(ARC) Is Expressed in Cancer Cells and Localizes to Nuclei

Total Page:16

File Type:pdf, Size:1020Kb

(ARC) Is Expressed in Cancer Cells and Localizes to Nuclei FEBS 29471 FEBS Letters 579 (2005) 2411–2415 Apoptosis repressor with caspase recruitment domain (ARC) is expressed in cancer cells and localizes to nuclei Mi Wanga, Suparna Qanungoa, Michael T. Crowb, Michiko Watanabec, Anna-Liisa Nieminena,* a Department of Anatomy and Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA b Division of Pulmonary and Critical Care Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD 21224, USA c Department of Pediatrics, Rainbow Babies and ChildrenÕs Hospital, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA Received 14 February 2005; accepted 2 March 2005 Available online 29 March 2005 Edited by Veli-Pekka Lehto and Bax regulate inhibition of apoptosis in a CARD depen- Abstract Apoptosis repressor with caspase recruitment domain is expressed at high levels in brain and myogenic tissues, consis- dent manner [2,6,7]. Therefore, ARC inhibits both extrinsic tent with a role to inhibit apoptosis in the terminally differenti- and intrinsic cell death pathways. Basal levels of ARC in ated cells. Expression of ARC in cancers is not known. In this cardiomyocytes, neurons, and skeletal muscle fibers serve to study, we reported that ARC was highly expressed in various repress apoptosis in these terminally differentiated cells. non-myogenic and non-neurogenic human and rat cancer cell Knockdown of endogenous ARC facilitates death-inducing lines. Unexpectedly, ARC was localized almost exclusively to signaling complex assembly and triggers spontaneous Bax acti- the nuclei of cancer cells, which was unlike the cytoplasmic local- vation and apoptosis [6]. Expression of ARC in cancer cells ization of ARC in non-cancer cells. Furthermore, nuclear ARC has not been reported. Here, we show that ARC is expressed in cancer cells did not co-localize with nucleolus protein of in various human and rat cancer cells. However, in contrast 30 kDa, an alternatively spliced ARC isoform. These findings to the non-cancer cells, ARC is localized almost exclusively indicate that ARC is distributed differently in cancer cells than non-cancer cells and thus might play a role in neoplastic trans- to nuclei. formation. Ó 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. 2. Materials and methods Keywords: Apoptosis repressor with caspase recruitment domain; Apoptosis; Cancer cells 2.1. Cell culture Human MIA PaCa-2 pancreatic carcinoma, U-87 glioblastoma, HeLa cervical carcinoma, MDA-MB-231 mammary gland adenocarci- noma, DU 145 prostate carcinoma, BJAB and DG-75 lymphoma cells; non-transformed H9c2 embryonic rat heart derived cells, rat N1-S1, McA-RH7777, and ASD30 hepatoma, and PC6 pheochromocytoma cells were grown in DulbeccoÕs modified EagleÕs medium (DMEM). HCT 116 wild type human colorectal carcinoma cells as well as +/À À/À 1. Introduction HCT 116 Bax and HCT Bax cells were maintained in McCoyÕs 5a medium. SH-SY5Y human neuroblastoma cells were maintained in DMEM/F-12 medium. All media were purchased from Gibco and Apoptosis plays a critical role in adult tissue homeostasis. supplemented with 10% fetal bovine serum, 50 units/ml of penicillin The failure of cells to undergo apoptotic cell death is a factor and 50 lg/ml of streptomycin. Primary cultured rat hippocampal neu- in the pathogenesis of various human diseases, including can- rons were maintained in Neurobasal-A containing 2% B27 supplement, cers, autoimmune diseases, and viral infections [1]. The human 2 mM Glutamax-1. Cells were incubated in a humidified 37 °C incuba- tor containing 5% CO and 95% air. apoptosis repressor with caspase recruitment domain (ARC) 2 gene was first identified by screening for proteins with homol- ogy to the caspase recruitment domain (CARD) of caspase-9 2.2. Western blot analysis [2]. ARC is highly expressed in brain and myogenic tissues, Cell and tissue extracts were prepared in ice-cold RIPA lysis buffer (150 mM NaCl, 1 mM EGTA, 1% sodium deoxycholate, 1% Triton e.g., skeletal muscle and heart [2,3]. Endogenous ARC is pre- X-100, and 50 mM Tris–Cl, pH 8.0) supplemented with a cocktail dominantly cytoplasmic in rat embryonic heart H9c2 cells of protease inhibitors (Roche Diagnostics). Fresh human skeletal and mouse skeletal muscle tissue [3,4]. ARC protects cells muscle was obtained from the Human Tissue Procurement Depart- against apoptosis triggered by several stimuli, including hydro- ment, University Hospitals of Cleveland. Protein samples (50 lg) were diluted in sample buffer (200 mM Tris–Cl, 15% glycerol, 10% gen peroxide, hypoxia, and Fas ligand [3,5,6]. Protein–protein SDS, 5% b-mercaptoethanol, and 0.01% phenol blue, pH 6.8) and re- interactions of ARC with Fas, Fas-associated death domain solved on 12% SDS–PAGE gel. Proteins were then transferred and immobilized onto PVDF membranes and probed with a polyclonal anti-ARC antibody and anti-rabbit secondary antibody. ARC anti- *Corresponding author. Fax: +1 216 368 8919. body was raised against a GST-ARC fusion protein and was affinity E-mail address: [email protected] (A.-L. Nieminen). purified using the C-terminal proline–glutamic acid (P/E)-rich domain [8]. b-Tubulin was detected with a monoclonal anti-b-tubulin anti- Abbreviations: ARC, apoptosis repressor with CARD domain; CARD, body (Sigma, 1:1000) and anti-mouse secondary antibody. YY1 caspase recruitment domain; CK2, casein kinase II; Nop30, nucleolus and NQO1 were detected with monoclonal anti-YY1 antibody (Santa protein of 30 kDa; NQO-1, NAD(P)H:quinone oxidoreductase 1; Cruz, 1:1000) and anti-NQO1 antibody (Santa Cruz, 1:2000), NLS, nuclear localization signal; YY-1, YinYang 1 respectively. 0014-5793/$30.00 Ó 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.febslet.2005.03.040 2412 M. Wang et al. / FEBS Letters 579 (2005) 2411–2415 2.3. Nuclear and cytoplasmic extracts 2.6. Statistical analysis The nuclear and cytoplasmic extracts were prepared as previously Data are presented as means ± S.E.M. from three independent described with minor modifications [9]. Briefly, cells cultured on 150- experiments. Differences were assessed by two-tailed StudentÕs t test mm Petri dishes were scraped into 1 ml of ice-cold PBS. Cells were cen- with Instat Software (GraphPAD, San Diego, CA). A P value < 0.05 trifuged at 4000 · g for 5 min at 4 °C, and cell pellets were lysed in was considered to be statistically significant. 300 ll of buffer (20 mM HEPES, 20% glycerol, 10 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, and 0.1% Triton X-100, pH 7.6) on ice. After 20 min incubation, supernatants were collected as cytoplas- mic extracts after centrifugation (4000 · g for 5 min at 4 °C). Pellets 3. Results and discussion were lysed in 30 ll of buffer (20 mM HEPES, 20% glycerol, 500 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, and 0.1% Triton X-100, pH 7.6). After 20 min incubation on ice, supernatants were collected as nu- ARC is highly expressed in heart, skeletal muscle and brain clear extracts after centrifugation (16000 · g for 15 min at 4 °C). but is deficient in liver, lung, kidney, pancreas, placenta, and various lymphoid-hematopoietic tissues [2,5]. In order to 2.4. Immunocytochemistry examine whether ARC is expressed in human cancer cells, HCT 116, MDA-MB 231, and MIA PaCa-2 cells cultured on glass we assessed protein expression of ARC in a series of human coverslips were fixed with 1% paraformaldehyde overnight at 4 °C cancer cell lines. Equal amounts of protein from whole cell ly- and permeabilized in 0.05% Triton X-100 for 5 min at room tempera- sates prepared from 10 human cancer cell lines were