Screening for Potential Viral Pathogens in Wastewater Effluent

Total Page:16

File Type:pdf, Size:1020Kb

Screening for Potential Viral Pathogens in Wastewater Effluent Screening for potential viral pathogens in wastewater effluent and activated sludge using metagenomics analysis Evan O’Brien, Mariya Munir, Terence Marsh, and Irene Xagoraraki Abstract Results Sampling Location Despite recent rapid advancements in water and wastewater treatment technologies, S2 S4 S7 S9 S11 S14 waterborne pathogens still remain as one of the major environmental threats to human Taxonomy EL_AD EL_BD EL_AS TC_AD TC_BD TC_AS Numerous potential human pathogenic viruses health. Monitoring of all pathogens with conventional methods is not feasible due to Viruses 29706 29479 28763 32316 30182 27878 (Poxviridae, Herpesvirales, Adenoviridae, dsDNA viruses, no RNA stage 28633 28728 27813 31349 29189 27042 time and cost constraints. In this study, viral diversity of two wastewater treatment plant Caudovirales 18179 23026 16122 24253 23565 17832 Polyomaviridae, Coronaviridae) found in samples effluents, a conventional activated sludge (CAS) facility and a membrane bioreactor Phycodnaviridae 3643 1429 4512 1929 1394 3077 Mimiviridae 3048 814 3420 1068 1131 1911 Large proportion of sequence reads unaffiliated with (MBR) facility, are investigated using metagenomics. Diversity analysis does not unclassified dsDNA viruses 1358 1197 1557 1521 774 2196 existing genomic data unclassified dsDNA phages 821 1716 570 1878 1665 1087 provide quantitative data on pathogen loads or infectivity but it provides a list of Poxviridae 465 158 508 250 149 409 Greatest portion of affiliated sequences associated with potentially pathogenic viruses that need to be considered in more detail. The most Iridoviridae 208 129 179 79 148 102 Ascoviridae 247 45 238 94 42 169 bacteriophages; very small proportion affect vertebrates abundant potential human viral pathogen observed in our study belongs to taxonomic Baculoviridae 167 59 215 99 52 103 Marseilleviridae 239 0 253 0 102 0 order Herpesvirales. Other potentially pathogenic viruses detected in this study include Herpesvirales 118 62 95 45 66 73 Poxviridae, Adenoviridae, and Coronaviridae. Metagenomic analyses in this study also Asfarviridae 18 39 19 64 28 17 Bicaudaviridae 36 14 34 14 13 24 revealed that a large proportion of sequences could not be assigned to taxonomic Nudiviridae 35 0 46 0 19 0 Tectiviridae 12 10 10 27 11 18 affiliations even at the phylum/class levels and thus are most likely to be derived from Lipothrixviridae 21 7 23 11 7 10 Top-left: Sampling device used in experiment. Bottom-left: Illimuna novel, uncharacterized microbes. This study provides guidance on which viral Ligamenvirales 23 0 28 0 11 0 Nimaviridae 4 9 2 4 9 5 HiSeq DNA Sequencer. Right: Map of sampling locations. pathogens to monitor in the effluents of WWTPs especially in case of wastewater reuse. Rudiviridae 2 3 5 4 4 2 Polydnaviridae 6 2 1 3 2 3 EAST LANSING WWTP TRAVERSE CITY WWTP It also indicates the need to standardize metagenomics analysis methods in terms of Plasmaviridae 2 1 3 3 1 4 Wastewater treatment Conventional Activated Sludge Membrane Biological Reactor sample preparation and data analysis. Adenoviridae 2 5 0 1 4 0 process (Biological treatment) (CAS) (MBR) Corticoviridae 2 3 0 2 3 0 Sludge Retention Time (SRT) 14 days 7.58 days Polyomaviridae 0 0 1 0 0 0 ssDNA viruses 163 43 109 149 43 98 Capacity 18.8 MGD* 17.0 MGD Inoviridae 153 34 101 72 34 85 Average flow 13.4 MGD 8.5 MGD Parvoviridae 0 0 0 47 0 6 Discharge Rate 14.1 MGD 4.0 MGD unclassified ssDNA viruses 2 3 5 16 4 6 Disinfection Chlorine (Cl) Ultra-Violet (UV) Methods Microviridae 8 5 3 9 5 1 Circoviridae 0 1 0 4 0 0 Sample Collection: Effluent before (BD) Sequencing: Virus-enriched DNA isolated Geminiviridae 0 0 0 1 0 0 Table 2: Wastewater treatment plant characteristics. Retro-transcribing viruses 81 25 69 27 21 29 Figure 1: Metagenome summary (from MetaVir) and after disinfection (AD) and activated from the samples was