MAT TRIAD 2019 Book of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

MAT TRIAD 2019 Book of Abstracts MAT TRIAD 2019 International Conference on Matrix Analysis and its Applications Book of Abstracts September 8 13, 2019 Liblice, Czech Republic MAT TRIAD 2019 is organized and supported by MAT TRIAD 2019 Edited by Jan Bok, Computer Science Institute of Charles University, Prague David Hartman, Institute of Computer Science, Czech Academy of Sciences, Prague Milan Hladík, Department of Applied Mathematics, Charles University, Prague Miroslav Rozloºník, Institute of Mathematics, Czech Academy of Sciences, Prague Published as IUUK-ITI Series 2019-676ø by Institute for Theoretical Computer Science, Faculty of Mathematics and Physics, Charles University Malostranské nám. 25, 118 00 Prague 1, Czech Republic Published by MATFYZPRESS, Publishing House of the Faculty of Mathematics and Physics, Charles University in Prague Sokolovská 83, 186 75 Prague 8, Czech Republic Cover art c J. Na£eradský, J. Ne²et°il c Jan Bok, David Hartman, Milan Hladík, Miroslav Rozloºník (eds.) c MATFYZPRESS, Publishing House of the Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic, 2019 i Preface This volume contains the Book of abstracts of the 8th International Conference on Matrix Anal- ysis and its Applications, MAT TRIAD 2019. The MATTRIAD conferences represent a platform for researchers in a variety of aspects of matrix analysis and its interdisciplinary applications to meet and share interests and ideas. The conference topics include matrix and operator theory and computation, spectral problems, applications of linear algebra in statistics, statistical models, matrices and graphs as well as combinatorial matrix theory and others. The goal of this event is to encourage further growth of matrix analysis research including its possible extension to other elds and domains. MAT TRIAD 2019 is a registered as satellite meeting of ICIAM 2019, The International Congress on Industrial and Applied • Mathematics, to be held at Valencia, Spain, July 15-19, 2019, http://iciam2019.org/, ILAS-Endorsed Meeting, https://www.ilasic.org/misc/meetings.html. • MAT TRIAD 2019 in Liblice in Czech Republic is organized based on the successful concept of previous MAT TRIAD editions, which are held biannually since 2005. The conference is scheduled for ve days with a series of invited lectures by leading experts in their eld. The invited speakers are: Dario Bini (University of Pisa) • Mirjam Dür (University of Augsburg) • Arnold Neumaier (University of Vienna) • Martin Stoll (Technical University of Chemnitz) • Two of the invited speakers serve as lectures: Shmuel Friedland (University of Illinois) - the Hans Schneider ILAS Lecturer • Zden¥k Strako² (Charles University) • Two recipients of the Young Scientists Awards from MAT TRIAD 2017, which took place in B¦dlewo, are also invited to give their lecture: Álvaro Barreras (Universidad Internacional de La Rioja) • Ryo Tabata (National Institute of Technology) • ii There are four special sessions organized: Total positivity • organiser: Mohammad Adm, Palestine Polytechnic University, Hebron & Jürgen Garlo, University of Applied Sciences and University of Konstanz Tropical matrix algebra and its applications • organiser: Aljo²a Peperko, University of Ljubljana, Slovenia & Sergei Sergeev, University of Birmingham, UK Recent developments of veried numerical computations • organizer: Takeshi Ogita, Tokyo Woman's Christian University & Siegfried M. Rump, Ham- burg University of Technology Interval matrices • organiser: Milan Hladík, Charles University, Prague First, we wish to thank International Linear Algebra Society and RSJ Foundation, to make the conference possible as well as other supporters and sponsors. We thank the members of scientic committee for their work and feedback on the event and to members of local organizing committee for their cooperation and help with necessary organizational tasks. We want to thank all invited speakers for accepting invitations and preparations of their presentations as well as all participants of the conference to make the event possible. We wish them rich time and fruitful discussions during MAT TRIAD 2019 in Liblice. Miroslav Rozloºník, Milan Hladík The nal program is available at https://mattriad.math.cas.cz/ Scientic Committee Tomasz Szulc, chair, Adam Mickiewicz University, Pozna«, Poland Natália Bebiano, University