Treasure Companion 001-027.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

Treasure Companion 001-027.Pmd Part I Concepts & Premises 2.3 GEMS Gems have been valued for thousands of years for their beauty, rarity, and supposed magical abilities. Amethysts were thought to protect the wearer from intoxication and poison. Diamonds were seen as a remedy for all sicknesses. The beautiful green color of emeralds were not normally seen in other stones. For these reasons, and a multitude of others, individuals have fought and died to transport, sell, and mine these precious commodities. 2.3.1 PROPERTIES Gems are described by a variety of properties. These properties come from two areas. The first is the chemical composition of the gem. Most gemstones are minerals that have formed into crystals. The nature of these crystalline formations determines the transparency (how much light the gemstone will transmit), luster (the appearance of light TREASURE from a polished stone), specific gravity (a measure of COMPANION density), and hardness. There are many other properties determined by chemical composition, but these are the BH main ones that let jewelers tell one type of stone from the next. 13 The second factor that determines properties in gem- stones is the admixtures that occur within the stones. MOHS’ HARDNESS SCALE Admixtures are other minerals that occur in trace amounts Scale Reference Mineral Note and give color to many gems. If we look at a type of gemstone, such as corundum, we find that it is made of 1 Talc Scratched with Part I aluminum oxide. This chemical composition provides it 2 Gypsum fingernail Concepts & with its hardness, its transparency, its specific gravity, and Premises other factors. If the specific corundum has admixtures of 3 Calcite Scratched with a chromium, it will have a beautiful red color, though the 4 Fluorite copper coin. shade will vary depending on the amount of chromium, 5 Apatite Scratched with a and the jeweler will call it a ruby. If it has admixtures of 6 Orthoclase penknife bivalent iron with traces of titanium, then it is called a sapphire instead. 7 Quartz Will scratch glass 8 Topaz TRANSPARENCY 9 Corundum Transparency is the amount of light transmitted through 10 Diamond a substance. Transparency is effected not just by the chemical structure of the stone, but by its thickness color, SPECIFIC GRAVITY and the presence of flaws in the gemstone. A stone is considered to be transparent if light will pass through it as Specific gravity is its weight compared to the weight of if it were glass. Semitransparent stones will allow the outline an identical volume of water at a temperature of 4° Celsius. of an object to be seen through them. Translucent stones Specific gravity is related, but not quite the same, as the allow some light to pass through but one cannot see an density of an item and is an important means of telling one object, or its outline, through them. Non-transparent or gem type from another. Specific gravity is expressed in a opaque stones do not allow light to pass through them even ration of its weight per volume compared to the weight per in small sections. If a stone is both transparent and colorless volume of water. So a gem, such as an opal, with a specific it is often called lucid. gravity of 2.05 has a weight per volume that is 2.05 times greater than that of water. LUSTER Luster is the property of reflecting light from a gem’s 2.3.2 VALUE surface. The smoother the surface of a stone, the higher a The value of gemstones is based on a variety of factors. degree of luster the stone will show. This explains why It is hard to say what is the greatest factor for the value a stones that are harder (which can take a greater degree of gemstone. However, beauty may be a strong candidate. polishing) are often more luminous than stones that are not Gemstones, whether a transparent diamond or an opaque as hard. jet, add color and richness to the lives of those who own Stones with the highest degree of luster are called them. In societies (and times) where owning colors other adamantine (diamond-like). Some opaque gem stones such than brown or dun was seen as a sign of wealth, owning as pyrite and hematite have a metallic luster because they something as pretty as a sapphire certainly made the reflect light much like gold and silver do. Most gem stones individual stand out. have a vitreous (glass-like) luster. Vitreous luster covers a The second component to the value of a gemstone is large range of appearances and many gemstones (such as certainly rarity. Emeralds, for example, are very scarce and topaz) that are in this category are far more lustrous than this (combined with their beauty) leads to a great demand others (such as quartz). for these stones. Chrysolite, also called peridot or olivine, The weaker types of luster are resinous, greasy, and waxy. though it often resembles emeralds, is much more com- Certain fibrous minerals, such as cats eye, have a silky mon, and for that reason and others it is much less luster, while others display a pearly luster. If a gem has little