sequenced on an Retroviridae 62 16 68 15 13 29 Caulimoviridae 19 9 1 12 8 0 sludge samples (AS) were collected from Illumina HiSeq platform. Sequences were ssRNA viruses 21 9 16 10 9 24 ssRNA positive-strand viruses, East Lansing (EL) WWTP and Traverse assembled into contigs and diversity 21 9 16 9 9 24 no DNA stage City (TC) WWTP in 2013. Argonite analysis was completed using the MetaVir Potyviridae 14 7 14 7 7 15 Conclusions Closteroviridae 1 0 1 1 0 2 (electropositive cartridge) filters were used analysis platform. The alignment modules Nidovirales 6 2 1 1 2 7 in the filtration and concentration of the Bowtie2 and SAMTools were then used to Mesoniviridae 5 2 0 1 2 2 Coronaviridae 1 0 1 0 0 5 Most abundant potential human samples for viral isolation. Approximately offer further confirmation of the presence ssRNA negative-strand viruses 0 0 0 1 0 0 dsRNA viruses 4 2 1 2 2 0 pathogens found in samples belong to 400 liters of effluent samples were passed of viruses of interest. Cystoviridae 2 2 1 2 2 0 through the sampler at a rate of about 11- Endornaviridae 1 0 0 0 0 0 taxonomic order Herpesvirales; other unclassified dsRNA viruses 1 0 0 0 0 0 Activated 12 L/min. Activated sludge (AS) samples Effluent Water Sample unclassified phages 658 655 577 763 827 661 potentially pathogenic human viruses were collected in two 1 L Nalgene bottles, Sludge Sample unclassified viruses 125 1 153 0 76 0 Filtration unassigned viruses 14 6 16 5 6 9 detected include Adenoviridae, unclassified virophages 2 7 2 10 7 13 mixed together in the laboratory and Argonite filters unclassified archaeal viruses 5 3 7 1 2 2 Poxviridae, and Coronaviridae. treated for virus isolation from each There is need for standardization of WWTP. Elution and Concentration Table 1: Taxonomic comparison heat map based on contigs best Figure 2: Breakdown of affiliated sequences by virus host (from MetaVir) methods for sample preparation in Sample Processing: All effluent and Viral DNA Extraction BLAST hit numbers (from MetaVir). metagenomic analysis to allow sludge samples collected were eluted 12– comparison among different studies Illumina Sequencing (HiSeq) 24 hours after initial sampling. Further The significant proportion of concentration of the solution was done by Sequence Reads Quality Control: Trimming References unaffiliated sequences means that more Trimmomatic placing 500 mL into a bottle and investigation is required to improve the centrifuged for 15 min at 2500×g at 4 °C. • ASTM. 2002. Standard practice for recovery of viruses from wastewater sludges, ASTM D4994-89. ASTM, West Conshohocken, PA. DeNovo Assembly The supernatant was loaded into a 60 mL IDBA-UD • Kuo, D. H. W., Simmons, F. J., Blair, S., Hart, E., Rose, J. B., & Xagoraraki, I. (2010). Assessment of human adenovirus removal in a full-scale membrane bioreactor robustness of available genomic data syringe and passed through a 0.22 μm treating municipal wastewater. Water research, 44(5), 1520-1530. Metagenomics still only a screening Annotation and Taxonomic Classification • Roux, S., Tournayre, J., Mahul, A., Debroas, D., & Enault, F. (2014). Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC sterilized filter for removal of bacteria, MetaVir2 bioinformatics, 15(1), 76. tool; further analysis is necessary to fungi and other contaminating agents. • USEPA, 2001. Manual of Methods for Virology (Chapter 14). EPA 600/4–84/013 Office of Water, U.S. Environmental Protection Agency, Washington, DC. determine infectivity of pathogens in Virus DNA was extracted using a MagNA Genome Alignment Evaluation Bowtie2, SAMTools Acknowledgments wastewater Pure Compact DNA extractor. We would like to thank the managers of the East Lansing and Traverse City Wastewater Treatment Plants for providing samples and information needed for this study. A very special thanks to the Bioinformatics Center for Education and Productivity (BiCEP) at the Institute for Cyber-Enabled Research (ICER) at Michigan State University for the bioinformatics support and assistance provided. .
