Separable Algebras Over Commutative Rings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Factorization Theory in Commutative Monoids 11
FACTORIZATION THEORY IN COMMUTATIVE MONOIDS ALFRED GEROLDINGER AND QINGHAI ZHONG Abstract. This is a survey on factorization theory. We discuss finitely generated monoids (including affine monoids), primary monoids (including numerical monoids), power sets with set addition, Krull monoids and their various generalizations, and the multiplicative monoids of domains (including Krull domains, rings of integer-valued polynomials, orders in algebraic number fields) and of their ideals. We offer examples for all these classes of monoids and discuss their main arithmetical finiteness properties. These describe the structure of their sets of lengths, of the unions of sets of lengths, and their catenary degrees. We also provide examples where these finiteness properties do not hold. 1. Introduction Factorization theory emerged from algebraic number theory. The ring of integers of an algebraic number field is factorial if and only if it has class number one, and the class group was always considered as a measure for the non-uniqueness of factorizations. Factorization theory has turned this idea into concrete results. In 1960 Carlitz proved (and this is a starting point of the area) that the ring of integers is half-factorial (i.e., all sets of lengths are singletons) if and only if the class number is at most two. In the 1960s Narkiewicz started a systematic study of counting functions associated with arithmetical properties in rings of integers. Starting in the late 1980s, theoretical properties of factorizations were studied in commutative semigroups and in commutative integral domains, with a focus on Noetherian and Krull domains (see [40, 45, 62]; [3] is the first in a series of papers by Anderson, Anderson, Zafrullah, and [1] is a conference volume from the 1990s). -
A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields). -
Artinian Subrings of a Commutative Ring
transactions of the american mathematical society Volume 336, Number 1, March 1993 ARTINIANSUBRINGS OF A COMMUTATIVERING ROBERT GILMER AND WILLIAM HEINZER Abstract. Given a commutative ring R, we investigate the structure of the set of Artinian subrings of R . We also consider the family of zero-dimensional subrings of R. Necessary and sufficient conditions are given in order that every zero-dimensional subring of a ring be Artinian. We also consider closure properties of the set of Artinian subrings of a ring with respect to intersection or finite intersection, and the condition that the set of Artinian subrings of a ring forms a directed family. 1. Introduction Suppose R is a commutative ring with unity element. We consider here various properties of the family sf of Artinian subrings of R and the family Z of zero-dimensional subrings of R . We remark that the inclusion s? ç Z may be proper, even if R is Noetherian; for example, Corollary 3.4 implies that if K is an infinite field of positive characteristic, then the local principal ideal ring K[X]/(X2) contains a zero-dimensional subring that is not Artinian. Of course, if every subring of R were Noetherian, the families sf and Z would be identical. Thus one source of motivation for this work comes from papers such as [Gi, Wi, W2, GHi, GH3] that deal with Noetherian and zero- dimensional pairs of rings, hereditarily Noetherian rings, and hereditarily zero- dimensional rings. Another source of motivation is related to our work in [GH3], where we considered several problems concerning a direct product of zero-dimensional rings. -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right. -
Section X.51. Separable Extensions
X.51 Separable Extensions 1 Section X.51. Separable Extensions Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of E as a vector space over F . For example, [Q(√2, √3) : Q] = 4 since a basis for Q(√2, √3) over Q is 1, √2, √3, √6 . Recall that the number of isomorphisms of { } E onto a subfield of F leaving F fixed is the index of E over F , denoted E : F . { } We are interested in when [E : F ]= E : F . When this equality holds (again, for { } finite extensions) E is called a separable extension of F . Definition 51.1. Let f(x) F [x]. An element α of F such that f(α) = 0 is a zero ∈ of f(x) of multiplicity ν if ν is the greatest integer such that (x α)ν is a factor of − f(x) in F [x]. Note. I find the following result unintuitive and surprising! The backbone of the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism Extension Theorem. Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have the same multiplicity. Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo- rem 51.2. X.51 Separable Extensions 2 Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in F [x] of the form ν a Y(x αi) , i − where the αi are the distinct zeros of f(x) in F and a F . -