of Coimbra, Coimbra, Portugal Ljiljana Cvetkovi£, University of Novi Sad, Serbia Heike Faÿbender, Technische Universität Braunschweig, Germany Simo Puntanen, University of Tampere, Finland Local Organizing Committee Miroslav Rozloºník, Institute of Mathematics, Czech Academy of Sciences, Prague Milan Hladík, Department of Applied Mathematics, Charles University, Prague Hana Bílková, Institute of Mathematics and Institute of Computer Science, Czech Academy of Sciences Jan Bok, Computer Science Institute of Charles University, Prague David Hartman, Department of Applied Mathematics, Charles University, Prague and In- stitute of Computer Science, Czech Academy of Sciences, Prague Jaroslav Horá£ek, Department of Applied Mathematics, Charles University, Prague Miroslav T·ma, Department of Numerical Mathematics, Charles University, Prague Petr Tichý, Department of Numerical Mathematics, Charles University, Prague iii Contents Invited talks 1 Álvaro Barreras, Juan Manuel Peña: Tridiagonal inverses of tridiagonal M-matrices and related pentadiagonal matrices 2 Dario A. Bini: Solving matrix equations encountered in stochastic processes: an algorithmic analysis 4 Mirjam Dür: Copositive optimization and completely positive matrix factorization . 6 Shmuel Friedland: The Collatz-Wielandt quotient for pairs of nonnegative operators .......... 9 Arnold Neumaier: Condence intervals for large-scale linear least squares solutions . 11 Martin Stoll: From PDEs to data science: an adventure with the graph Laplacian . 12 Zden¥k Strako²: Operator preconditioning, spectral information and convergence behavior of Krylov subspace methods .................................... 13 Ryo Tabata: Immanants and symmetric functions ......................... 15 Special sessions 17 Total positivitity 18 Rola Alseidi, Michael Margaliot, Jürgen Garlo: On the spectral properties of nonsingular matrices that are strictly sign-regular for some order with applications to totally positive discrete-time systems . 19 Kanae Akaiwa, Kazuki Maeda: An inverse eigenvalue problem for pentadiagonal oscillatory matrices . 21 Jürgen Garlo, Mohammad Adm, Khawla Al Muhtaseb, and Ayed AbedelGhani: Relaxing the nonsingularity assumption for intervals of totally nonnegative matrices 23 Apoorva Khare: Total positivity preservers ............................... 24 iv Plamen Koev: Accurate eigenvalues and zero Jordan blocks of (singular) sign-regular matrices . 26 Olga Kushel: Totally positive matrices in the theory of robust spectral clustering . 28 Ana Marco, José-Javier Martínez, Raquel Viaña: Totally positive h-Bernstein bases, bidiagonal decomposition, and applications . 30 J. Delgado, H. Orera, J. M. Peña: On accurate computations with subclasses of totally positive matrices . 32 Alexander Dyachenko, Mikhail Tyaglov: On the number of zeroes and poles of functions generating Pólya frequency sequences 33 Tropical matrix algebra and its applications 35 Marianne Akian, Stéphane Gaubert, Louis Rowen: Linear algebra and convexity over symmetrized semirings, hyperelds and systems 36 Nikolai Krivulin: Complete solution of tropical vector inequalities using matrix sparsication . 38 Nicola Guglielmi, Oliver Mason, Aisling McGlinchey, Fabian Wirth: On Barabanov norms and subeigencones for max algebraic inclusions, and opacity for systems over the max algebra ............................ 39 Zur Izhakian, Glenn Merlet: Tropical matrices: ranks, powers and semigroup identities . 41 Stéphane Gaubert, Adi Niv: Tropical planar networks ................................ 43 Aljo²a Peperko, Vladimir Müller: The Bonsall and lower cone spectral radius of suprema preserving mappings and approximate point spectrum .............................. 46 Artur Pi¦kosz: Some geometry of the SMPA .............................. 48 María Jesús de la Puente: QuasiEuclidean classication of maximal alcoved convex polyhedra . 50 Amnon Rosenmann, Franz Lehner, Aljo²a Peperko: Polynomial convolutions in max-plus algebra ..................... 53 Louis Rowen: Geometry and linear algebra on systems ........................ 55 Any Muanalifah, Daniel Jones, Serge¨Sergeev: Cryptography using tropical matrix algebra ...................... 57 Karel Zimmermann: Two-sided equation (max,+)/(min,+)-systems .................... 59 Recent developments of veried numerical computations 62 Siegfried M. Rump, Marko Lange: Veried inclusion of a nearby matrix of specied rank deciency . 