Recommended publications
  • Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification
    ORIGINAL RESEARCH published: 10 March 2017 doi: 10.3389/fmicb.2017.00380 Identification of Capsid/Coat Related Protein Folds and Their Utility for Virus Classification Arshan Nasir 1, 2 and Gustavo Caetano-Anollés 1* 1 Department of Crop Sciences, Evolutionary Bioinformatics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2 Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan The viral supergroup includes the entire collection of known and unknown viruses that roam our planet and infect life forms. The supergroup is remarkably diverse both in its genetics and morphology and has historically remained difficult to study and classify. The accumulation of protein structure data in the past few years now provides an excellent opportunity to re-examine the classification and evolution of viruses. Here we scan completely sequenced viral proteomes from all genome types and identify protein folds involved in the formation of viral capsids and virion architectures. Viruses encoding similar capsid/coat related folds were pooled into lineages, after benchmarking against published literature. Remarkably, the in silico exercise reproduced all previously described members of known structure-based viral lineages, along with several proposals for new Edited by: additions, suggesting it could be a useful supplement to experimental approaches and Ricardo Flores, to aid qualitative assessment of viral diversity in metagenome samples. Polytechnic University of Valencia, Spain Keywords: capsid, virion, protein structure, virus taxonomy, SCOP, fold superfamily Reviewed by: Mario A. Fares, Consejo Superior de Investigaciones INTRODUCTION Científicas(CSIC), Spain Janne J. Ravantti, The last few years have dramatically increased our knowledge about viral systematics and University of Helsinki, Finland evolution.
    [Show full text]
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]
  • On the Biological Success of Viruses
    MI67CH25-Turner ARI 19 June 2013 8:14 V I E E W R S Review in Advance first posted online on June 28, 2013. (Changes may still occur before final publication E online and in print.) I N C N A D V A On the Biological Success of Viruses Brian R. Wasik and Paul E. Turner Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106; email: [email protected], [email protected] Annu. Rev. Microbiol. 2013. 67:519–41 Keywords The Annual Review of Microbiology is online at adaptation, biodiversity, environmental change, evolvability, extinction, micro.annualreviews.org robustness This article’s doi: 10.1146/annurev-micro-090110-102833 Abstract Copyright c 2013 by Annual Reviews. Are viruses more biologically successful than cellular life? Here we exam- All rights reserved ine many ways of gauging biological success, including numerical abun- dance, environmental tolerance, type biodiversity, reproductive potential, and widespread impact on other organisms. We especially focus on suc- cessful ability to evolutionarily adapt in the face of environmental change. Viruses are often challenged by dynamic environments, such as host immune function and evolved resistance as well as abiotic fluctuations in temperature, moisture, and other stressors that reduce virion stability. Despite these chal- lenges, our experimental evolution studies show that viruses can often readily adapt, and novel virus emergence in humans and other hosts is increasingly problematic. We additionally consider whether viruses are advantaged in evolvability—the capacity to evolve—and in avoidance of extinction. On the basis of these different ways of gauging biological success, we conclude that viruses are the most successful inhabitants of the biosphere.