loaded ture. After washes, cells were blocked with 1% BSA for 2 h, followed by incubation with primary antibody against ARC overnight at onto SDS–PAGE gels and analyzed by Western blot with an 4 °C. Cells were then washed with PBS followed by incubation with anti-ARC antibody (Fig. 1). Among these human cancer cell Alexa Fluor 488 or 543 anti-rabbit IgG for 1 h at room temperature. lines, ARC protein was detected in nine cell lines: MIA Hoechst 33342 (1 lg/ml) was included to stain nuclei. PaCa-2 pancreatic carcinoma (Fig. 1, lane 2); HCT 116 colo- Samples of human skeletal muscles were cut into 1 cm3 blocks and fixed overnight with 1% paraformaldehyde at 4 °C. Blocks were placed rectal carcinoma (lane 3); MDA 231 breast carcinoma (lane successively into 10%, 20% and 30% sucrose, respectively for 8 h at 4); A549 lung carcinoma (lane 5); HeLa cervical carcinoma 4 °C and frozen in embedding medium cooled on dry ice (Tissue- (lane 6); DU 145 prostate carcinoma (lane 7); U-87 glioblas- Tek). Frozen tissue sections were permeabilized with 0.05% Triton toma (lane 9); BJAB and DG-75 lymphoma (lane 10 and X-100 for 5 min and blocked with 10% goat serum and 1% BSA in 11). ARC was not detected in SH-SY5Y neuroblastoma (lane PBS for 2 h at room temperature. After incubation in primary anti- body against ARC for 2 h at room temperature, sections were washed 8). Tubulin was used as a loading control and was variable be- with PBS, followed by incubation with anti-rabbit Alexa Fluor 488 or tween different cell lines and tissue types. This likely reflects 543 for 1 h. Images of Alexa Fluor 488 fluorescence was collected using different levels of tubulin protein expression in the different cell 488-nm excitation and >505-nm emission filters. Alexa Fluor 543 fluo- types. For example, tubulin-rich brain tissue showed the dens- rescence was collected using 543-nm excitation and >560-nm emission filters.
Recommended publications
  • Revistasinvestigacion.Unmsm.Edu.Pe/Index.Php/Rpb/Index © Los Autores
    Memorias del Primer Congreso Internacional de Revista peruana de biología 27(1): 005 - 014 (2020) doi: http://dx.doi.org/10.15381/rpb.v27i1.17624 Biotecnología e innovación - ICBi 2018 ISSN-L 1561-0837; eISSN: 1727-9933 Universidad Nacional Mayor de San Marcos Meeting Report of the First International Congress of Biotechnology and innovation - ICBi 2018 Trabajos presentados al I Congreso Internacional de Biotecnología e innovación (ICBi), 9 - 12 de julio de 2018, Universidad Nacional Agraria La Molina, Lima, Perú. The First International Congress of Biotechnology and Innovation, Editoras: Ilanit Samolski held in Lima- Peru from July 9 to 12, 2018, was organized by the La- Maria Lucila Hernández-Macedo boratory of Mycology and Biotechnology “Marcel Gutiérrez-Correa” Gretty Katherina Villena (LMB-MGC) of La Molina National Agrarian University (UNALM). Organizing Committee Autores President: Gretty K. Villena, Ph.D. in Biological Sciences and Gretty K. Villena * Engineering, https://orcid.org/0000-0001-8123-3559 [email protected] https://orcid.org/0000-0001-8123-3559 Vice-President: Ilanit Samolski, Ph.D. in Biotechnology, Maria Lucila Hernández- Macedo https://orcid.org/0000-0002-1883-7795 [email protected] https://orcid.org/0000-0003-1050-9807 Secretary: Maria Lucila Hernández Macedo, Ph.D. in Cellular Ilanit Samolski and Structural Biology, https://orcid.org/0000-0003-1050- [email protected] 9807 https://orcid.org/0000-0002-1883-7795 Correspondencia Scientific Committee *Corresponding author Universidad Nacional Agraria La Molina *President, ICBi 2018 Laboratorio de Micología y Biotecnología "Marcel Ana Kitazono Sugahara, Ph.D. in Pharmaceutical Sciences and Gutiérrez-Correa" (LMB-MGC), Facultad de Ciencias, Biotechnology, https://orcid.org/0000-0002-6924-1799 Universidad Nacional Agraria La Molina, Lima 12, Perú.
