Aus Dem Institut Für Tierhygiene Und Öffentliches Veterinärwesen Der Veterinärmedizinischen Fakultät Der Universität Leipzig

Total Page:16

File Type:pdf, Size:1020Kb

Aus Dem Institut Für Tierhygiene Und Öffentliches Veterinärwesen Der Veterinärmedizinischen Fakultät Der Universität Leipzig Aus dem Institut für Tierhygiene und Öffentliches Veterinärwesen der Veterinärmedizinischen Fakultät der Universität Leipzig Phänotypische Charakterisierung der Spezies des Genus Burkholderia mittels biochemischer Feintypisierung und in vitro-Resistenztestung Inaugural-Dissertation zur Erlangung des Grades eines Doctor medicinae veterinariae (Dr. med. vet.) durch die Veterinärmedizinische Fakultät der Universität Leipzig eingereicht von Martina B. Oberdorfer aus Ulm Leipzig, 2007 Mit Genehmigung der Veterinärmedizinischen Fakultät der Universität Leipzig Dekan: Prof. Dr. Karsten Fehlhaber Betreuer: Prof. Dr. Uwe Truyen Gutachter: Prof. Dr. Uwe Truyen Institut für Tierhygiene und Öffentliches Veterinärwesen Veterinärmedizinische Fakultät der Universität Leipzig PD Dr. Heinrich Neubauer Direktor und Professor Institut für bakterielle Infektionen und Zoonosen Friedrich-Loeffler-Institut Jena Prof. Dr. Rolf Bauerfeind Institut für Hygiene und Infektionskrankheiten der Tiere Veterinärmedizinische Fakultät der Justus-Liebig-Universität Gießen Tag der Verteidigung: 18. Juli 2006 Meinem Mann in Liebe und Dankbarkeit Inhaltsverzeichnis 1 Einleitung 1 2 Literaturübersicht 3 2.1 Geschichte und Taxonomie des Genus Burkholderia 3 2.2 Pathogene Burkholderia -Spezies 4 2.2.1 Burkholderia mallei 4 2.2.2 Burkholderia pseudomallei 14 2.3 Fakultativ pathogene Burkholderia -Spezies 18 2.3.1 Burkholderia c epacia -Komplex 18 2.3.1.1 Burkholderia cepacia 19 2.3.1.2 Burkholderia multivorans 19 2.3.1.3 Burkholderia cenocepacia 19 2.3.1.4 Burkholderia stabilis 20 2.3.1.5 Burkholderia vietnamiensis 20 2.3.1.6 Burkholderia dolosa 20 2.3.1.7 Burkholderia ambifaria 20 2.3.1.8 Burkholderia anthina 20 2.3.1.9 Burkholderia pyrrocinia 20 2.3.2 Burkholderia fungorum 20 2.3.3 Burkholderia gladioli 21 2.3.4 Burkholderia thailandensis 22 2.4 Apathogene Burkholderia -Spezies (Mensch und Tier) 22 2.4.1 Burkholderia andropogonis 22 2.4.2 Burkholderia caledonica 22 2.4.3 Burkholderia caribensis 22 2.4.4 Burkholderia caryophylli 23 2.4.5 Burkholderia glathei 23 2.4.6 Burkholderia glumae 23 2.4.7 Burkholderia graminis 23 2.4.8 Burkholderia hospita 23 2.4.9 Burkholderia kururiensis 23 2.4.10 Burkholderia phenazinium 24 2.4.11 Burkholderia phenoliruptrix 24 2.4.12 Burkholderia phymatum 24 2.4.13 Burkholderia phytofirmans 24 2.4.14 Burkholderia plantarii 24 2.4.15 Burkholderia sacchari 25 2.4.16 Burkholderia sordicola 25 2.4.17 Burkholderia terricola 25 2.4.18 Burkholderia tropica 25 2.4.19 Burkholderia tuberum 25 2.4.20 Burkholderia ubonensis 26 2.4.21 Burkholderia unamae 26 2.4.22 Burkholderia xenovorans 26 2.5 Biochemische Phänotypisierung 27 2.5.1 Differenzierung