63 Atsushi Minamihata, Takeshi Ogita, Shin'ichi Oishi: A note on verication methods for sparse non-symmetric linear systems . 65 v Takeshi Ogita, Kengo Nakajima: Accurate and veried solutions of large sparse linear systems arising from 3D Pois- son equation ....................................... 67 Denis Chaykin, Christian Jansson, Frerich Keil, Marko Lange, Kai Torben Ohlhus, Siegfried M. Rump: Rigorous results in electronic structure calculations . 69 Katsuhisa Ozaki, Takeshi Ogita: Error-free transformation of a product of three matrices and its applications . 71 Florian Bünger, Siegfried M. Rump: Gershgorin circles and the determinant of real or complex matrices . 73 Siegfried M. Rump: Sharp inclusions of the determinant of real or complex, point or interval matrices . 75
Recommended publications
  • 1 Introduction
    Real and Complex Hamiltonian Square Ro ots of SkewHamiltonian Matrices y z HeikeFab ender D Steven Mackey Niloufer Mackey x Hongguo Xu January DedicatedtoProfessor Ludwig Elsner on the occasion of his th birthday Abstract We present a constructive existence pro of that every real skewHamiltonian matrix W has a real Hamiltonian square ro ot The key step in this construction shows how one may bring anysuch W into a real quasiJordan canonical form via symplectic similarityWe show further that every W has innitely many real Hamiltonian square ro ots and givealower b ound on the dimension of the set of all such square ro ots Extensions to complex matrices are also presented This report is an updated version of the paper Hamiltonian squareroots of skew Hamiltonian matrices that appearedinLinear Algebra its Applicationsv pp AMS sub ject classication A A A F B Intro duction Any matrix X suchthatX A is said to b e a square ro ot of the matrix AF or general nn complex matrices A C there exists a welldevelop ed although somewhat complicated theory of matrix square ro ots and a numb er of algorithms for their eective computation Similarly for the theory and computation of real square ro ots for real matrices By contrast structured squareroot problems where b oth the matrix A Fachb ereich Mathematik und Informatik Zentrum fur Technomathematik Universitat Bremen D Bremen FRG email heikemathunibremende y Department of Mathematics Computer Science Kalamazo o College Academy Street Kalamazo o MI USA z Department of Mathematics
    [Show full text]
  • Eigenvalue Perturbation Theory of Structured Real Matrices and Their Sign Characteristics Under Generic Structured Rank-One Perturbations∗
    Eigenvalue perturbation theory of structured real matrices and their sign characteristics under generic structured rank-one perturbations∗ Christian Mehlx Volker Mehrmannx Andr´eC. M. Ran{ Leiba Rodmank July 9, 2014 Abstract An eigenvalue perturbation theory under rank-one perturbations is developed for classes of real matrices that are symmetric with respect to a non-degenerate bilinear form, or Hamiltonian with respect to a non-degenerate skew-symmetric form. In contrast to the case of complex matrices, the sign characteristic is a cru- cial feature of matrices in these classes. The behavior of the sign characteristic under generic rank-one perturbations is analyzed in each of these two classes of matrices. Partial results are presented, but some questions remain open. Appli- cations include boundedness and robust boundedness for solutions of structured systems of linear differential equations with respect to general perturbations as well as with respect to structured rank perturbations of the coefficients. Key Words: real J-Hamiltonian matrices, real H-symmetric matrices, indefinite inner product, perturbation analysis, generic perturbation, rank-one perturbation, T - even matrix polynomial, symmetric matrix polynomial, bounded solution of differential equations, robustly bounded solution of differential equations, invariant Lagrangian subspaces. Mathematics Subject Classification: 15A63, 15A21, 15A54, 15B57. xInstitut f¨urMathematik, TU Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany. Email: fmehl,[email protected]. {Afdeling Wiskunde, Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam, De Boele- laan 1081a, 1081 HV Amsterdam, The Netherlands and Unit for BMI, North West University, Potchef- stroom, South Africa. E-mail: [email protected] kCollege of William and Mary, Department of Mathematics, P.O.Box 8795, Williamsburg, VA 23187-8795, USA.