    [Show full text]
  • Viruses in a 14Th-Century Coprolite
    AEM Accepts, published online ahead of print on 7 February 2014 Appl. Environ. Microbiol. doi:10.1128/AEM.03242-13 Copyright © 2014, American Society for Microbiology. All Rights Reserved. 1 Title: Viruses in a 14th-century coprolite 2 Running title: Viruses in a 14th-century coprolite 3 4 Sandra Appelt1,*, Laura Fancello1,*, Matthieu Le Bailly2, Didier Raoult1, Michel Drancourt1, 5 Christelle Desnues†,1 6 7 1 Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, 13385 8 Marseille, France. 9 2 Franche-Comté University, CNRS UMR 6249 Chrono-Environment, 25 030 Besançon, France. 10 * These authors have contributed equally to this work 11 † Corresponding author: 12 Christelle Desnues, Unité de recherche sur les maladies infectieuses et tropicales émergentes 13 (URMITE), UM63, CNRS 7278, IRD 198, Inserm 1095, Faculté de médecine, Aix Marseille 14 Université, 27 Bd Jean Moulin, 13385 Marseille, France. Tel: (+33) 4 91 38 46 30, Fax: (+33) 4 15 91 38 77 72. 16 Email: [email protected] 17 Number of words in Abstract: 133 words 18 Number of words in Main Text: 2538 words 19 Number of words in Methods: 954 words 20 Figures: 4, Supplementary Figures: 3 21 Tables: 0, Supplementary Tables: 6 22 Keywords: coprolite, paleomicrobiology, metagenomics, bacteriophages, viruses, ancient DNA 1 23 Abstract 24 Coprolites are fossilized fecal material that can reveal information about ancient intestinal and 25 environmental microbiota. Viral metagenomics has allowed systematic characterization of viral 26 diversity in environmental and human-associated specimens, but little is known about the viral 27 diversity in fossil remains. Here, we analyzed the viral community of a 14th-century coprolite 28 from a closed barrel in a Middle Age site in Belgium using electron microscopy and 29 metagenomics.
    [Show full text]
  • Viruses of Hyperthermophilic Archaea: Entry and Egress from the Host Cell
    Viruses of hyperthermophilic archaea : entry and egress from the host cell Emmanuelle Quemin To cite this version: Emmanuelle Quemin. Viruses of hyperthermophilic archaea : entry and egress from the host cell. Microbiology and Parasitology. Université Pierre et Marie Curie - Paris VI, 2015. English. NNT : 2015PA066329. tel-01374196 HAL Id: tel-01374196 https://tel.archives-ouvertes.fr/tel-01374196 Submitted on 30 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie – Paris VI Unité de Biologie Moléculaire du Gène chez les Extrêmophiles Ecole doctorale Complexité du Vivant ED515 Département de Microbiologie - Institut Pasteur 7, quai Saint-Bernard, case 32 25, rue du Dr. Roux 75252 Paris Cedex 05 75015 Paris THESE DE DOCTORAT DE L’UNIVERSITE PIERRE ET MARIE CURIE Spécialité : Microbiologie Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE PIERRE ET MARIE CURIE VIRUSES OF HYPERTHERMOPHILIC ARCHAEA: ENTRY INTO AND EGRESS FROM THE HOST CELL Présentée par M. Emmanuelle Quemin Soutenue le 28 Septembre 2015 devant le jury composé de : Prof. Guennadi Sezonov Président du jury Prof. Christa Schleper Rapporteur de thèse Dr. Paulo Tavares Rapporteur de thèse Dr.
    [Show full text]
  • WO 2015/061752 Al 30 April 2015 (30.04.2015) P O P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/061752 Al 30 April 2015 (30.04.2015) P O P CT (51) International Patent Classification: Idit; 816 Fremont Street, Apt. D, Menlo Park, CA 94025 A61K 39/395 (2006.01) A61P 35/00 (2006.01) (US). A61K 31/519 (2006.01) (74) Agent: HOSTETLER, Michael, J.; Wilson Sonsini (21) International Application Number: Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA PCT/US20 14/062278 94304 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 24 October 2014 (24.10.2014) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 61/895,988 25 October 2013 (25. 10.2013) US MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 61/899,764 4 November 2013 (04. 11.2013) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 61/91 1,953 4 December 2013 (04. 12.2013) us SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 61/937,392 7 February 2014 (07.02.2014) us TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Possible Insights Into the Use of Silver Nanoparticles in Targeting SARS-Cov-2 (COVID-19)
    Review Article Possible Insights into the Use of Silver Nanoparticles in Targeting SARS-CoV-2 (COVID-19) Abhinav Raj Ghosh, Bhooshitha AN, Chandan HM, KL Krishna* Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, INDIA. ABSTRACT Aim: The aims of this review are to assess the anti-viral and targeting strategies using nano materials and the possibility of using Silver nanoparticles for combating the SARS-CoV-2. Background: The novel Coronavirus (SARS-CoV-2) has become a global pandemic and has spread rapidly worldwide. Researchers have successfully identified the molecular structure of the novel coronavirus however significant success has not yet been observed with the therapies currently in clinical trials and exhaustive studies are yet to be carried out in the long road to discovery of a vaccine or a possible cure. Another hurdle associated with the discovery of a cure is the mutation of this virus which may occur at any point in time. Hypothesis: Previous studies have identified a wide number of strains of Coronaviruses with differences in virulent properties. Silver nanoparticles have been used extensively in anti-viral research with promising results in-vitro. However, it has not yet been tested for the same in clinical subjects. It has also been tested on two variants of coronavirus in-vitro with significant data to understand the pathogenesis and which may be implemented in further research possibly in other variants of coronavirus. Another interesting targeting approach would be to test the effect of Silver Nanoparticles on TNF-α as well as Interleukins in SARS-CoV-2 patients.