und biochemische Charakteristika 28 2.5.2 Kommerzielle Testsysteme 31 2.6 Resistenztestung 34 2.6.1 In vitro-Resistenzbestimmung 34 2.6.1.1 Verfahren zur Resistenzbestimmung 35 2.6.2 Resistenzen bei pathogenen Burkholderia -Spezies in vitro und in vivo 35 2.6.2.1 Burkholderia mallei und Burkholderia pseudomallei 35 2.6.3 Resistenzen bei Burkholderia -Spezies 41 2.7 Diagnostische Nachweisverfahren 42 2.7.1 Burkholderia mallei 42 2.7.2 Burkholderia pseudomallei 43 2.7.3 Burkholderia-Spezies 45 3 Material und Methoden 48 3.1 Taxa Profile-Mikrotitrationsplatten der Firma Merlin, Bornheim-Hersel , 48 Deutschland, zur biochemischen Feintypisierung 3.1.1 Profile A-Platte: Aminosäuren 49 3.1.2 Profile C-Platte: Kohlenhydrate 49 3.1.3 Profile E-Platte: Enzyme 49 3.2 GENARS GN4-Platte der Firma Merlin, Bornheim-Hersel, Deutschland , 49 zur in vitro-Resistenztestung 3.3 Bakterienstämme 50 3.4 Suspensionsmedium 52 3.5 Photometer 55 3.6 Computersoftware 56 3.7 Plattenbelegung 56 3.8 Vorversuch 57 3.9 Auswertung 58 3.9.1 Taxa Profile-Mikrotitrationsplatten 58 3.9.2 GENARS GN4-Platte 59 4 Ergebnisse 61 4.1 Biochemische Feintypisierung der Spezies des Genus Burkholderia 61 4.1.1 Unterteilung in Biovare 61 4.1.2 Nicht-auswertbare Substrate 62 4.1.2.1 Profile A-Mikrotitrationsplatte 63 4.1.2.2 Profile C-Mikrotitrationsplatte 63 4.1.2.3 Profile E-Mikrotitrationsplatte 64 4.1.3 Auswertbare Substrate 64 4.1.3.1 Profile A-Mikrotitrationsplatte 65 4.1.3.2 Profile C-Mikrotitrationsplatte 65 4.1.3.3 Profile E-Mikrotitrationsplatte 65 4.1.4 Minimalergebnis 66 4.2 In vitro-Resistenztestung der Spezies des Genus Burkholderia 81 5 Diskussion 85 5.1 Taxa Profile-System und GENARAS GN4-Platte in der Diagnostik 85 von Burkholderia -Spezies 5.2 Taxa Profile-System als Testplatte und GENARS GN4-Platte 89 5.3 Ausblick und Empfehlungen 98 6 Zusammenfassung 101 7 Summary 102 8 Literaturverzeichnis 103 Anhang I-XL Danksagung Abkürzungsverzeichnis % Prozent (16) S °Svedberg § Paragraph °C Grad Celsius µg/ml Mikrogramm pro Milliliter µl Mikroliter µm Mikrometer α alpha ADH Arginin-Dihydrolase ara+ Arabinose-Fermentation positiv ARDRA amplified rDNA restriction analysis AST Arylsulfatase-Nachweisreagenz ATCC American Type Culture Collection B. Burkholderia BAnz Bundesanzeiger BGBl. Bundesgesetzblatt BgVV Bundesinstitut für gesundheitlichen Verbraucherschutz und Veterinärmedizin BMELV Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz BmTierSSchV Binnenmarkt-Tierseuchenschutz-Verordnung B-Schutz Biologischer-Schutz Bv. Biovar bzw. beziehungsweise C- Kohlenstoff C. Chromobacterium ca. circa CASFM Comité de l`Antibiogramme de la Société Francaise de Microbiologie CCUG Culture Collection University Göteborg CF Cystische Fibrose CF-Test Complement Fixation Test CGD Chronische Granulomatöse Krankheiten cm Zentimeter D- rechtsdrehend d. h. das heisst dest. destiliert DIN Deutsches Institut für Normierung e. V. DL- rechts- und linksdrehend DNA