCLOS is the constitutional document governing mineral exploitation on the roughly 60 percent of the world seabed that lies beyond national jurisdictions. UNCLOS took effect in 1994 upon passage of key enabling amendments designed to spur commercial mining.
    [Show full text]
  • GIS Best Practices GIS for Nautical Organizations
    GIS Best Practices GIS for Nautical Organizations September 2010 Table of Contents What Is GIS? 1 GIS for Nautical Organizations 3 NOAA Modernizes Nautical Chart Production 5 Shifting Shorelines 11 A Geospatial Foundation 19 Making Standards Shipshape—Esri's Rafael Ponce Discusses Working with International Hydrographic Organizations 27 Remote Communities Prevail with GIS 33 Enterprise Product on Demand Services 43 Keeping Nature and Man in Balance 47 RAN Directorate of Oceanography and Meteorology 53 Taking NEXRAD Weather Radar to the Next Level in GIS 57 Maritime and Coastguard Agency Case Study toward a More Effi cient Tendering Process 65 NATO Maritime Component Command HQ Northwood, UK, Supporting Maritime Situational Awareness 71 i What Is GIS? Making decisions based on geography is basic to human thinking. Where shall we go, what will it be like, and what shall we do when we get there are applied to the simple event of going to the store or to the major event of launching a bathysphere into the ocean's depths. By understanding geography and people's relationship to location, we can make informed decisions about the way we live on our planet. A geographic information system (GIS) is a technological tool for comprehending geography and making intelligent decisions. GIS organizes geographic data so that a person reading a map can select data necessary for a specifi c project or task. A thematic map has a table of contents that allows the reader to add layers of information to a basemap of real-world locations. For example, a social analyst might use the basemap of Eugene, Oregon, and select datasets from the U.S.
    [Show full text]
  • Causes of Sea Level Rise
    FACT SHEET Causes of Sea OUR COASTAL COMMUNITIES AT RISK Level Rise What the Science Tells Us HIGHLIGHTS From the rocky shoreline of Maine to the busy trading port of New Orleans, from Roughly a third of the nation’s population historic Golden Gate Park in San Francisco to the golden sands of Miami Beach, lives in coastal counties. Several million our coasts are an integral part of American life. Where the sea meets land sit some of our most densely populated cities, most popular tourist destinations, bountiful of those live at elevations that could be fisheries, unique natural landscapes, strategic military bases, financial centers, and flooded by rising seas this century, scientific beaches and boardwalks where memories are created. Yet many of these iconic projections show. These cities and towns— places face a growing risk from sea level rise. home to tourist destinations, fisheries, Global sea level is rising—and at an accelerating rate—largely in response to natural landscapes, military bases, financial global warming. The global average rise has been about eight inches since the centers, and beaches and boardwalks— Industrial Revolution. However, many U.S. cities have seen much higher increases in sea level (NOAA 2012a; NOAA 2012b). Portions of the East and Gulf coasts face a growing risk from sea level rise. have faced some of the world’s fastest rates of sea level rise (NOAA 2012b). These trends have contributed to loss of life, billions of dollars in damage to coastal The choices we make today are critical property and infrastructure, massive taxpayer funding for recovery and rebuild- to protecting coastal communities.
    [Show full text]
  • Marine Pollution: a Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime Lawrence R
    Hastings Law Journal Volume 24 | Issue 1 Article 5 1-1972 Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime Lawrence R. Lanctot Follow this and additional works at: https://repository.uchastings.edu/hastings_law_journal Part of the Law Commons Recommended Citation Lawrence R. Lanctot, Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions--A Suggested Global Oceans' Environmental Regime, 24 Hastings L.J. 67 (1972). Available at: https://repository.uchastings.edu/hastings_law_journal/vol24/iss1/5 This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings Law Journal by an authorized editor of UC Hastings Scholarship Repository. Marine Pollution: A Critique of Present and Proposed International Agreements and Institutions-A Suggested Global Oceans' Environmental Regime By LAWRENCE R. LANCTOT* THE oceans are earth's last significant frontier for man's utiliza- tion. Advances in marine technology are opening previously unreach- able depths to permit the study of the oceans' mysteries and the extrac- tion of valuable natural resources.' Because these vast resources were inaccessible in the past, international law does not provide any certain rules governing the ownership and development of marine resources which lie beyond the limits of national jurisdiction.2 In response to this legal uncertainty and in the face of accelerating technology, the United Nations General Assembly has called a General Conference on the Law of the Sea in 1973 to formulate international conventions gov- erning the development of the seabed and ocean floor., Great interest * J.D., University of San Francisco, 1968; LL.M., Columbia University, 1969; Adjunct Professor of Law, University of San Francisco.
