Lys49 Myotoxin from the Brazilian Lancehead Pit Viper Elicits Pain Through Regulated ATP Release

Total Page:16

File Type:pdf, Size:1020Kb

Lys49 Myotoxin from the Brazilian Lancehead Pit Viper Elicits Pain Through Regulated ATP Release Lys49 myotoxin from the Brazilian lancehead pit viper elicits pain through regulated ATP release Chuchu Zhanga, Katalin F. Medzihradszkyb, Elda E. Sánchezc,d, Allan I. Basbaume, and David Juliusa,1 aDepartment of Physiology, University of California, San Francisco, CA 94158; bDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158; cNational Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363; dDepartment of Chemistry, Texas A&M University-Kingsville, Kingsville, TX 78363; and eDepartment of Anatomy, University of California, San Francisco, CA 94158 Contributed by David Julius, January 31, 2017 (sent for review September 16, 2016; reviewed by Baldomero M. Olivera and Mark J. Zylka) Pain-producing animal venoms contain evolutionarily honed tox- species within the Crotalinae subfamily (9). These toxins are ins that can be exploited to study and manipulate somatosensory devoid of phospholipase activity due to key enzymatic site mu- and nociceptive signaling pathways. From a functional screen, we tation of Asp49 to Lys49, but promote release of ATP from have identified a secreted phospholipase A2 (sPLA2)-like protein, myotubes through an as-yet uncharacterized mechanism (10–12). BomoTx, from the Brazilian lancehead pit viper (Bothrops moo- Similarly, we show that BomoTx lacks phospholipase activity and jeni). BomoTx is closely related to a group of Lys49 myotoxins that excites a cohort of sensory neurons through a mechanism in- have been shown to promote ATP release from myotubes through volving ATP release and activation of P2X2 and P2X3 purinergic an unknown mechanism. Here we show that BomoTx excites a receptors. Furthermore, we provide pharmacological and elec- cohort of sensory neurons via ATP release and consequent activa- trophysiological evidence to support a role for pannexin hemi- tion of P2X2 and/or P2X3 purinergic receptors. We provide phar- channels in mediating toxin-evoked nucleotide release. At the macological and electrophysiological evidence to support pannexin behavioral level, injection of BomoTx into the mouse hind paw hemichannels as downstream mediators of toxin-evoked ATP re- elicits nonneurogenic inflammatory pain, thermal hyperalgesia, lease. At the behavioral level, BomoTx elicits nonneurogenic inflam- and mechanical allodynia. The latter is completely dependent on matory pain, thermal hyperalgesia, and mechanical allodynia, of purinergic signaling. Together, these findings elucidate a de- which the latter is completely dependent on purinergic signaling. tailed mechanism by which a Lys49 myotoxin produces pain as- Thus, we reveal a role of regulated endogenous nucleotide release sociated with envenomations common to Latin America (13). in nociception and provide a detailed mechanism of a pain-inducing Lys49 myotoxin from Bothrops species, which are responsible for Results the majority of snake-related deaths and injuries in Latin America. A Snake Toxin That Targets Somatosensory Neurons. To identify novel toxins that target nociceptors, we used live-cell calcium Lys49 myotoxin | ATP release | pannexin | pain | purinergic receptor imaging to screen a library of 22 snake venoms for their ability to activate primary sensory neurons cultured from rat trigeminal enoms from spiders, snakes, cone snails, and scorpions have ganglia (TG). Because many snake venoms contain cytolytic com- Vevolved to produce a vast pharmacopoeia of toxins that ponents, such as proteases and lipases (1, 14), initial screening of modulate receptor or channel function as a means of producing these samples resulted in cell injury and widespread calcium shock, hemolysis, paralysis, and pain (1, 2). As such, venoms from influx that masked the action of any specific components. To these animals represent a rich potential source of potent and se- circumvent this problem, we first processed all crude venoms lective toxins that can be exploited to study and manipulate so- matosensory and nociceptive signaling pathways. For example, toxins Significance can directly target ion channels expressed by nociceptive sensory neurons to elicit or inhibit pain. Well-validated examples include Bites from venomous snakes can inflict substantial pain and toxins that target transient receptor potential (TRP) ion channels, inflammatory tissue