Desoxyribonukleinsäure DSMZ Deutsche Stammsammlung für Mikroorganismen und Zellkulturen GmbH ELISA enzyme-linked immunosorbent assay EMEA European Agency for the Evaluation of Medical Products engl. englisch EPS Exopolysaccharid et al. et allii EU Europäische Union EWG Europäische Wirtschaftsgemeinschaft FLI Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit g Gramm GENARS German Network of Antimicrobial Resistance Surveillance h Stunde HIP Hippursäurehydrolyse-Nachweisreagenz i- iso- IBIZ Institut für bakterielle Infektionen und Zoonosen ID/IDLO Institute for Animal Science and Health, Lelystad, Niederlande IgG Immunglobulin der Klasse G IHA indirekte Hämagglutination IMB Institut für Mikrobiologie KBR Komplementbindungsreaktion L- linksdrehend L/S Erreger-Risikoklassen und Labor-Sicherheitsstufen nach der Weltgesundheitsorganisation (www.who.int) LDC Lysin-Decarboxylase LMG Laboratorium voor Microbiologie Universiteit Gent LPS Lipopolysaccharid M Molar mg/L Milligramm pro Liter MHK minimale Hemmkonzentration MIC Minmal Inhibiton Concentration ml Milliliter MLD mediane Letaldosis MLST multilocus sequence typing MLVA multilocus variance analysis mm Millimeter Mol moles N- Stickstoff n. nach NCBI National Center for Biotechnology Information NCCLS National Committee for Clinical Laboratory Standards NCTC National Collection of Type-Cultures, Colindale, London NIT Nitrit nm Nanometer OIE Office International des Epizooties ONPG ortho-Nitrophenyl-ß-D-Galactopyranosidase P. Pseudomonas PCA Pyrazinamidase-Nachweisreagenz PCB polychloriertes Biphenylen PCR Polymerase Chain Reaction pH H+-Ionenkonzentration PNPG β-Galactosidase Aktivität (4-Nitrophenyl-ß-D-Galactopyranosid) PPD purified protein derivative ppm parts per million Pv. Pathovar R resistent rDNA ribosomale Desoxyribonukleinsäure RFLP Restriktionsfragmentlängen-Polymorphismus RL Richtlinie rRNA ribosomale Ribonukleinsäure S sensibel S. Seite s. h. siehe hinten SLA Serumlangsamagglutination sog. sogenannt spp. Spezies ß beta TDA Tryptophandesamidase TierSG Tierseuchengesetz u. a. unter anderem UAE United Arabic Emirates UK United Kingdom USA United States of Amerika UV ultraviolettes Licht z. B. zum Beispiel 1 Einleitung Das Genus Burkholderia (B.) besteht momentan aus 36 Spezies und hat dadurch besondere Relevanz, da es zwei hochpathogene Erreger-Spezies, B. mallei und B. pseudomallei, enthält. In Europa und vielen anderen Ländern sind diese Bakterien als Erreger der Risikoklasse L/S 3 klassifiziert. B. mallei verursacht die Rotzerkrankung der Einhufer und stellt für den Menschen eine lebensbedrohliche Zoonose dar. Aufgrund steigender Rotzfälle bei Pferden muss diese in Westeuropa, Australien und Nordamerika als getilgt geltende Infektion als „re- emerging disease“, als wieder aufflammende Tierseuche, betrachtet werden. B. pseudomallei verursacht die Infektionskrankheit „Melioidose“. Diese potentiell fatale Krankheit tritt bei Tieren und Menschen auf