    [Show full text]
  • Mosquito-Borne Viruses, Insect-Specific
    FULL PAPER Virology Mosquito-borne viruses, insect-specific flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), Bogor virus (unassigned member of family Permutotetraviridae), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus) isolated from Indonesian mosquitoes SUPRIYONO1), Ryusei KUWATA1,2), Shun TORII1), Hiroshi SHIMODA1), Keita ISHIJIMA3), Kenzo YONEMITSU1), Shohei MINAMI1), Yudai KURODA3), Kango TATEMOTO3), Ngo Thuy Bao TRAN1), Ai TAKANO1), Tsutomu OMATSU4), Tetsuya MIZUTANI4), Kentaro ITOKAWA5), Haruhiko ISAWA6), Kyoko SAWABE6), Tomohiko TAKASAKI7), Dewi Maria YULIANI8), Dimas ABIYOGA9), Upik Kesumawati HADI10), Agus SETIYONO10), Eiichi HONDO11), Srihadi AGUNGPRIYONO10) and Ken MAEDA1,3)* 1)Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan 2)Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan 3)Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 4)Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan 5)Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 6)Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1
    [Show full text]
  • Mesoniviridae: a Proposed New Family in the Order Nidovirales Formed by a Title Single Species of Mosquito-Borne Viruses
    NAOSITE: Nagasaki University's Academic Output SITE Mesoniviridae: a proposed new family in the order Nidovirales formed by a Title single species of mosquito-borne viruses Lauber, Chris; Ziebuhr, John; Junglen, Sandra; Drosten, Christian; Zirkel, Author(s) Florian; Nga, Phan Thi; Morita, Kouichi; Snijder, Eric J.; Gorbalenya, Alexander E. Citation Archives of Virology, 157(8), pp.1623-1628; 2012 Issue Date 2012-08 URL http://hdl.handle.net/10069/30101 ©The Author(s) 2012. This article is published with open access at Right Springerlink.com This document is downloaded at: 2020-09-18T09:28:45Z http://naosite.lb.nagasaki-u.ac.jp Arch Virol (2012) 157:1623–1628 DOI 10.1007/s00705-012-1295-x VIROLOGY DIVISION NEWS Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses Chris Lauber • John Ziebuhr • Sandra Junglen • Christian Drosten • Florian Zirkel • Phan Thi Nga • Kouichi Morita • Eric J. Snijder • Alexander E. Gorbalenya Received: 20 January 2012 / Accepted: 27 February 2012 / Published online: 24 April 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Recently, two independent surveillance studies insect nidoviruses, which is intermediate between that of in Coˆte d’Ivoire and Vietnam, respectively, led to the the families Arteriviridae and Coronaviridae, while ni is an discovery of two mosquito-borne viruses, Cavally virus abbreviation for ‘‘nido’’. A taxonomic proposal to establish and Nam Dinh virus, with genome and proteome properties the new family Mesoniviridae, genus Alphamesonivirus, typical for viruses of the order Nidovirales. Using a state- and species Alphamesonivirus 1 has been approved for of-the-art approach, we show that the two insect nidovi- consideration by the Executive Committee of the ICTV.