Math 210B. Inseparable Extensions Since the Theory of Non-Separable Algebraic Extensions Is Only Non-Trivial in Positive Charact
Math 210B. Inseparable extensions Since the theory of non-separable algebraic extensions is only non-trivial in positive characteristic, for this handout we shall assume all fields have positive characteristic p. 1. Separable and inseparable degree Let K=k be a finite extension, and k0=k the separable closure of k in K, so K=k0 is purely inseparable. 0 This yields two refinements of the field degree: the separable degree [K : k]s := [k : k] and the inseparable 0 degree [K : k]i := [K : k ] (so their product is [K : k], and [K : k]i is always a p-power). pn Example 1.1. Suppose K = k(a), and f 2 k[x] is the minimal polynomial of a. Then we have f = fsep(x ) pn where fsep 2 k[x] is separable irreducible over k, and a is a root of fsep (so the monic irreducible fsep is n n the minimal polynomial of ap over k). Thus, we get a tower K=k(ap )=k whose lower layer is separable and n upper layer is purely inseparable (as K = k(a)!). Hence, K=k(ap ) has no subextension that is a nontrivial n separable extension of k0 (why not?), so k0 = k(ap ), which is to say 0 pn [k(a): k]s = [k : k] = [k(a ): k] = deg fsep; 0 0 n [k(a): k]i = [K : k ] = [K : k]=[k : k] = (deg f)=(deg fsep) = p : If one tries to prove directly that the separable and inseparable degrees are multiplicative in towers just from the definitions, one runs into the problem that in general one cannot move all inseparability to the \bottom" of a finite extension (in contrast with the separability). -
3 Formal Power Series
MT5821 Advanced Combinatorics 3 Formal power series Generating functions are the most powerful tool available to combinatorial enu- merators. This week we are going to look at some of the things they can do. 3.1 Commutative rings with identity In studying formal power series, we need to specify what kind of coefficients we should allow. We will see that we need to be able to add, subtract and multiply coefficients; we need to have zero and one among our coefficients. Usually the integers, or the rational numbers, will work fine. But there are advantages to a more general approach. A favourite object of some group theorists, the so-called Nottingham group, is defined by power series over a finite field. A commutative ring with identity is an algebraic structure in which addition, subtraction, and multiplication are possible, and there are elements called 0 and 1, with the following familiar properties: • addition and multiplication are commutative and associative; • the distributive law holds, so we can expand brackets; • adding 0, or multiplying by 1, don’t change anything; • subtraction is the inverse of addition; • 0 6= 1. Examples incude the integers Z (this is in many ways the prototype); any field (for example, the rationals Q, real numbers R, complex numbers C, or integers modulo a prime p, Fp. Let R be a commutative ring with identity. An element u 2 R is a unit if there exists v 2 R such that uv = 1. The units form an abelian group under the operation of multiplication. Note that 0 is not a unit (why?). -
A Brief History of Ring Theory
A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1. -
494 Lecture: Splitting Fields and the Primitive Element Theorem
494 Lecture: Splitting fields and the primitive element theorem Ben Gould March 30, 2018 1 Splitting Fields We saw previously that for any field F and (let's say irreducible) polynomial f 2 F [x], that there is some extension K=F such that f splits over K, i.e. all of the roots of f lie in K. We consider such extensions in depth now. Definition 1.1. For F a field and f 2 F [x], we say that an extension K=F is a splitting field for f provided that • f splits completely over K, i.e. f(x) = (x − a1) ··· (x − ar) for ai 2 K, and • K is generated by the roots of f: K = F (a1; :::; ar). The second statement implies that for each β 2 K there is a polynomial p 2 F [x] such that p(a1; :::; ar) = β; in general such a polynomial is not unique (since the ai are algebraic over F ). When F contains Q, it is clear that the splitting field for f is unique (up to isomorphism of fields). In higher characteristic, one needs to construct the splitting field abstractly. A similar uniqueness result can be obtained. Proposition 1.2. Three things about splitting fields. 1. If K=L=F is a tower of fields such that K is the splitting field for some f 2 F [x], K is also the splitting field of f when considered in K[x]. 2. Every polynomial over any field (!) admits a splitting field. 3. A splitting field is a finite extension of the base field, and every finite extension is contained in a splitting field. -