damage. Snake phospholipase A2 (PLA2), acid-sensing ion channels (ASICs), and Nav channels (3–8). How- “ ” and PLA2-like toxins that retain the PLA2 fold but lack enzy- ever, the toxinome is incredibly diverse, and there are many pain- matic activity, are commonly found in snake venoms. In this producing venoms for which the responsible toxins have not yet study, we identify a PLA2-like toxin (BomoTx), from the Brazilian been identified. lancehead pit viper (Bothrops moojeni), that activates a sub- In addition to targeting receptors and channels directly, population of somatosensory neurons that contribute to pain algogenic toxins could also promote the synthesis and/or release sensation. We show that BomoTx excites these neurons by of metabolites, transmitters, or second messengers that activate stimulating the release of cellular ATP through a mechanism primary afferent nociceptors. Although this could occur through involving pannexin hemichannels. Consequent activation of indiscriminate actions of venom lipases and proteases that re- purinergic receptors elicits acute pain, tissue inflammation, and lease cellular contents through tissue damage and cell death, pain hypersensitivity. Thus, we have elucidated the mechanism more specific mechanisms may also exist. Their identification of action for a toxin from Bothrops snakes, which inflict a could reveal important new pathways by which exogenous or majority of bites in Latin America. endogenous pain-producing agents mediate their effects. To identify novel pain-producing toxins, we have exploited Author contributions: C.Z., A.I.B., and D.J. designed research; C.Z. and K.F.M. performed cultured sensory neurons as a facile in vitro platform for un- research; C.Z. and E.E.S. contributed new reagents/analytic tools; C.Z., K.F.M., A.I.B., and D.J. analyzed data; and C.Z. and D.J. wrote the paper. biased screening of crude venoms, optimizing conditions to re- Reviewers: B.M.O., University of Utah, Salt Lake City; and M.J.Z., University of North duce nonspecific cell damage so as to reveal toxins having Carolina. specific cellular effects. With this approach, we have identified a The authors declare no conflict of interest. toxin (BomoTx) from the Brazilian lancehead pit viper (Bothrops Data deposition: The sequence reported in this paper has been deposited in the GenBank moojeni) found mainly in Brazil. BomoTx belongs to a group of database (accession no. KX856005). secreted phospholipase A2 (sPLA2)-like proteins that have the 1To whom correspondence should be addressed. Email: [email protected]. conserved PLA2 fold but lack enzymatic activity, and is most This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. closely related to so-called Lys49 myotoxins found in snake 1073/pnas.1615484114/-/DCSupplemental. E2524–E2532 | PNAS | Published online March 6, 2017 www.pnas.org/cgi/doi/10.1073/pnas.1615484114 Downloaded by guest on September 24, 2021 through a 50-kDa molecular mass cutoff filter to enrich for peptides inwardly rectifying current (Fig. 2A). Consistent with our pharma- PNAS PLUS and small proteins. Indeed, this eliminated background activities cological profiling by calcium imaging, extracellular ATP could in more than half of the crude venoms examined. Among these, invariably elicit currents in these neurons (Fig. 2B). Moreover, filtrates from B. moojeni (Brazilian lancehead) (Fig. 1A) robustly Ro51, a specific blocker of P2X3 and P2X2/3 ionotropic subtypes activated a subpopulation of TG neurons (Fig. 1B). Fractionation of (15), reduced toxin-evoked responses by 72.2 ± 5.3% (Fig. 2B). this crude venom by reversed-phase (C18) chromatography yielded a Does BomoTx elicit its response by activating P2X receptors single active peak (Fig. S1A) that recapitulated activity observed directly, or by promoting release of ATP? To address this with the crude venom. question, we first asked whether the toxin elicits membrane To determine the toxin’s identity, we analyzed purified toxin by currents in transfected HEK293 cells expressing P2X2 and/or MALDI-TOF mass spectrometry, revealing a single polypeptide P2X3 receptors. No responses were observed (Fig. 2C), nor did with a molecular mass of 13,835 Da (Fig. S1C). The sample was the toxin shift dose–response curves for ATP (Fig. S2A), in- then trypsin-digested and analyzed by liquid chromatography-tan- dicating that BomoTx is not a direct purinergic receptor agonist dem mass spectrometry (LC/MS/MS). Homology considerations [to or modulator. Hence, the toxin likely promotes release of ATP National Center for Biotechnology Information (NCBI) accession to activate transient responses in specific sensory neurons that nos. 17865560 and 17368325 and UniProt accession no. Q9PVE3] express purinergic receptors. and manual de novo sequencing provided a tentative full-sequence If ATP-evoked activation of P2X receptors accounts for determination, which was then used to clone the full-length (122- BomoTx sensitivity in transiently responding neurons, ectopic amino acid) cDNA from the Brazilian lancehead venom gland. expression of these channels in sensory neurons should increase Indeed, the amino acid sequence translated from the