    [Show full text]
  • Isolated Mouse Liver Mitochondria Are Devoid of Glucokinase
    BBRC Biochemical and Biophysical Research Communications 334 (2005) 907–910 www.elsevier.com/locate/ybbrc Isolated mouse liver mitochondria are devoid of glucokinase Ernesto Bustamante, Peter Pediaditakis, Lihua He, John J. Lemasters * Department of Cell and Developmental Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7090, USA Received 21 June 2005 Available online 12 July 2005 Abstract Glucokinase is a hexokinase isoform with low affinity for glucose that has previously been identified as a cytosolic enzyme. A recent report claims that glucokinase physically associates with liver mitochondria to form a multi-protein complex that may be physiologically important in apoptotic signaling [N.N. Danial, C.F. Gramm, L. Scorrano, C.Y. Zhang, S. Krauss, A.M. Ranger, S.R. Datta, M.E. Greenberg, L.J. Licklider, B.B. Lowell, S.P. Gygi, S.J. Korsmeyer, Nature 424 (2003) 952–956]. Here, we re-ex- amined the association of glucokinase with isolated mouse liver mitochondria. When glucokinase activity was measured by coupled enzyme assay, robust activity was present in whole liver homogenates and their 9500g supernatants (cytosol), but activity in the purified mitochondrial fraction was below detection (<0.2% of homogenate). Furthermore, addition of 45 mM glucose in the pres- ence of ATP did not increase mitochondrial respiration, indicating the absence of ADP formation by glucokinase or any other hexo- kinase isoform. Immunoblots of liver homogenates and cytosol revealed strong glucokinase bands, but no immunoreactivity was detected in mitochondria. In conclusion, mouse liver mitochondria lack measurable glucokinase. Thus, functional linkage of gluco- kinase to mitochondrial metabolism and apoptotic signaling is unlikely to be mediated by the physical association of glucokinase with mitochondria.
    [Show full text]
  • Sociedad De Bioquímica De Chile Regulatory Aspects
    SOCIEDAD DE BIOQUÍMICA DE CHILE SIMPOSIO IN TERN AC ION AL REGULATORY ASPECTS OF THE KINASES OF CARBOHYDRATE METABOLISM ABSTRACTS The adenine nucleotides in metabolic regulation concentration ratio [ATP]/{ADPJ or in the mole frac­ DANIEL E. ATKINSON— Department of Chemis­ tions of the adenine nucleotides. A quantitative mea­ try, University of California, Los Angeles. USA. sure of the energy status of the adenine nucleotide pool is given by the adenylate energy charge, the The adenine nucleotides are the major energy mote fraction of ATP pltts half the mole fraction of transducing system linking catabolic and anabolic ADP. This parameter is found by analysts to be main nif.tabolic sequences. Thus we cannot realistically dis­ tained at a value near <fc9 for most or all normallv cuss regulation of the kinases of carbohydrate metabo­ metabolizing cells. This stabilization most 'depend on lism without considering broader aspects of energy regulation of sequences that use ATP and of those metabolism. In regulating the rate of flow through that regenerate ATP (such as glycolysis) by the glycolysis, the kinases are responding to the energy adenine nucleotides. Thus neither regulation of glyco­ needs of the cell; thus their regulatory properties lysis and respiration nor regulation of biosynthesis are not related to glycolysis only, but to the total could exist alone; they interact continuously and are metabolism of the cell. That is, since the function in fact two parts of a single regulatory system. of glycolysis is to supply ATP and biosynthetic inter­ Some aspects of regulation of enzymes by energy mediates, glycolysis cannot be self-regulated, but must chaTge and of the stabilization of energy charge in respond to changes in the amounts of ATP and in­ vivo will be discussed as background for the more termediates required by the cell.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE hacer click aquí para ver fotografía Dr. Carlos Ernesto Bustamante Donayre Na cido: Lima, 19 de mayo 1950 Email: [email protected] [email protected] tito@jhmi. edu http://biogenomica.com http://www.ins.gob.pe @ErnesBustamante INDEX: biotecnología, biología molecular, bioquímica, mitocondrias, cáncer, bioseguridad, biodiversidad, paternidad, ADN, GMO, agricultura, reactivos y kits de diagnóstico clínico, OGM, transgénicos, biología forense, laboratorio clínico, genética médica, contaminación, medio ambiente, biorremediación, minería, EIA, impacto ambiental, BRCA, cáncer de mama, perito judicial, investigación científica, ciencia, tecnología, innovación