    [Show full text]
  • The Sea Floor an Introduction to Marine Geology 4Th Edition Ebook
    THE SEA FLOOR AN INTRODUCTION TO MARINE GEOLOGY 4TH EDITION PDF, EPUB, EBOOK Eugen Seibold | 9783319514116 | | | | | The Sea Floor An Introduction to Marine Geology 4th edition PDF Book Darwin drew his inspiration from observations on island life made during the voyage of the Beagle , and his work gave strong impetus to the first global oceanographic expedition, the voyage of HMS Challenger Resources from the Ocean Floor. This textbook deals with the most important items in Marine Geology, including some pioneer work. Outline of geology Glossary of geology History of geology Index of geology articles. About this Textbook This textbook deals with the most important items in Marine Geology, including some pioneer work. This should come as no surprise. Geologist Petroleum geologist Volcanologist. Geology Earth sciences Geology. They also are the deepest parts of the ocean floor. Stratigraphy Paleontology Paleoclimatology Palaeogeography. Origin and Morphology of Ocean Basins. Back Matter Pages It seems that you're in Germany. Add to Wishlist. Marine geology has strong ties to geophysics and to physical oceanography. Some of these notions were put forward earlier in this century by A. Springer Berlin Heidelberg. They should allow the reader to comment on new results about plate tectonics, marine sedimentation from the coasts to the deep sea, climatological aspects, paleoceanology and the use of the sea floor. Uh-oh, it looks like your Internet Explorer is out of date. Back Matter Pages Coastal Ecology marine geology textbook plate tectonics Oceanography Environmental Sciences sea level. Seibold and W. The deep ocean floor is the last essentially unexplored frontier and detailed mapping in support of both military submarine objectives and economic petroleum and metal mining objectives drives the research.
    [Show full text]
  • Seabed Mapping: a Brief History from Meaningful Words
    geosciences Review Seabed Mapping: A Brief History from Meaningful Words Pedro Smith Menandro and Alex Cardoso Bastos * Marine Geosciences Lab (Labogeo), Departmento Oceanografia, Universidade Federal do Espírito Santo, Vitória-ES 29075-910, Brazil; [email protected] * Correspondence: [email protected] Received: 19 May 2020; Accepted: 7 July 2020; Published: 16 July 2020 Abstract: Over the last few centuries, mapping the ocean seabed has been a major challenge for marine geoscientists. Knowledge of seabed bathymetry and morphology has significantly impacted our understanding of our planet dynamics. The history and scientific trends of seabed mapping can be assessed by data mining prior studies. Here, we have mined the scientific literature using the keyword “seabed mapping” to investigate and provide the evolution of mapping methods and emphasize the main trends and challenges over the last 90 years. An increase in related scientific production was observed in the beginning of the 1970s, together with an increased interest in new mapping technologies. The last two decades have revealed major shift in ocean mapping. Besides the range of applications for seabed mapping, terms like habitat mapping and concepts of seabed classification and backscatter began to appear. This follows the trend of investments in research, science, and technology but is mainly related to national and international demands regarding defining that country’s exclusive economic zone, the interest in marine mineral and renewable energy resources, the need for spatial planning, and the scientific challenge of understanding climate variability. The future of seabed mapping brings high expectations, considering that this is one of the main research and development themes for the United Nations Decade of the Oceans.
    [Show full text]