Recommended publications
  • Neurotoxic Effects of Venoms from Seven Species of Australasian Black Snakes (Pseudechis): Efficacy of Black and Tiger Snake Antivenoms
    Clinical and Experimental Pharmacology and Physiology (2005) 32, 7–12 NEUROTOXIC EFFECTS OF VENOMS FROM SEVEN SPECIES OF AUSTRALASIAN BLACK SNAKES (PSEUDECHIS): EFFICACY OF BLACK AND TIGER SNAKE ANTIVENOMS Sharmaine Ramasamy,* Bryan G Fry† and Wayne C Hodgson* *Monash Venom Group, Department of Pharmacology, Monash University, Clayton and †Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia SUMMARY the sole clad of venomous snakes capable of inflicting bites of medical importance in the region.1–3 The Pseudechis genus (black 1. Pseudechis species (black snakes) are among the most snakes) is one of the most widespread, occupying temperate, widespread venomous snakes in Australia. Despite this, very desert and tropical habitats and ranging in size from 1 to 3 m. little is known about the potency of their venoms or the efficacy Pseudechis australis is one of the largest venomous snakes found of the antivenoms used to treat systemic envenomation by these in Australia and is responsible for the vast majority of black snake snakes. The present study investigated the in vitro neurotoxicity envenomations. As such, the venom of P. australis has been the of venoms from seven Australasian Pseudechis species and most extensively studied and is used in the production of black determined the efficacy of black and tiger snake antivenoms snake antivenom. It has been documented that a number of other against this activity. Pseudechis from the Australasian region can cause lethal 2. All venoms (10 ␮g/mL) significantly inhibited indirect envenomation.4 twitches of the chick biventer cervicis nerve–muscle prepar- The envenomation syndrome produced by Pseudechis species ation and responses to exogenous acetylcholine (ACh; varies across the genus and is difficult to characterize because the 1 mmol/L), but not to KCl (40 mmol/L), indicating activity at offending snake is often not identified.3,5 However, symptoms of post-synaptic nicotinic receptors on the skeletal muscle.
    [Show full text]
  • Demansia Papuensis)
    Clinical and Experimental Pharmacology and Physiology (2006) 33, 364–368 Blackwell Publishing Ltd NeuromuscularSOriginal Kuruppu ArticleIN et al. effects of D. papuensisVITRO venom NEUROTOXIC AND MYOTOXIC EFFECTS OF THE VENOM FROM THE BLACK WHIP SNAKE (DEMANSIA PAPUENSIS) S Kuruppu,* Bryan G Fry† and Wayne C Hodgson* *Monash Venom Group, Department of Pharmacology, Monash University and †Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Melbourne, Victoria, Australia SUMMARY of Australian snakes whose venoms have not been pharmacologically characterized. Whip snakes (D. papuensis and D. atra, also called 1. Black whip snakes belong to the family elapidae and are D. vestigata) belong to the family elapidae and are found throughout found throughout the northern coastal region of Australia. The the northern coastal region of Australia.3 The black whip snake black whip snake (Demansia papuensis) is considered to be poten- (D. papuensis) is considered to be potentially dangerous due to its tially dangerous due to its size and phylogenetic distinctiveness. size (up to 2 m) and phylogenetic distinctiveness which may suggest Previous liquid chromatography–mass spectrometry analysis of the presence of unique venom components.2 LC-MS analysis of D. papuensis venom indicated a number of components within D. papuensis venom indicated a number of components within the the molecular mass ranges compatible with neurotoxins. For the molecular mass ranges of 6–7 and 13–14 kDa.4 This may indicate the first time, this study examines the in vitro neurotoxic and myotoxic presence of short and long chain a-neurotoxins or PLA2 components, effects of the venom from D.