    [Show full text]
  • Spindle Shaped Virus (SSV) : Mutants and Their Infectivity
    Portland State University PDXScholar University Honors Theses University Honors College 2014 Spindle Shaped Virus (SSV) : Mutants and Their Infectivity Thien Hoang Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/honorstheses Let us know how access to this document benefits ou.y Recommended Citation Hoang, Thien, "Spindle Shaped Virus (SSV) : Mutants and Their Infectivity" (2014). University Honors Theses. Paper 231. https://doi.org/10.15760/honors.56 This Thesis is brought to you for free and open access. It has been accepted for inclusion in University Honors Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Spindle Shaped Virus (SSV): Mutants and Their Infectivity by Thien Hoang An undergraduate honors thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in University Honors and Biology: Micro/molecular biology Thesis Adviser Dr. Kenneth Stedman Portland State University 2014 Abstract: SSV1 is an archaeal virus that infects the thermoacidophile Sulfolobus residing in hot springs. The lemon shaped/spindle-shaped fuselloviruses (SSV) that infect Sulfolobus solfataricus is quite morphologically different from almost all other viruses. Because these archaeal viruses live in hot springs with high temperatures and low pH, their genomes and structures have adapted to withstand such harsh conditions. Little research has been done on these extreme viruses, and of the little research, SSV has been the most prominent. Not much is known about the genes that the genome encodes and so I have inserted transposons randomly into genome to determine functionality.
    [Show full text]
  • A Systematic Review of the Natural Virome of Anopheles Mosquitoes
    Review A Systematic Review of the Natural Virome of Anopheles Mosquitoes Ferdinand Nanfack Minkeu 1,2,3 and Kenneth D. Vernick 1,2,* 1 Institut Pasteur, Unit of Genetics and Genomics of Insect Vectors, Department of Parasites and Insect Vectors, 28 rue du Docteur Roux, 75015 Paris, France; [email protected] 2 CNRS, Unit of Evolutionary Genomics, Modeling and Health (UMR2000), 28 rue du Docteur Roux, 75015 Paris, France 3 Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, 75252 Paris, France * Correspondence: [email protected]; Tel.: +33-1-4061-3642 Received: 7 April 2018; Accepted: 21 April 2018; Published: 25 April 2018 Abstract: Anopheles mosquitoes are vectors of human malaria, but they also harbor viruses, collectively termed the virome. The Anopheles virome is relatively poorly studied, and the number and function of viruses are unknown. Only the o’nyong-nyong arbovirus (ONNV) is known to be consistently transmitted to vertebrates by Anopheles mosquitoes. A systematic literature review searched four databases: PubMed, Web of Science, Scopus, and Lissa. In addition, online and print resources were searched manually. The searches yielded 259 records. After screening for eligibility criteria, we found at least 51 viruses reported in Anopheles, including viruses with potential to cause febrile disease if transmitted to humans or other vertebrates. Studies to date have not provided evidence that Anopheles consistently transmit and maintain arboviruses other than ONNV. However, anthropophilic Anopheles vectors of malaria are constantly exposed to arboviruses in human bloodmeals. It is possible that in malaria-endemic zones, febrile symptoms may be commonly misdiagnosed.
    [Show full text]
  • Virology Is That the Study of Viruses ? Submicroscopic, Parasitic Particles
    Current research in Virology & Retrovirology 2021, Vol.4, Issue 3 Editorial Bahman Khalilidehkordi Shahrekord University of Medical Sciences, Iran mobile genetic elements of cells (such as transposons, Editorial retrotransposons or plasmids) that became encapsulated in protein capsids, acquired the power to “break free” from Virology is that the study of viruses – submicroscopic, the host cell and infect other cells. Of particular interest parasitic particles of genetic material contained during a here is mimivirus, a huge virus that infects amoebae and protein coat – and virus-like agents. It focuses on the sub- encodes much of the molecular machinery traditionally sequent aspects of viruses: their structure, classification associated with bacteria. Two possibilities are that it’s a and evolution, their ways to infect and exploit host cells for simplified version of a parasitic prokaryote or it originated copy , their interaction with host organism physiology and as an easier virus that acquired genes from its host. The immunity, the diseases they cause, the techniques to iso- evolution of viruses, which frequently occurs together with late and culture them, and their use in research and ther- the evolution of their hosts, is studied within the field of apy. Virology is a subfield of microbiology.Structure and viral evolution. While viruses reproduce and evolve, they’re classification of Virus: A major branch of virology is virus doing not engage in metabolism, don’t move, and depend classification. Viruses are often classified consistent with on variety cell for copy . The often-debated question of the host cell they infect: animal viruses, plant viruses, fun- whether or not they’re alive or not could also be a matter gal viruses, and bacteriophages (viruses infecting bacte- of definition that does not affect the biological reality of vi- ria, which include the foremost complex viruses).
    [Show full text]