und kann als „emerging disease“, als im Aufflammen begriffene Seuche, bezeichnet werden, die durch Migration von Menschen, Tourismus oder durch Tiertransporte rund um die Welt ihre endemischen Gebiete verlassen kann. Das Genus enthält ebenso für Mensch und Tier fakultativ pathogene Spezies (Burkholderia cepacia-Komplex, B. fungorum, B. gladioli und B. thailandensis), die in bestimmten Patientengruppen lebensbedrohliche Infektionen verursachen können. In diesem sehr uneinheitlichen, in ständigem Wandel begriffenen Genus mit sehr unterschiedlichen Verbreitungs- und Wirtsspektren, ist es essentiell, pathogene von oft sehr nahe verwandten apathogenen Stämmen abgrenzen zu können. Ein sicherer und eindeutiger Nachweis der Spezies ist deshalb von entscheidender Bedeutung. Ein routinetaugliches Identifizierungsverfahren für alle Burkholderia-Spezies existiert bisher nicht und auch die kommerziell erhältlichen biochemischen Identifizierungssysteme sind für eine ausreichende Differenzierung
Recommended publications
  • Transfer of Pseudomonas Plantarii and Pseudomonas Glumae to Burkholderia As Burkholderia Spp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1994, p. 235-245 Vol. 44, No. 2 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiological Societies Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and Description of Burkholderia vandii sp. nov. TEIZI URAKAMI, ’ * CHIEKO ITO-YOSHIDA,’ HISAYA ARAKI,’ TOSHIO KIJIMA,3 KEN-ICHIRO SUZUKI,4 AND MU0KOMAGATA’T Biochemicals Division, Mitsubishi Gas Chemical Co., Shibaura, Minato-ku, Tokyo 105, Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Tayuhama, Niigatu 950-31, ’Plant Pathological Division of Biotechnology, Tochigi Agricultural Experiment Station, Utsunomiya 320, Japan Collection of Microorganisms, The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01,4 and Institute of Molecular Cell and Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113,’ Japan Plant-associated bacteria were characterized and are discussed in relation to authentic members of the genus Pseudomonas sensu stricto. Bacteria belonging to Pseudomonas rRNA group I1 are separated clearly from members of the genus Pseudomonas sensu stricto (Pseudomonasfluorescens rRNA group) on the basis of plant association characteristics, chemotaxonomic characteristics, DNA-DNA hybridization data, rRNA-DNA hy- bridization data, and the sequences of 5s and 16s rRNAs. The transfer of Pseudomonas cepacia, Pseudomonas mallei, Pseudomonas pseudomallei, Pseudomonas caryophylli, Pseudomonas gladioli, Pseudomonas pickettii, and Pseudomonas solanacearum to the new genus Burkholderia is supported; we also propose that Pseudomonas plantarii and Pseudomonas glumae should be transferred to the genus Burkholderia. Isolate VA-1316T (T = type strain) was distinguished from Burkholderia species on the basis of physiological characteristics and DNA-DNA hybridization data. A new species, Burkholderia vandii sp.
