British Journal of Applied Science & Technology 18(5): 1-12, 2016; Article no.BJAST.31213 ISSN: 2231-0843, NLM ID: 101664541 SCIENCEDOMAIN international www.sciencedomain.org On the Inverting of a General Heptadiagonal Matrix ∗ A. A. Karawia1;2 1Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. 2Computer Science Unit, Deanship of Educational Services, Qassim University, P.O.Box 6595, Buraidah 51452, Saudi Arabia. Author’s contribution The sole author designed, analyzed and interpreted and prepared the manuscript. Article Information DOI: 10.9734/BJAST/2016/31213 Editor(s): (1) Orlando Manuel da Costa Gomes, Professor of Economics, Lisbon Accounting and Business School (ISCAL), Lisbon Polytechnic Institute, Portugal. Reviewers: (1) Jia Liu, University of West Florida, USA. (2) Hammad Khalil, University of Education (Attock Campus), Lahore, Pakistan. (3) Gerald Bourgeois, University of French Polynesia and University of Aix-Marseille, France. Complete Peer review History: http://www.sciencedomain.org/review-history/17657 Received: 26th December 2016 Accepted: 21st January 2017 Original Research Article Published: 28th January 2017 ABSTRACT In this paper, the author presents a new algorithm computing the inverse of any nonsingular heptadiagonal matrix. The computational cost of our algorithms is O(n2) operations in C. The algorithms are suitable for implementation using computer algebra system such as MAPLE, MATLAB and MATHEMATICA. Examples are given to illustrate the efficiency of the algorithms. Keywords: Heptadiagonal matrices; LU factorization; Determinants; Computer algebra systems(CAS). 2010 Mathematics Subject Classification: 15A15, 15A23, 68W30, 11Y05, 33F10, F.2.1, G.1.0. *Corresponding author: E-mail:
[email protected]; Karawia; BJAST, 18(5), 1-12, 2016; Article no.BJAST.31213 1 INTRODUCTION The n × n general heptadiagonal matrices take the form: 0 1 d1 e1 f1 g1 B C B c2 d2 e2 f2 g2 C B C B b3 c3 d3 e3 f3 g3 0 C B C B a4 b4 c4 d4 e4 f4 g4 C B C B C B C B .