tecnológica. GRADOS ACADÉMICOS Y TÍTULOS PROFESIONALES Doctor (Ph.D.) en Bioquímica y Biología Celular & Molecular, 1978, The Johns Hopkins University School of Medicine ,(ex alumno 81937) Baltimore, Maryland, U.S.A. Asesor de Tesis: Dr. Peter L. Pedersen &Tutor de Tesis: Dr. Albert L. Lehninger (†) Master (M.Sc.) en Bioquímica, 1972, Universidad Peruana Cayetano Heredia, Lima, Perú Bachiller (B.Sc.) en Biología, 1971, Universidad Peruana Cayetano Heredia, Lima, Perú Licenciado en Biología, 1975, Universidad Peruana Cayetano Heredia, Lima, Perú COLEGIATURAS Y REGISTROS PROFESIONALES Colegio de Biólogos del Perú, registro CBP N° 0492 Colegio de Químicos del Perú, registro CQP N° 0161 Ministerio de Salud del Perú, registro MINSA N° 2010 Registro de Peritos Judiciales del Poder Judicial del Perú, registro REPEJ N° 09000182006 POSICIONES DE TRABAJO Y RESPONSABILIDADES ACTUALES Desde Jul 2014 Jefe Institucional del Instituto Nacional de Salud del Perú. Designación por Resolución Suprema R.S. 027-2014-SA del 24-07-2014 Ministerio de Salud. Desde Oct 2002 Director Científico de BioGenómica (Representaciones Genómicas SAC) , (Lima, Perú) Laboratorio especializado en Tecnología de ADN, Pruebas de Paternidad y Genética Molecular del Cáncer.
    [Show full text]
  • High Aerobicglycolysis of Rat Hepatoma Cells in Culture: Role Of
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 9, pp. 3735-3739, September 1977 Biochemistry High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase (L-lactic acid/D-glucose/D-galactose/liver/neoplasia) ERNESTO BUSTAMANTE* AND PETER L. PEDERSEN Department of Physiological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Communicated by Albert L. Lehninger, June 20, 1977 ABSTRACT A tumorigenic anchorage-dependent cell line of lactic acid only when grown on glucose, the hepatoma culture (H-91) was established in culture from an azo-dye-induced rat system seemed ideal for exploring the molecular events re- ascites hepatoma. When grown in a glucose-containing medium for the the cells exhibit high rates of lactic acid production character- sponsible "high glycolysis" of cancer cells. istic of rapidly growing tumor cells. However, when glucose is replaced with galactose the cells grow equally well but exhibit METHODS only moderately elevated rates of lactic acid production. The Cell Line and Tissue Culture. The cell line H-91 was es- molecular basis for this observation cannot be attributed to differences in permeability because initial rates of glucose and tablished in this laboratory frQm the azo-dye-induced rat ascites galactose entry into hepatoma cells are identical. Rather, the hepatoma AS-30D (6). Rats bearing the AS-30D ascites tumor activity of hexokinase (ATP:Dhexose 6-phosphotransferase, EC cells at passage 300 were generously provided by A. C. Griffin 2.7.1.1) is found to be high in hepatoma cells, about 20-fold of the M. D.
    [Show full text]
  • Cancer and Glucose
    Cancer and Glucose 1271 High Street, Auburn, CA 95603 • Phone (530) 823-7092 • order line (800) 359-6091 Hours: Tues. – Fri. 10 a.m. – 4 p.m. • E-mail: [email protected] web: www.ImageAwareness.com June 2017 Volume 13: Issue 2 Introduction Afterwards, it is believed, he feared causes of cancer. He said, “Cancer, the development of cancer. This prob- above all other diseases, has countless Louis Pasteur observed two types ably saved Warburg’s life. He was the seconday causes. Almost anything of energy production in the world of most prominent cancer researcher in can cause cancer, but even for cancer, single cells. The most primitive form Germany during the Second World there is only one prime cause. The of energy production is anaerobic and War. Hitler turned a blind eye to his prime cause of cancer is the replace- does not use oxygen. This process is Jewish ancestry and ordered him to ment of oxygen in normal body cells also called fermentation and is utilized continue his research on cancer. by fermentation of sugar.” in manufacture of beer and wine. This is considered a more primitive form In 1944, Warburg was nominated Reference: of energy production. for a second Nobel Prize by Albert https://en.wikipedia.org/wiki/Otto_Heinrich_ Szent-Gyorgyi, the scientist who iso- Warburg The second form of energy produc- http://www.nobelprize.org/nobel_prizes/medi- lated vitamin C, for his discovery of tion noted by Pasteur is aerobic which cine/laureates/1931/warburg-bio.html the involvement of nicotinamide (vi- means that it utilized oxygen.