    [Show full text]
  • Insights Into the Pathogenicity of Burkholderia Pseudomallei
    REVIEWS Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei W. Joost Wiersinga*, Tom van der Poll*, Nicholas J. White‡§, Nicholas P. Day‡§ and Sharon J. Peacock‡§ Abstract | Burkholderia pseudomallei is a potential bioterror agent and the causative agent of melioidosis, a severe disease that is endemic in areas of Southeast Asia and Northern Australia. Infection is often associated with bacterial dissemination to distant sites, and there are many possible disease manifestations, with melioidosis septic shock being the most severe. Eradication of the organism following infection is difficult, with a slow fever-clearance time, the need for prolonged antibiotic therapy and a high rate of relapse if therapy is not completed. Mortality from melioidosis septic shock remains high despite appropriate antimicrobial therapy. Prevention of disease and a reduction in mortality and the rate of relapse are priority areas for future research efforts. Studying how the disease is acquired and the host–pathogen interactions involved will underpin these efforts; this review presents an overview of current knowledge in these areas, highlighting key topics for evaluation. Melioidosis is a serious disease caused by the aerobic, rifamycins, colistin and aminoglycosides), but is usually Gram-negative soil-dwelling bacillus Burkholderia pseu- susceptible to amoxicillin-clavulanate, chloramphenicol, domallei and is most common in Southeast Asia and doxycycline, trimethoprim-sulphamethoxazole, ureido- Northern Australia. Melioidosis is responsible for 20% of penicillins, ceftazidime and carbapenems2,4. Treatment all community-acquired septicaemias and 40% of sepsis- is required for 20 weeks and is divided into intravenous related mortality in northeast Thailand. Reported cases are and oral phases2,4. Initial intravenous therapy is given likely to represent ‘the tip of the iceberg’1,2, as confirmation for 10–14 days; ceftazidime or a carbapenem are the of disease depends on bacterial isolation, a technique that drugs of choice.
    [Show full text]
  • Targeting the Burkholderia Cepacia Complex
    viruses Review Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex Philip Lauman and Jonathan J. Dennis * Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-2529 Abstract: The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy—the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy. Keywords: Burkholderia cepacia complex (Bcc); bacteria; pathogenesis; antibiotic resistance; bacterio- phages; phages; phage therapy; phage therapy treatment strategies; Bcc phage therapy Citation: Lauman, P.; Dennis, J.J.
    [Show full text]
  • Phenotypic and Genetic Diversity of Pseudomonads
    PHENOTYPIC AND GENETIC DIVERSITY OF PSEUDOMONADS ASSOCIATED WITH THE ROOTS OF FIELD-GROWN CANOLA A Thesis Submitted to the College of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon By Danielle Lynn Marie Hirkala © Copyright Danielle Lynn Marie Hirkala, November 2006. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Applied Microbiology and Food Science University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 i ABSTRACT Pseudomonads, particularly the fluorescent pseudomonads, are common rhizosphere bacteria accounting for a significant portion of the culturable rhizosphere bacteria.
    [Show full text]
  • Horizontal Gene Transfer to a Defensive Symbiont with a Reduced Genome
    bioRxiv preprint doi: https://doi.org/10.1101/780619; this version posted September 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Horizontal gene transfer to a defensive symbiont with a reduced genome 2 amongst a multipartite beetle microbiome 3 Samantha C. Waterwortha, Laura V. Flórezb, Evan R. Reesa, Christian Hertweckc,d, 4 Martin Kaltenpothb and Jason C. Kwana# 5 6 Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin- 7 Madison, Madison, Wisconsin, USAa 8 Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, 9 Johannes Gutenburg University, Mainz, Germanyb 10 Department of Biomolecular Chemistry, Leibniz Institute for Natural Products Research 11 and Infection Biology, Jena, Germanyc 12 Department of Natural Product Chemistry, Friedrich Schiller University, Jena, Germanyd 13 14 #Address correspondence to Jason C. Kwan, [email protected] 15 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/780619; this version posted September 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 ABSTRACT 20 The loss of functions required for independent life when living within a host gives rise to 21 reduced genomes in obligate bacterial symbionts. Although this phenomenon can be 22 explained by existing evolutionary models, its initiation is not well understood.