    [Show full text]
  • Venom Week VI
    Toxicon 150 (2018) 315e334 Contents lists availableHouston, at ScienceDirect TX, respectively. Toxicon journal homepage: www.elsevier.com/locate/toxicon Venom Week VI Texas A&M University, Kingsville, March 14-18, 2018 North American Society of Toxinology Venom Week VII will be held in 2020 at the University of Florida, Gain- Abstract Editors: Daniel E. Keyler, Pharm.D., FAACT and Elda E. Sanchez, esville, Florida, and organized by Drs. Alfred Alequas and Michael Schaer. Ph.D. Venom Week VI was held at Texas A&M University, Kingsville, Texas, and Appreciation is extended to Elsevier and Toxicon for their excellent sup- was sponsored by the North American Society of Toxinology. The meeting port, and to all Texas A&M University, Kingsville staff for their outstanding was attended by 160 individuals, including 14 invited speakers, and rep- contribution and efforts to make Venom Week VI a success. resenting eight different countries including the United States. Dr. Elda E. Sanchez was the meeting Chair along with meeting coordinators Drs. Daniel E. Keyler, University of Minnesota and Steven A. Seifert, University of New Mexico, USA. Abstracts Newly elected NAST officers were announced and welcomed: President, Basic and translational research IN Carl-Wilhelm Vogel MD, PhD; Secretary, Elda E. Sanchez, PhD; and Steven THIRD GENERATION ANTIVENOMICS: PUSHING THE LIMITS OF THE VITRO A. Seifert, Treasurer. PRECLINICAL ASSESSMENT OF ANTIVENOMS * Invited Speakers: D. Pla, Y. Rodríguez, J.J. Calvete . Evolutionary and Translational Venomics Glenn King, PhD, University of Queensland, Australia, Editor-in-Chief, Lab, Biomedicine Institute of Valencia, Spanish Research Council, 46010 Toxicon; Keynote speaker Valencia, Spain Bruno Lomonte, PhD, Instituto Clodomiro Picado, University of Costa Rica * Corresponding author.
    [Show full text]
  • Proteomic and Genomic Characterisation of Venom Proteins from Oxyuranus Species
    This file is part of the following reference: Welton, Ronelle Ellen (2005) Proteomic and genomic characterisation of venom proteins from Oxyuranus species. PhD thesis, James Cook University Access to this file is available from: http://eprints.jcu.edu.au/11938 Chapter 1 Introduction and literature review Chapter 1 Introduction and literature review 1.1 INTRODUCTION Animal venoms are an evolutionary adaptation to immobilise and digest prey and are used secondarily as a defence mechanism (Tu and Dekker, 1991). Intriguingly, evolutionary adaptations have produced a variety of venom proteins with specific actions and targets. A cocktail of protein and peptide toxins have varying molecular compositions, and these unique components have evolved for differing species to quickly and specifically target their prey. The compositions of venoms differ, with components varying within the toxins of spiders, stinging fish, jellyfish, octopi, cone shells, ticks, ants and snakes. Toxins have evolved for the varying mode of actions within different organisms, yet many enzymes are common to different venoms including L-amino oxidases, esterases, aminopeptidases, hyaluronidases, triphosphatases, alkaline phosphomonoesterases, 2 2 phospholipases, phosphodiesterases, serine-metalloproteases and Ca +IMg +-activated proteases. The enzymes found in venoms fall into one or more pharmacological groups including those which possess neurotoxic (causing paralysis or interfering with nervous system function), myotoxic (damaging muscle), haemotoxic (affecting the blood,
    [Show full text]
  • Patterns in Protein Components Present in Rattlesnake Venom: a Meta-Analysis