    [Show full text]
  • INTERNATIONAL SYMPOSIUM Regulatory Aspects of the Kinases
    INTERNATIONAL SYMPOSIUM Regulatory Aspects of the Kinases of Carbohydrate Metabolism PROGRAM , Thursday, July 20th 09.00 — 09.05 TITO URETA. Wellcome and Introductory Remarks. SESSION I In vivo Regulatory Properties Chairman: Dr. Hermann Niemeyer 09.05 — 09.50 DANIEL E. ATKINSON (University of California, Los Angeles). The adenine nucleotides in metabolic regulation. 09.50 — 10.35 ERNESTO BUSTAMANTE (Universidad Cayetano Heredia, Lima). Mitochondrial hexokinase: key to the high aerobic glycolysis of tumor cells. SESSION ii - : - Regulation of Glucokinase levels Chairman: Dr. Athel Cornish-Bowden 11.00 — 11.45 HERMANN NIEMEYER (Universidad de Chile, Santiago). Adaptive properties of liver glucokinase. 11.45 — 12.30 DERYCK G. WALKER (University of Birmingham, Birmingham). Structural and developmental aspects of hepatic glucokinase. SESSION III Kinetics of Glucose Phosphorylating Enzymes Chairman: Dr. Daniel E. Atkinson 15.00 — 15.45 OCTAVIO MONASTERIO (Universidad de Chile, Santiago). Kinetic mechanism of glucokinase. Order of addition of the substrates using 2-deoxy glucose as the sugar substrate. 15.45 — 16.30 MARIA L. CARDENAS (Universidad de Chile, Santiago). Kinetic cooperativity of glucokinase with glucose. 16.30 — 17.15 ATHEL CORNISH-BOWDEN (University of Birmingham, Birmingham). Mammalian hexokinases. A system for the study of co-operativity in mo- nomeric enzymes. The 45 min period assigned to each speaker includes 10 min for questions and discussion. Friday, July 21st SESSION IV Ontogeny and Phylogeny of Hexokinases and Glucokinase Chairman: Dr. Deryck G. Walker 09.00 — 09.45 NICOLA C. PARTRIDGE (University of Western Australia, Nedlands). Factors regulating the appearance of glucokinase in neonatal rat liver. 09.45 — 10.30 TITO URETA (Universidad de Chile, Santiago).
    [Show full text]
  • Pedersen CV Feb-26 2008
    CURRICULUM VITAE (February 20, 2008) Peter L. Pedersen, Ph.D. (Professor, Biological Chemistry) Department of Biological Chemistry Johns Hopkins University School of Medicine 1 CURRICULUM VITAE (Peter L. Pedersen) PRIOR TO UNIVERSITY Born: Muskogee, Oklahoma Attended Catoosa (Indian) Schools, Catoosa, Oklahoma (Near Tulsa) School Salutatorian; Letters in Baseball, Basketball, Football UNIVERSITY DEGREES AND APPOINTMENTS 1961 B.S. in Chemistry, University of Tulsa, Tulsa, Oklahoma 1964 Ph.D. in Chemistry, (Biochemistry Major), University of Arkansas, Fayetteville, Arkansas, (Research Advisor, Jacob Sacks, M.D., Ph.D) 1964 Postdoctoral Fellow, Department of Physiological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland (Research Advisor: A. L. Lehninger, Ph.D.) 1967 Instructor, Department of Physiological Chemistry, The Johns Hopkins University School of Medicine 1968 Assistant Professor, Department of Physiological Chemistry, The Johns Hopkins University School of Medicine 1972 Associate Professor, Department of Physiological Chemistry, The Johns Hopkins University School of Medicine 1975-present Professor, Department of Biological Chemistry*, The Johns Hopkins University School of Medicine 1992-1993 Fogarty Scholar in Residence, NIH (NCI), Bethesda, MD. (Sponsor, Claude Klee; interacted with laboratories of C. Klee, M. Gottesman and I. Pastan at the NCI) (*Department name changed in 1984) AWARDS/HONORS/ACCOMPLISHMENTS A. Teaching/Research (General) 1. Eight certified teaching awards (Believed to be most among JHUSOM faculty) 2. Forty three consecutive years (no absence) as a Teacher of Medical Students (JHUSOM) 3. Above the 95th percentile of the distribution of (extramural) NIH grants (Past 25 yrs.) 4. Consistent funding from the NIH (> 40 yrs.) 5. One of the longest NIH R01grants (38 yrs, NCI.) 6.