    [Show full text]
  • Molecular Study of the Burkholderia Cenocepacia Division Cell Wall Operon and Ftsz Interactome As Targets for New Drugs
    Università degli Studi di Pavia Dipartimento di Biologia e Biotecnologie “L. Spallanzani” Molecular study of the Burkholderia cenocepacia division cell wall operon and FtsZ interactome as targets for new drugs Gabriele Trespidi Dottorato di Ricerca in Genetica, Biologia Molecolare e Cellulare XXXIII Ciclo – A.A. 2017-2020 Università degli Studi di Pavia Dipartimento di Biologia e Biotecnologie “L. Spallanzani” Molecular study of the Burkholderia cenocepacia division cell wall operon and FtsZ interactome as targets for new drugs Gabriele Trespidi Supervised by Prof. Edda De Rossi Dottorato di Ricerca in Genetica, Biologia Molecolare e Cellulare XXXIII Ciclo – A.A. 2017-2020 Cover image: representation of the Escherichia coli division machinery. Created by Ornella Trespidi A tutta la mia famiglia e in particolare a Diletta Table of contents Abstract ..................................................................................................... 1 Abbreviations ............................................................................................ 3 1. Introduction ........................................................................................... 5 1.1 Cystic fibrosis 5 1.1.1 CFTR defects in CF 5 1.1.2 Pathophysiology of CF 7 1.1.3 CFTR modulator therapies 11 1.2 CF-associated lung infections 12 1.2.1 Pseudomonas aeruginosa 13 1.2.2 Staphylococcus aureus 14 1.2.3 Stenotrophomonas maltophilia 15 1.2.4 Achromobacter xylosoxidans 16 1.2.5 Non-tuberculous mycobacteria 17 1.3 The genus Burkholderia 18 1.3.1 Burkholderia cepacia complex 20 1.3.2 Bcc species as CF pathogens 22 1.4 Burkholderia cenocepacia 23 1.4.1 B. cenocepacia epidemiology 23 1.4.2 B. cenocepacia genome 25 1.4.3 B. cenocepacia pathogenicity and virulence factors 26 1.4.3.1 Quorum sensing 29 1.4.3.2 Biofilm 32 1.4.4 B.
    [Show full text]
  • The Organization of the Quorum Sensing Luxi/R Family Genes in Burkholderia
    Int. J. Mol. Sci. 2013, 14, 13727-13747; doi:10.3390/ijms140713727 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article The Organization of the Quorum Sensing luxI/R Family Genes in Burkholderia Kumari Sonal Choudhary 1, Sanjarbek Hudaiberdiev 1, Zsolt Gelencsér 2, Bruna Gonçalves Coutinho 1,3, Vittorio Venturi 1,* and Sándor Pongor 1,2,* 1 International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste 32149, Italy; E-Mails: [email protected] (K.S.C.); [email protected] (S.H.); [email protected] (B.G.C.) 2 Faculty of Information Technology, PázmányPéter Catholic University, Práter u. 50/a, Budapest 1083, Hungary; E-Mail: [email protected] 3 The Capes Foundation, Ministry of Education of Brazil, Cx postal 250, Brasilia, DF 70.040-020, Brazil * Authors to whom correspondence should be addressed; E-Mails: [email protected] (V.V.); [email protected] (S.P.); Tel.: +39-40-375-7300 (S.P.); Fax: +39-40-226-555 (S.P.). Received: 30 May 2013; in revised form: 20 June 2013 / Accepted: 24 June 2013 / Published: 2 July 2013 Abstract: Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion.