expensive. or no luster it is considered to be dull. A third factor of value is quality. Many gemstones will come in a variety of grades which will range in luster, HARDNESS transparency, and color. Sometimes gems that are very The chemical structure of a gemstone gives it a specific common as mineral deposits will produce crystals large hardness or durability. This property is one of the most enough and with enough quality to be rated as gemstones, important ones for identifying the gem and is important even though in more common forms they have no particu- for determining its value (see below). At one time, the lar value. Certain combinations of the same stone (though border line between semi-precious and precious gems (see usually with different admixtures) will be more valuable below) was drawn by hardness alone. than others, such as the transparent red, lustrous fire opal, Hardness is rated on a scale from one to 10 with which is much more valuable than its rather dull white and diamond having the highest rating (at a 10) and talc having translucent cousin, hydrophane (or world’s eye opal). TREASURE the lowest rating (at a 1). Gems that are higher on the scale COMPANION will scratch those that are lower on the scale. On Earth this scale was invented by the German mineralogist Friedrich BH Mohs (1773-1839) and bears his name; the Mohs’ Hardness Scale. GMs should feel free to change the name 14 or simply refer to it as “the hardness scale” if they do not want to use Mohs’ name in their world. A fourth factor that is often of great importance is the GMs may wish to take the appearance of gems into hardness of a stone. Harder stones are generally more account in their world. Perhaps most of the gems are simple valuable than softer stones. Chrysolite, for example, is a tumbled or are Table Cut gems, but a few are cut by the beautiful green stone that is often mistaken for emerald. lapidaries of a particular race who make more beautiful Though it is a beautiful transparent stone that is very rare gemstones. Such stones might be worth many times their in some areas, it is not nearly as valuable as emeralds more common counterparts. GMs may wish to assign a Part I because it is very soft and is easily chipped and abraded. modifier such as x5 or x10 to the value of stones with more Concepts & Premises Consequently, chrysolite jewelry and gemstones do not modern facet cuts than those that lack them. retain their value as well as similar jewelry containing emeralds. This pushes the demand for the stones down, and 2.3.4 WEIGHT thus the price goes down as well. Gem prices are given in carats, which is a unit of weight. These four factors, and others (including society’s A carat is 0 .2 grams. This means that there are 5000 carats current fads and fashions), drive the price of gemstones. A to the kilogram, 2273 carats to the pound, and 142 carats GM should feel free to modify the prices given in the tables to the ounce. While it is certainly fine to keep track of gem in Part III if he thinks a particular stone would be rarer or weight, GMs may wish to allow their players to simply more valued in his particular world. ignore gem weight for encumbrance purposes. Players and GMs should also realize that gems are To provide a relative scale of size, the charts on the commodities to be bought and sold. They are not a form following pages include the number of carets in a 1 cm of cash. Most businesses are not set up to trade in gems, and diameter sphere of that gemstone. may not be willing to take them at other than a considerable loss to the characters (-50 to all Trading maneuvers unless you are dealing with a jeweler or a money changer). Jewelers (who pass the cost of gems on to their customers) 2.4 and money changers may well be willing to trade characters GEM GRADES cash for their gems (though they normally charge a fee of In various time periods different methods for rating the 1% to 5% of a gem’s value). value of gems have been used. One of the most common is a distinction between precious, semi-precious, and 2.3.3 CUTS ornamental stones.
Recommended publications
  • The Secondary Phosphate Minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): Substitutions of Triphylite and Montebrasite Scholz, R.; Chaves, M
    The secondary phosphate minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): substitutions of triphylite and montebrasite Scholz, R.; Chaves, M. L. S. C.; Belotti, F. M.; Filho, M. Cândido; Filho, L. Autor(es): A. D. Menezes; Silveira, C. Publicado por: Imprensa da Universidade de Coimbra URL persistente: URI:http://hdl.handle.net/10316.2/31441 DOI: DOI:http://dx.doi.org/10.14195/978-989-26-0534-0_27 Accessed : 2-Oct-2021 20:21:49 A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. pombalina.uc.pt digitalis.uc.pt 9 789892 605111 Série Documentos A presente obra reúne um conjunto de contribuições apresentadas no I Congresso Imprensa da Universidade de Coimbra Internacional de Geociências na CPLP, que decorreu de 14 a 16 de maio de 2012 no Coimbra University Press Auditório da Reitoria da Universidade de Coimbra.