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 September 2020 doi:10.20944/preprints202009.0012.v1 Article Patterns in Protein Components Present in Rattlesnake Venom: A Meta-Analysis Anant Deshwal1*, Phuc Phan2*, Ragupathy Kannan3, Suresh Kumar Thallapuranam2,# 1 Division of Biology, University of Tennessee, Knoxville 2 Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 3 Department of Biological Sciences, University of Arkansas, Fort Smith, Arkansas # Correspondence: [email protected] * These authors contributed equally to this work Abstract: The specificity and potency of venom components gives them a unique advantage in development of various pharmaceutical drugs. Though venom is a cocktail of proteins rarely is the synergy and association between various venom components studied. Understanding the relationship between various components is critical in medical research. Using meta-analysis, we found underlying patterns and associations in the appearance of the toxin families. For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO; SVMP P-I & LAAO; SVMP P-III and LAAO. In Sistrurus venom CTL and NGF had most associations. These associations can be used to predict presence of proteins in novel venom and to understand synergies between venom components for enhanced bioactivity. Using this approach, the need to revisit classification of proteins as major components or minor components is highlighted. The revised classification of venom components needs to be based on ubiquity, bioactivity, number of associations and synergies. The revised classification will help in increased research on venom components such as NGF which have high medical importance. Keywords: Rattlesnake; Crotalus; Sistrurus; Venom; Toxin; Association Key Contribution: This article explores the patterns of appearance of venom components of two rattlesnake genera: Crotalus and Sistrurus to determine the associations between toxin families.
    [Show full text]
  • The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms As Therapeutics for Snakebite Envenoming
    toxins Review The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming José María Gutiérrez 1,* , Laura-Oana Albulescu 2, Rachel H. Clare 2, Nicholas R. Casewell 2 , Tarek Mohamed Abd El-Aziz 3,4 , Teresa Escalante 1 and Alexandra Rucavado 1 1 Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; [email protected] (T.E.); [email protected] (A.R.) 2 Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; [email protected] (L.-O.A.); [email protected] (R.H.C.); [email protected] (N.R.C.) 3 Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt; [email protected] 4 Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA * Correspondence: [email protected] Abstract: A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority Citation: Gutiérrez, J.M.; Albulescu, actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase L.-O.; Clare, R.H.; Casewell, N.R.; A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors.
    [Show full text]
  • Isolation of a Myotoxin from Bothrops Asper Venom: Partial Characterization and Action on Skeletal Muscle
    Toxboan, Vol . 22, No. 1, pp . 113-128, 1984 . 0041-0101/84 53 .00 .00 Printed in Great Britain . ® 1984 Pergamon Prw Ltd. ISOLATION OF A MYOTOXIN FROM BOTHROPS ASPER VENOM: PARTIAL CHARACTERIZATION AND ACTION ON SKELETAL MUSCLE JOS$ MARIA GUTMRREZ,1 CHARLOTTE L. OWNBYI* and GEORGE V. ODELL2 Departments of 'Physiological Sciences and 'Biochemistry, Oklahoma State University, Stillwater, OK 74078, U.S.A. (Accepted for publication 31 August 1983) J. M. GuntRREz, C. L. OwNBY and G. V. ODELL. Isolation of a myotoxin from Bothrops riper venom: partial characterization and action on skeletal muscle. Toxicon 22, 115 -128, 1984. - A myotoxic phospholipase has been isolated from Bothrops asper venom by ion-change chromatography on CM-Sephadex followed by gel filtration on Sephadex G-75. The toxin is a basic polypeptide with anestimated molecular weight of 10,700. It has bothphospholipase A and indirect hemolytic activities, but is devoid of proteolytic, direct hemolytic and hemorrhagic effects. When injected i.m. into mice the toxin induces a rapid increase in plasma creatine kinase levels and a series of degenerative events in skeletal muscle which lead to myonecrods. The toxin induces an increase in intracellular calcium levels and is able to hydrolyze muscle phospholipids in vtvo. Pretreatment with the calcium antagonist verapamil failed to prevent the myotoxic activity . It is proposed that B. asper myotoxm causes cell injury by disrupting the integrity of skeletal muscle plasma membrane and that myotoxicity is at least partially due to the phospholipase A activity of the toxin. INTRODUCTION FROM a public health point of view Bothrops asper is the most important snake in Costa Rica (JIM9NEZ and GARCIA, 1969).