    [Show full text]
  • Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies
    REVIEW published: 19 February 2021 doi: 10.3389/fsufs.2021.606815 Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies Eduardo K. Mitter 1, Micaela Tosi 1, Dasiel Obregón 1,2, Kari E. Dunfield 1* and James J. Germida 3* 1 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada, 2 Centre for Nuclear Energy in Agriculture, University of Sao¯ Paulo, Piracicaba, Brazil, 3 Department of Soil Science, University of Saskatchewan, Saskatoon, SK, Canada Global population growth poses a threat to food security in an era of increased ecosystem degradation, climate change, soil erosion, and biodiversity loss. In this context, harnessing naturally-occurring processes such as those provided by soil and Edited by: plant-associated microorganisms presents a promising strategy to reduce dependency Maryke T. Labuschagne, on agrochemicals. Biofertilizers are living microbes that enhance plant nutrition by either University of the Free State, by mobilizing or increasing nutrient availability in soils. Various microbial taxa including South Africa beneficial bacteria and fungi are currently used as biofertilizers, as they successfully Reviewed by: Tahira Fatima, colonize the rhizosphere, rhizoplane or root interior. Despite their great potential to Purdue University, United States improve soil fertility, biofertilizers have yet to replace conventional chemical fertilizers in Senthilkumar Murugaiyan, Tamil Nadu Agricultural commercial agriculture. In the last 10 years, multi-omics studies have made a significant University, India step forward in understanding the drivers, roles, processes, and mechanisms in the *Correspondence: plant microbiome. However, translating this knowledge on microbiome functions in order Kari E. Dunfield to capitalize on plant nutrition in agroecosystems still remains a challenge.
    [Show full text]
  • Trapping of Phosphate Solubilizing Bacteria on Hyphae of the Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis DAOM 197198
    Soil Biology & Biochemistry 90 (2015) 1e9 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Trapping of phosphate solubilizing bacteria on hyphae of the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM 197198 Salma Taktek a, Martin Trepanier b, Paola Magallon Servin a, Marc St-Arnaud c, * Yves Piche d, J.-Andre Fortin d, Hani Antoun a, a Centre de recherche en innovation sur les vegetaux and Departement des sols et de genie agroalimentaire, Universite Laval, Quebec, QC, Canada G1V 0A6 b Premier Tech, 1 avenue Premier, Campus Premier Tech Riviere-du-Loup, QC, Canada G5R 6C1 c Institut de recherche en biologie vegetale, Universite de Montreal, Jardin botanique de Montreal, Montreal, QC, Canada H1X 2B2 d Centre d'etude de la for^et and Departement des sciences du bois et de la for^et, Faculte de foresterie, de geographie et de geomatique, Universite Laval, Quebec, QC, Canada G1V 0A6 article info abstract Article history: A simple method is described for trapping phosphate solubilizing bacteria (PSB) strongly attached to the Received 5 January 2015 hyphae of the arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis (Ri). Bacteria were isolated Received in revised form from the hyphosphere of mycorrhizal leek plants growing on Turface previously inoculated with soil 1 July 2015 suspensions, obtained from the mycorrhizosphere of mycorrhizal plants growing in agricultural settings Accepted 20 July 2015 or maple forests in Quebec, Canada. Among the best PSB strongly attached to the hyphae of Ri, 26 isolates Available online 3 August 2015 belonged to Burkholderia spp. and one was identified as Rhizobium miluonense.
    [Show full text]
  • Strains from the Burkholderia Cepacia Complex: Relationship to Opportunistic Pathogens1
    Journal of Nematology 35(2):208–211. 2003. © The Society of Nematologists 2003. Strains from the Burkholderia cepacia Complex: Relationship to Opportunistic Pathogens1 Peter Vandamme2 and Eshwar Mahenthiralingam3 Abstract: Burkholderia cepacia-like organisms attract much interest from the agricultural industry as natural promoters of plant growth and biological control agents, and for bioremediation. Some of these organisms, however, cause life-threatening infections, particularly in cystic fibrosis patients for whom this multi-resistant bacterium is a major pathogen. The biodiversity of this group of bacteria is severely underestimated, and current identification procedures are inadequate. Presumed B. cepacia isolates belong to at least nine distinct genomic species (genomovars), referred to collectively as the B. cepacia complex. All these B. cepacia complex genomovars have been isolated from clinical and environmental sources. There are no phenotypic, genomic, or taxonomic grounds to differentiate environmental and clinical strains of the B. cepacia complex or to use the source of isolation to assess the safety of biopesticides containing members of the B. cepacia complex. Key words: Burkholderia cepacia complex, cystic fibrosis, epidemiology, genomovar, strain typing. Burkholderia cepacia is an extremely versatile organism tions caused numerous deaths in cystic fibrosis popula- that is truly considered both a friend and foe to humans tions worldwide and new guidelines were issued to re- (Govan et al., 2000). It is a genuinely ubiquitous organ- duce the risk of B. cepacia acquisition (Govan and ism with soil, water (including antiseptic and pharma- Deretic, 1996). More recently, serious outbreaks with ceutical solutions, and seawater), animals, plants, and fatalities have occurred in non-cystic fibrosis patients humans as niches.