    [Show full text]
  • Crystal Morphology and Xrd Peculiarities of Brazilianite from Different Localities
    NAT. CROAT. VOL. 20 No 1 1¿18 ZAGREB June 30, 2011 original scientific paper / izvorni znanstveni rad CRYSTAL MORPHOLOGY AND XRD PECULIARITIES OF BRAZILIANITE FROM DIFFERENT LOCALITIES ANDREA ^OBI]*1,VLADIMIR ZEBEC2,RICARDO SCHOLZ3, VLADIMIR BERMANEC1 &SANDRA DE BRITO BARRETO4 ¹Faculty of Science, Institute of Mineralogy and Petrography, Horvatovac 95, Zagreb, Croatia 2Croatian Natural History Museum, Demetrova 1, Zagreb, Croatia 3Department of Geology, School of Mining, Federal University Ouro Preto, Ouro Preto, MG, Brazil 4Department of Geology, Federal University of Pernambuco, Av. Academico Hélio Ramos. S/N. 5 andar., Cidade Universitária, Recife, PE, Brasil ^obi}, A., Zebec, V., Scholz, R., Bermanec, V. & de Brito Barreto, S.: Crystal morphology and xrd peculiarities of brazilianite from different localities. Nat. Croat., Vol. 20, No. 1., 1–18, 2011, Zagreb. Forty four brazilianite crystals from several localities in Brazil, Rwanda and Canada were measured on a two-circle goniometer to determine brazilianite morphology. Twenty forms were recorded; six of them have not been recorded before. All faces in the [001] zone are striated along crystallographic axis c. All striated forms in the [001] zone exhibit multiple signals. Two of the signals observed on the form {110} are always very clear. There is an exception on one crystal where just one face, (110), exhibits only one clear signal. Five groups of habits were recorded, two of them new to this mineral species. Eleven samples were examined by X-ray diffraction for calculation of the unit cell parameters yield- ing a=11.201(1)–11.255(2) Å, b=10.1415(5)–10.155(1) Å, c=7.0885(7)–7.119(2) Å and b=97.431(7)–97.34(1) °.
    [Show full text]
  • Refinement of the Crystal Structure of Ushkovite from Nevados De Palermo, República Argentina
    929 The Canadian Mineralogist Vol. 40, pp. 929-937 (2002) REFINEMENT OF THE CRYSTAL STRUCTURE OF USHKOVITE FROM NEVADOS DE PALERMO, REPÚBLICA ARGENTINA MIGUEL A. GALLISKI§ AND FRANK C. HAWTHORNE¶ Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT The crystal structure of ushkovite, triclinic, a 5.3468(4), b 10.592(1), c 7.2251(7) Å, ␣ 108.278(7), ␤ 111.739(7), ␥ 71.626(7)°, V 351.55(6) Å3, Z = 2, space group P¯1, has been refined to an R index of 2.3% for 1781 observed reflections measured with MoK␣ X-radiation. The crystal used to collect the X-ray-diffraction data was subsequently analyzed with an electron microprobe, 2+ 3+ to give the formula (Mg0.97 Mn 0.01) (H2O)4 [(Fe 1.99 Al0.03) (PO4) (OH) (H2O)2]2 (H2O)2, with the (OH) and (H2O) groups assigned from bond-valence analysis of the refined structure. Ushkovite is isostructural with laueite. Chains of corner-sharing 3+ 3+ {Fe O2 (OH)2 (H2O)2} octahedra extend along the c axis and are decorated by (PO4) tetrahedra to form [Fe 2 O4 (PO4)2 (OH)2 3+ (H2O)2] chains. These chains link via sharing between octahedron and tetrahedron corners to form slabs of composition [Fe 2 (PO4)2 (OH)2 (H2O)2] that are linked by {Mg O2 (H2O)4} octahedra. Keywords: ushkovite, crystal-structure refinement, electron-microprobe analysis. SOMMAIRE Nous avons affiné la structure cristaline de l’ushkovite, triclinique, a 5.3468(4), b 10.592(1), c 7.2251(7) Å, ␣ 108.278(7), ␤ 111.739(7), ␥ 71.626(7)°, V 351.55(6) Å3, Z = 2, groupe spatial P¯1, jusqu’à un résidu R de 2.3% en utilisant 1781 réflexions observées mesurées avec rayonnement MoK␣.