Abstract Algebra and Algebraic Number Theory
Abstract Algebra and Algebraic Number Theory Shashank Singh January 23, 2011 Contents 1 Introduction 2 2 Basic Algebraic Structures 3 2.1 Group . .3 2.2 Ring and Integral Domain . .7 2.3 Arithmetic in Rings . 14 2.4 DomainsfED,PID,UFDg ..................... 15 3 Field Extensions 17 3.1 Algebraic Extension . 18 3.2 Splitting Field and Algebraic Closure . 19 3.3 Separable Extensions . 21 3.4 Normal Extensions . 22 3.5 Galois Extension . 23 4 Algebraic Number Theory 27 4.1 Algebraic Number and Algebraic Integer . 27 4.2 Norms, Traces and Discriminants . 28 4.2.1 Discriminant . 30 4.3 Dedekind Domain . 31 4.3.1 Unique Factorization of Ideals . 32 4.4 Factorization of Primes in Extensions . 32 4.5 Norm of an Ideal . 33 4.6 Ideal Class Group . 34 1 Chapter 1 Introduction The word algebra stems out from the name of a famous book "Al-Jabr wa-al- Muqabalah" by an Arab Mathematician Alkarismi. Alkarismi lived around the year 800 A.D. In this book he described the basic algebraic techniques to simplify algebraic equations. In the Modern abstract algebra, we study the algebraic structures such as groups, rings and fields in the axiomatic and structured way. Modern abstract algebra arises in attempts to solve the polynomial equa- tions. There were exact methods to solve the polynomial equations of degree up to 4. These methods reduce the polynomial into a lower degree auxiliary equation(s), known as resolvent equation(s). Resolvent equations are then solved using existing methods. Lagrange tried to solve quintic during 1770. -
ON DENSITY of PRIMITIVE ELEMENTS for FIELD EXTENSIONS It Is Well Known That
ON DENSITY OF PRIMITIVE ELEMENTS FOR FIELD EXTENSIONS JOEL V. BRAWLEY AND SHUHONG GAO Abstract. This paper presents an explicit bound on the number of primitive ele- ments that are linear combinations of generators for field extensions. It is well known that every finite separable extension of an arbitrary field has a primitive element; that is, there exists a single element in the extension field which generates that field over the ground field. This is a fundamental theorem in algebra which is called the primitive element theorem in many textbooks, see for example [2, 5, 6], and it is a useful tool in practical computation of commutative algebra [4]. The existence proofs found in the literature make no attempt at estimating the density of primitive elements. The purpose of this paper is to give an explicit lower bound on the density of primitive elements that are linear combinations of generators. Our derivation uses a blend of Galois theory, basic linear algebra, and a simple form of the principle of inclusion-exclusion from elementary combinatorics. Additionally, for readers familiar with Grobner bases, we show by a geometric example, how to test a linear combination for primitivity without relying on the Galois groups used in deriving our bound. Let F be any field and K a finite algebraic extension of F. An element β ∈ K is called primitive for K over F if K = F(β). Suppose K is generated by α1,...,αn, that is, K = F(α1,...,αn). Consider elements of the form β = b1α1 + ···+bnαn where bi ∈ F,1≤i≤n. -
On Orders in Separable Algebras
ON ORDERS IN SEPARABLE ALGEBRAS D. G. HIGMAN Introduction. The present note began from the observation that the arguments produced by J-M. Maranda in developing his very interesting theory of representations of groups by automorphisms of modules over Dedekind rings (4, 5) were applicable without essential change to arbitrary orders, instead of just group rings, provided that a suitable generalization of Theorem 1 of (4) could be supplied. We prove that when the ring of integers is a Dedekind ring a certain integral ideal /(©) vanishes if and only if © is an order in a separable algebra, thus extending Maranda's results to these orders and indicating that an essential change can be expected in going beyond this case. The author is indebted to Professor Maranda for the opportunity of studying (5) before its publication. Notations. The following notations will be fixed throughout. Q = Dedekind ring. K = quotient field of Q. A = (finite dimensional linear associative) algebra over K with identity element e. © = g-order in A. 1. The ideal /(©). By a two-sided G-module we shall understand a module T having © both as a ring of left and right operators such that (r«)i? = r(«^)i eu = ue = u (f, rj 6 G, u 6 T), which is finitely generated over g. For such a two-sided ©-module T we shall denote by Z(T) the g-module of all g-homomorphisms <j> of © into T such that (i) *(fr) = ww + *(r)* (r, ^®), and by B(T) the submodule of 0 € Z(T) for which there exist elements u Ç T such that (2) 0(co) = œu — uo) (w Ç ®).