    [Show full text]
  • Presence of the Hmq System and Production of 4-Hydroxy-3-Methyl-2-Alkylquinolines Is
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.269993; this version posted August 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 2 3 Presence of the Hmq system and production of 4-hydroxy-3-methyl-2-alkylquinolines is 4 heterogeneously distributed between Burkholderia cepacia complex species and more 5 prevalent among environmental than clinical isolates 6 7 Pauline M.L. Coulon1, James E.A. Zlosnik2, & Eric Déziel1* 8 9 1Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique 10 (INRS), Laval, QC, Canada 11 2Canadian Burkholderia cepacia Complex Research and Referral Repository, University of 12 British Columbia, Vancouver, BC, Canada 13 14 *Corresponding author 15 E-mail: [email protected] 16 17 Author contributions 18 PC: conception and design of the manuscript and acquisition of data; JZ: provision and 19 identification of 200 clinical Bcc; ED: conception of the project, resources and funding; PC, JZ 20 and ED: analysis and interpretation of data, revision of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.27.269993; this version posted August 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 21 Abstract 22 Some Burkholderia cepacia complex (Bcc) strains have been reported to produce 4- 23 hydroxy-3-methyl-2-alkylquinolines (HMAQs), analogous to the 4-hydroxy-2-alkylquinolines of 24 Pseudomonas aeruginosa.
    [Show full text]
  • Potency of Rhizosphere Bacteria to Promote Rice Growth Under Saline Condition
    BIOTROPIA Vol. 23 No. 2, 2016: 116 - 123 DOI: 10.11598/btb.2016.23.2.511 POTENCY OF RHIZOSPHERE BACTERIA TO PROMOTE RICE GROWTH UNDER SALINE CONDITION SRI WIDAWATI* and I MADE SUDIANA Research Center for Biology, Indonesian Institute of Sciences CSC-LIPI, Bogor 16911, Indonesia Received: 8 July 2015/Accepted: 25 July 2016 ABSTRACT Saline soil is a common problem in coastal paddy field, especially in Indonesia. Salinity affects rice growth and the activities of soil functional microbes, including functional bacteria, which play roles in plant growth. Some of these microbes are associated with rice plants and are able to survive under saline condition. The presence of functional microbes is also important to improve soil quality. Nitrogen and phosphate are essential soil nutrients and is available in soil due to the activities of nitrogen-fixing bacteria and free-living plant-associated bacteria. The objective of the present study was to obtain nitrogen-fixing, phosphate solubilizing and Indole Acetic Acid (IAA)-producing bacteria that are able to survive and promote the growth of rice under saline conditions. From rice and peanut rhizosphere, Ca- phosphate (Ca-P) solubilizing and nitrogen-fixing bacteria were isolated separately using specific media. Then, the Ca- P solubilizing ability, phosphomonoesterase activity and IAA-producing ability were quantitatively examined. Based on the abilities, 20 strains were selected and identified as Burkholderia cepacia-complex, Burkholderia anthina, Burkholderia cenocepacia, Bacillus cereus-complex (three strains), Achromobacter spanius, Azospirillum sp. (four strains), Azotobacter sp. (three strains), Rhizobium leguminosarum, Rhizobium sp. (two strains), and Pseudomonas sp. (three strains). The inoculation of several single strains or the mixture of the selected strains promoted the growth of rice under saline conditions.
    [Show full text]