    [Show full text]
  • Thirty-Fourth List of New Mineral Names
    MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given.
    [Show full text]
  • SSEF FACETTE No. 12 SWISS GEMMOLOGICAL INSTITUTE SCHWEIZERISCHES GEMMOLOGISCHES INSTITUT INSTITUT SUISSE DE GEMMOLOGIE
    SSEF FACETTE No. 12 SWISS GEMMOLOGICAL INSTITUTE SCHWEIZERISCHES GEMMOLOGISCHES INSTITUT INSTITUT SUISSE DE GEMMOLOGIE International Issue No. 12, January 2005 Reproduction allowed with reference to the Swiss Gemmological Institute SSEF In this Issue: - Diamonds are forever - New Diamond Courses 2005 - Coral en Vogue - LIBS in Gemmology - Lead glass in Ruby - New: Launching of SSEF Alumni - News from CIBJO and LMHC - GemmoBasel 2005 SSEF Facette No. 12, © 2005 Editorial Dear Reader The year 2004 was again packed with many inter- pearl research in China, instrumental development esting challenges for the SSEF laboratory but also in Florida, diamond conference in England, SSEF for the trade. We are lucky that business for the is always on the edge. And you may profit from SSEF was much better than predicted under tight this: SSEF is proud to have found a new analyti- general conditions. The high performance and the cal solution for the detection of beryllium diffusion degree of integrity of the SSEF is appreciated by a treated sapphires, which caused so much concern number of well-known international companies. We and “headache” to the international gem trade. The notice with pleasure that our origin determinations SSEF is the first laboratory offering an inexpensive and treatment identifications form an important part and reliable Be detection service. of our activity and strongly influence the price of a gem. Reliable SSEF We are glad to offer you the SSEF Facette in a new Test Reports for pearls and colourful look. We are continuing to produce guarantee the trade with this newsletter in three languages: German, French sometimes extremely and English.
    [Show full text]
  • Reflective Index Reference Chart
    REFLECTIVE INDEX REFERENCE CHART FOR PRESIDIUM DUO TESTER (PDT) Reflective Index Refractive Reflective Index Refractive Reflective Index Refractive Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Fluorite 16 - 18 1.434 - 1.434 Emerald 26 - 29 1.580 - 1.580 Corundum 34 - 43 1.762 - 1.770 Opal 17 - 19 1.450 - 1.450 Verdite 26 - 29 1.580 - 1.580 Idocrase 35 - 39 1.713 - 1.718 ? Glass 17 - 54 1.440 - 1.900 Brazilianite 27 - 32 1.602 - 1.621 Spinel 36 - 39 1.718 - 1.718 How does your Presidium tester Plastic 18 - 38 1.460 - 1.700 Rhodochrosite 27 - 48 1.597 - 1.817 TL Grossularite Garnet 36 - 40 1.720 - 1.720 Sodalite 19 - 21 1.483 - 1.483 Actinolite 28 - 33 1.614 - 1.642 Kyanite 36 - 41 1.716 - 1.731 work to get R.I. values? Lapis-lazuli 20 - 23 1.500 - 1.500 Nephrite 28 - 33 1.606 - 1.632 Rhodonite 37 - 41 1.730 - 1.740 Reflective indices developed by Presidium can Moldavite 20 - 23 1.500 - 1.500 Turquoise 28 - 34 1.610 - 1.650 TP Grossularite Garnet (Hessonite) 37 - 41 1.740 - 1.740 be matched in this table to the corresponding Obsidian 20 - 23 1.500 - 1.500 Topaz (Blue, White) 29 - 32 1.619 - 1.627 Chrysoberyl (Alexandrite) 38 - 42 1.746 - 1.755 common Refractive Index values to get the Calcite 20 - 35 1.486 - 1.658 Danburite 29 - 33 1.630 - 1.636 Pyrope Garnet 38 - 42 1.746 - 1.746 R.I value of the gemstone.