    [Show full text]
  • Short Linear Motifs Characterizing Snake Venom and Mammalian Phospholipases A2
    toxins Article Short Linear Motifs Characterizing Snake Venom and Mammalian Phospholipases A2 Caterina Peggion 1 and Fiorella Tonello 2,* 1 Department of Biomedical Sciences, University of Padova, Via U. Bassi, 58/B, 35131 Padova, Italy; [email protected] 2 CNR of Italy, Neuroscience Institute, viale G. Colombo 3, 35131 Padova, Italy * Correspondence: fi[email protected] Abstract: Snake venom phospholipases A2 (PLA2s) have sequences and structures very similar to those of mammalian group I and II secretory PLA2s, but they possess many toxic properties, ranging from the inhibition of coagulation to the blockage of nerve transmission, and the induction of muscle necrosis. The biological properties of these proteins are not only due to their enzymatic activity, but also to protein–protein interactions which are still unidentified. Here, we compare sequence alignments of snake venom and mammalian PLA2s, grouped according to their structure and biological activity, looking for differences that can justify their different behavior. This bioinformatics analysis has evidenced three distinct regions, two central and one C-terminal, having amino acid compositions that distinguish the different categories of PLA2s. In these regions, we identified short linear motifs (SLiMs), peptide modules involved in protein–protein interactions, conserved in mammalian and not in snake venom PLA2s, or vice versa. The different content in the SLiMs of snake venom with respect to mammalian PLA2s may result in the formation of protein membrane complexes having a toxic activity, or in the formation of complexes whose activity cannot be blocked due to the lack of switches in the toxic PLA2s, as the motif recognized by the prolyl isomerase Pin1.
    [Show full text]
  • 2008-Bor-Mackessy-Rattlesnake-Venom-Trends.Pdf
    Reprinted from © 2008 by the Loma Linda University Press. All rights reserved. May not be copied or reused, other than for personal use, without express written permission of the publisher. Click here for details about the volume and how to order it, or send e-mail to [email protected] Pp. 495-510 in W. K. Hayes, K. R. Beaman, M. D. Cardwell, and S. P. Bush (eds.), The Biology of Rattlesnakes. Loma Linda University Press, Loma Linda, California. 495 Venom Composition in Rattlesnakes: Trends and Biological Significance Stephen P. Mackessy1,2 1School of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, Colorado 80639-0017 USA Abstract.—Venom glands of rattlesnakes have a largely conserved morphology, and protein products of the gland are often highly homologous across many species. As with snake venoms generally, a primary role of rattlesnake venoms is to incapacitate prey remotely and to facilitate prey handling. However, even within a single species (e.g., Crotalus o. oreganus and C. o. concolor), very prominent differences in absolute composition are observed, suggesting that closely related taxa are utilizing different trophic “strategies.” Using SDS-PAGE, enzyme assays, and toxicity studies, venoms of 27 rattlesnake taxa were analyzed and compared with the intent of placing venom biochemistry into a broader biological context. Venom composition is genetically determined, and therefore is related to phylogeny; however, within specific lineages, venom composition varies considerably. Within the constraints of relatedness of taxa, there is some variability in absolute venom composition, which appears to be related primarily to diet and secondarily to environment.
    [Show full text]
  • Evolution of Rattlesnake Venom Involves Geographically Structured Coevolution and Local Adaptation to Prey DISSERTATION Presente
    Evolution of Rattlesnake Venom involves Geographically Structured Coevolution and Local Adaptation to Prey DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Matthew Landon Holding Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2017 Dissertation Committee: H. Lisle Gibbs, Advisor Bryan Carstens Marymegan Daly Stuart Ludsin Copyrighted by Matthew Landon Holding 2017 Abstract Predators and prey coevolve to produce some of the most fascinating phenotypic characteristics of animals. However, coevolution is not a simple race toward the most extreme traits. The occurrence, strength, and outcomes of coevolution are hypothesized to be determined by multiple factors; some are environmental and others are intrinsic to the species involved. Although this complexity has been recognized and studied in fast- evolving hosts-parasite systems, testing the key predictions of coevolutionary theory in natural populations of predators and prey has remained a difficult task. I evaluated the effects of two key factors that impact coevolving rattlesnake venom and ground squirrel venom resistance–mechanisms of interaction and population demography–and I provide evidence that the broader composition of the small mammal prey community exerts selection on the venom phenotype as well. Toward this end, I collected Northern Pacific rattlesnake (Crotalus oreganus) venom and California ground squirrel (Otospermophilus beecheyi) blood serum (which contains venom inhibitors) from multiple populations in California where California ground squirrels have evolved resistance to the venom. I developed an experiment to test for population-level adaptation of venom metalloproteinases in their interaction with ground squirrel venom inhibitors.