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Dr. Carlos Ernesto Bustamante Donayre hacer click para ver fotografía o vídeo Calle Piura 1067, Dpto. F, Miraflores, Lima 18, Perú (casa) Pasaporte: 116791231 Paseo Los Eucaliptos 424, Urb.Camacho, La Molina, Lima 12, Perú (oficina privada) RUC: 10082329205 Nacido: Lima, 19 de mayo 1950 Divorciado. Tel +51-1-434-5869 (oficina), +51-1-445-9556 (casa) y +51-997-894-926 (celular) 5 Hijos: Alia(38), Jorge(37), Email: [email protected] [email protected] [email protected] Renato(29), Alonso(21), Mauricio(19) http://biogenomica.com @ErnesBustamante Nacionalidad peruana, DNI 08232920 Hacer click para descargar archivos sustentatorios: 55 Docs + DNI + CBP + CQP + pasaporte + licencia conducir + constancia RNP RESUMEN: A lo largo de las últimas cuatro décadas, he contribuido a la ciencia tanto en el mundo académico como el empresarial y he brindado servicios en apoyo de la sociedad y del Estado. En lo académico, he publicado treinta artículos de investigación original revisados por pares, en la especialidad de bioenergética mitocondrial y biología molecular. Mi contribución esencial a los campos de la Bioquímica y la Biología Celular ha sido demostrar que la hexoquinasa mitocondrial es la enzima responsable de conducir altas tasas de glicólisis aeróbica características de células tumorales muy malignas y de rápido crecimiento. Hoy ello es utilizado clínicamente para diagnosticar y monitorear respuestas a terapia de cáncer, registrando imágenes de la captación de 2-18F-2-desoxiglucosa (forma radiactiva del sustrato de la hexoquinasa) mediante Tomografía de Emisión de Positrones (PET). He sido: Profesor e investigador en Univ. Cayetano Heredia, Johns Hopkins Univ. y Univ.
    [Show full text]
  • High Aerobicglycolysis of Rat Hepatoma Cells in Culture: Role Of
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 9, pp. 3735-3739, September 1977 Biochemistry High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase (L-lactic acid/D-glucose/D-galactose/liver/neoplasia) ERNESTO BUSTAMANTE* AND PETER L. PEDERSEN Department of Physiological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Communicated by Albert L. Lehninger, June 20, 1977 ABSTRACT A tumorigenic anchorage-dependent cell line of lactic acid only when grown on glucose, the hepatoma culture (H-91) was established in culture from an azo-dye-induced rat system seemed ideal for exploring the molecular events re- ascites hepatoma. When grown in a glucose-containing medium for the the cells exhibit high rates of lactic acid production character- sponsible "high glycolysis" of cancer cells. istic of rapidly growing tumor cells. However, when glucose is replaced with galactose the cells grow equally well but exhibit METHODS only moderately elevated rates of lactic acid production. The Cell Line and Tissue Culture. The cell line H-91 was es- molecular basis for this observation cannot be attributed to differences in permeability because initial rates of glucose and tablished in this laboratory frQm the azo-dye-induced rat ascites galactose entry into hepatoma cells are identical. Rather, the hepatoma AS-30D (6). Rats bearing the AS-30D ascites tumor activity of hexokinase (ATP:Dhexose 6-phosphotransferase, EC cells at passage 300 were generously provided by A. C. Griffin 2.7.1.1) is found to be high in hepatoma cells, about 20-fold of the M. D.
    [Show full text]