    [Show full text]
  • Gemstones by Donald W
    GEMSTONES By Donald W. olson Domestic survey data and tables were prepared by Nicholas A. Muniz, statistical assistant, and the world production table was prepared by Glenn J. Wallace, international data coordinator. In this report, the terms “gem” and “gemstone” mean any gemstones and on the cutting and polishing of large diamond mineral or organic material (such as amber, pearl, petrified wood, stones. Industry employment is estimated to range from 1,000 to and shell) used for personal adornment, display, or object of art ,500 workers (U.S. International Trade Commission, 1997, p. 1). because it possesses beauty, durability, and rarity. Of more than Most natural gemstone producers in the United states 4,000 mineral species, only about 100 possess all these attributes and are small businesses that are widely dispersed and operate are considered to be gemstones. Silicates other than quartz are the independently. the small producers probably have an average largest group of gemstones; oxides and quartz are the second largest of less than three employees, including those who only work (table 1). Gemstones are subdivided into diamond and colored part time. the number of gemstone mines operating from gemstones, which in this report designates all natural nondiamond year to year fluctuates because the uncertainty associated with gems. In addition, laboratory-created gemstones, cultured pearls, the discovery and marketing of gem-quality minerals makes and gemstone simulants are discussed but are treated separately it difficult to obtain financing for developing and sustaining from natural gemstones (table 2). Trade data in this report are economically viable deposits (U.S.
    [Show full text]
  • Roscherite-Group Minerals from Brazil
    ■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite.
    [Show full text]
  • Guide to Healing Uses of Crystals & Minerals
    Guide to Healing Uses of Crystals & Minerals Addiction- Iolite, amethyst, hematite, blue chalcedony, staurolite. Attraction – Lodestone, cinnabar, tangerine quartz, jasper, glass opal, silver topaz. Connection with Animals – Leopard skin Jasper, Dalmatian jasper, silver topaz, green tourmaline, stilbite, rainforest jasper. Calming – Aqua aura quartz, rose quartz, amazonite, blue lace agate, smokey quartz, snowflake obsidian, aqua blue obsidian, blue quartz, blizzard stone, blood stone, agate, amethyst, malachite, pink tourmaline, selenite, mangano calcite, aquamarine, blue kyanite, white howlite, magnesite, tiger eye, turquonite, tangerine quartz, jasper, bismuth, glass opal, blue onyx, larimar, charoite, leopard skin jasper, pink opal, lithium quartz, rutilated quartz, tiger iron. Career Success – Aqua aura quartz, ametrine, bloodstone, carnelian, chrysoprase, cinnabar, citrine, green aventurine, fuchsite, green tourmaline, glass opal, silver topaz, tiger iron. Communication – Apatite, aqua aura quartz, blizzard stone, blue calcite, blue kyanite, blue quartz, green quartz, larimar, moss agate, opalite, pink tourmaline, smokey quartz, silver topaz, septarian, rainforest jasper. www.celestialearthminerals.com Creativity – Ametrine, azurite, agatized coral, chiastolite, chrysocolla, black amethyst, carnelian, fluorite, green aventurine, fire agate, moonstone, celestite, black obsidian, sodalite, cat’s eye, larimar, rhodochrosite, magnesite, orange calcite, ruby, pink opal, blue chalcedony, abalone shell, silver topaz, green tourmaline,
    [Show full text]
  • Volume 23 / No. 7 / 1993
    Volume 23 No. 7. July 1993 1116 Journal of Gemmology THE GEMMOLOGICAL ASSOCIATION AND GEM TESTING LABORATORY OF GREAT BRITAIN OFFICERS AND COUNCIL Past Presidents: Sir Henry Miers, MA, D.Sc., FRS Sir William Bragg, OM, KBE, FRS Dr. G.F. Herbert Smith, CBE, MA, D.Sc. Sir Lawrence Bragg, CH, OBE, MC, B.Sc, FRS Sir Frank Claringbull, Ph.D., F.Inst.P., FGS Vice-Presidents: R. K. Mitchell, FGA A.E. Farn, FGA D.G. Kent, FGA E. M. Bruton, FGA, DGA Council of Management CR. Cavey, FGA T.J. Davidson, FGA N.W. Deeks, FGA E.A. Jobbins, B.Sc, C.Eng., FIMM, FGA I. Thomson, FGA V.P. Watson, FGA, DGA R.R. Harding, B.Sc., D.Phil., FGA, C. Geol. Members' Council A. J. Allnutt, M.Sc, G.H. Jones, B.Sc, Ph.D., P. G. Read, C.Eng., Ph.D., FGA FGA MIEE, MIERE, FGA, DGA P. J. E. Daly, B.Sc, FGA J. Kessler I. Roberts, FGA P. Dwyer-Hickey, FGA, G. Monnickendam R. Shepherd DGA L. Music R. Velden R. Fuller, FGA, DGA J.B. Nelson, Ph.D., FGS, D. Warren B. Jackson, FGA F. Inst. P., C.Phys., FGA CH. Winter, FGA, DGA Branch Chairmen: Midlands Branch: D.M. Larcher, FBHI, FGA, DGA North-West Branch: I. Knight, FGA, DGA Examiners: A. J. Allnutt, M.Sc, Ph.D., FGA G. H. Jones, B.Sc, Ph.D., FGA L. Bartlett, B.Sc, M.Phil., FGA, DGA D. G. Kent, FGA E. M. Bruton, FGA, DGA R. D. Ross, B.Sc, FGA C R.