    [Show full text]
  • Animal Toxins: How Is Complexity Represented in Databases?
    Toxins 2010, 2, 262-282; doi:10.3390/toxins2020261 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Animal Toxins: How is Complexity Represented in Databases? Florence Jungo 1,*, Anne Estreicher 1, Amos Bairoch 2, Lydie Bougueleret 1 and Ioannis Xenarios 1,3 1 Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel-Servet, 1211 Genève 4, Switzerland; E-Mails: [email protected] (A.E.); [email protected] (L.B.); [email protected] (I.X.) 2 Department of Structural Biology and Bioinformatics, Faculty of Medicine, University of Geneva, Switzerland; E-Mail: [email protected] (A.B.) 3 Swiss Institute of Bioinformatics, Vital-IT Group, 1015 Lausanne, Switzerland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +41-22-379-5050; Fax: +41-22-379-5858. Received: 22 January 2010; in revised form: 10 February 2010 / Accepted: 11 February 2010 / Published: 21 February 2010 Abstract: Peptide toxins synthesized by venomous animals have been extensively studied in the last decades. To be useful to the scientific community, this knowledge has been stored, annotated and made easy to retrieve by several databases. The aim of this article is to present what type of information users can access from each database. ArachnoServer and ConoServer focus on spider toxins and cone snail toxins, respectively. UniProtKB, a generalist protein knowledgebase, has an animal toxin-dedicated annotation program that includes toxins from all venomous animals. Finally, the ATDB metadatabase compiles data and annotations from other databases and provides toxin ontology.
    [Show full text]
  • White Lipped Snake the White Lipped Snake (Drysdalia Coronoides) Is a Small Snake Found in Coastal NSW, Eastern and Southern Vic, Southeast SA and Tas
    Critical Care in Internal Medicine & Surgery Conference Proceedings 460 Critical Care in Internal Medicine & Surgery Conference Notes Proceedings No. 460 Published by: Veterinary Science Conference Centre (VSCC) Regimental Drive, The University of Sydney NSW 2006 +61 2 9351 7979 cve.edu.au Less common snakebites and those of uncertain medical significance Andrew Padula Introduction Previous surveys of veterinarians in Australia have found that approximately 90% of all snakebites in animals are caused by either brown snakes (Pseudonaja sp), tiger snakes (Notechis sp), or red-bellied black snakes (Pseudechis porphyriacus) (Heller et al., 2005; Mirtschin et al., 1998). However, a number of other snake species are capable of inflicting significant morbidity and mortality upon dogs and cats. Incremental knowledge gains have occurred from published animal case reports, laboratory studies of milked venom and experience of veterinarians; not just reliance upon human reports. This section describes multiple snake species that can cause significant envenomation of domestic animals but are less commonly treated by veterinarians. Death Adders The death adders (Acanthophis sp.) are found in all states except Vic or Tas. There are multiple species of death adder present in Australia, found in geographically distinct regions including unique offshore island populations on Magnetic Island (Qld), Fraser Island (Qld), North Stradbroke Island (Qld) and Reevesby Island (SA). Death adders are also found in and around the Sydney area. A mailout survey of veterinarians in NSW found that 0.2% of all snakebite cases treated were death adder and 3.2% of clinics reported having treated cases (Heller et al., 2005). There is very limited published information on the envenomation syndrome in domestic animals although a series of four cases of envenomation responsive to death adder antivenom in WA and NSW is documented (Swindells et al., 2006).
    [Show full text]