    [Show full text]
  • Geology of Barium, Strontium, and Fluorine Deposits in Canada
    ECONOMIC GEOLOGY REPORT 34 GEOLOGY OF BARIUM, STRONTIUM, AND FLUORINE DEPOSITS IN CANADA K.R. DAWSON 1985 © Minister of Supply and Services Canada 1985 Available in Canada through authorized bookstore agents and other bookstores or by mail from Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada KlA OS9 and from Geological Survey of Canada offices: 60 l Booth Street Ottawa, Canada KlA OE8 3303-33rd Street N. W., Calgary, Alberta T2L 2A7 100 West Pender Street Vancouver, British Columbia V6B 1R8 (mainly B.C. and Yukon) A deposit copy of this publication is also available for reference in public libraries across Canada Cat. No. M43-34/1985E Canada: $13.00 ISBN 0-660-11902-1 Other countries: $15.60 Price subject to change without notice Critical Readers R.I. Thorpe K.M. Dawson G.F. Leech D.C . Findlay Original manuscript submitted: 1981 - 07 Approved for publication: 1983 - 04 Preface Preface Barium, strontium and fluorine have many industrial Le baryum, le strontium et le fluor connaissent de applications. All have been produced in Canada during this nombreuses utilisations industrielles. Le Canada en a produit century but at present our needs for strontium chemicals, tout au long du siecle m2is ii doit actuellement en importer, crude fluorite and fluorine chemicals are met by imports, principalement du Mexique et des Etats-Unis, pour subvenir a mainly from Mexico and the United States. ses besoins de derives chimiques de strontium et de fluorine , ainsi que de fluor brut. Barite is primarily employed in the heavy drilling muds La barytine est surtout utilisee par l'industrie used in the petroleum exploration industry.
    [Show full text]
  • GEMSTONES by Donald W
    GEMSTONES By Donald W. Olson Domestic survey data and tables were prepared by Christine K. Pisut, statistical assistant, and the world production table was prepared by Glenn J. Wallace, international data coordinator. Gemstones have fascinated humans since prehistoric times. sustaining economically viable deposits (U.S. International They have been valued as treasured objects throughout history Trade Commission, 1997, p. 23). by all societies in all parts of the world. The first stones known The total value of natural gemstones produced in the United to have been used for making jewelry include amber, amethyst, States during 2001 was estimated to be at least $15.1 million coral, diamond, emerald, garnet, jade, jasper, lapis lazuli, pearl, (table 3). The production value was 12% less than the rock crystal, ruby, serpentine, and turquoise. These stones preceding year. The production decrease was mostly because served as status symbols for the wealthy. Today, gems are not the 2001 shell harvest was 13% less than in 2000. worn to demonstrate wealth as much as they are for pleasure or The estimate of 2001 U.S. gemstone production was based on in appreciation of their beauty (Schumann, 1998, p. 8). In this a survey of more than 200 domestic gemstone producers report, the terms “gem” and “gemstone” mean any mineral or conducted by the USGS. The survey provided a foundation for organic material (such as amber, pearl, and petrified wood) projecting the scope and level of domestic gemstone production used for personal adornment, display, or object of art because it during the year. However, the USGS survey did not represent possesses beauty, durability, and rarity.
    [Show full text]