    [Show full text]
  • Solving Systems of Linear Equations by Gaussian Elimination
    Chapter 3 Solving Systems of Linear Equations By Gaussian Elimination 3.1 Mathematical Preliminaries In this chapter we consider the problem of computing the solution of a system of n linear equations in n unknowns. The scalar form of that system is as follows: a11x1 +a12x2 +... +... +a1nxn = b1 a x +a x +... +... +a x = b (S) 8 21 1 22 2 2n n 2 > ... ... ... ... ... <> an1x1 +an2x2 +... +... +annxn = bn > Written in matrix:> form, (S) is equivalent to: (3.1) Ax = b, where the coefficient square matrix A Rn,n, and the column vectors x, b n,1 n 2 2 R ⇠= R . Specifically, a11 a12 ... ... a1n a21 a22 ... ... a2n A = 0 1 ... ... ... ... ... B a a ... ... a C B n1 n2 nn C @ A 93 94 N. Nassif and D. Fayyad x1 b1 x2 b2 x = 0 1 and b = 0 1 . ... ... B x C B b C B n C B n C @ A @ A We assume that the basic linear algebra property for systems of linear equa- tions like (3.1) are satisfied. Specifically: Proposition 3.1. The following statements are equivalent: 1. System (3.1) has a unique solution. 2. det(A) =0. 6 3. A is invertible. In this chapter, our objective is to present the basic ideas of a linear system solver. It consists of two main procedures allowing to solve efficiently (3.1). 1. The first, referred to as Gauss elimination (or reduction) reduces (3.1) into an equivalent system of linear equations, which matrix is upper triangular. Specifically one shows in section 4 that Ax = b Ux = c, () where c Rn and U Rn,n is given by: 2 2 u11 u12 ..
    [Show full text]
  • Arxiv:2009.05100V2
    THE COMPLETE POSITIVITY OF SYMMETRIC TRIDIAGONAL AND PENTADIAGONAL MATRICES LEI CAO 1,2, DARIAN MCLAREN 3, AND SARAH PLOSKER 3 Abstract. We provide a decomposition that is sufficient in showing when a symmetric tridiagonal matrix A is completely positive. Our decomposition can be applied to a wide range of matrices. We give alternate proofs for a number of related results found in the literature in a simple, straightforward manner. We show that the cp-rank of any irreducible tridiagonal doubly stochastic matrix is equal to its rank. We then consider symmetric pentadiagonal matrices, proving some analogous results, and providing two different decom- positions sufficient for complete positivity. We illustrate our constructions with a number of examples. 1. Preliminaries All matrices herein will be real-valued. Let A be an n n symmetric tridiagonal matrix: × a1 b1 b1 a2 b2 . .. .. .. . A = .. .. .. . bn 3 an 2 bn 2 − − − bn 2 an 1 bn 1 − − − bn 1 an − We are often interested in the case where A is also doubly stochastic, in which case we have ai = 1 bi 1 bi for i = 1, 2,...,n, with the convention that b0 = bn = 0. It is easy to see that− if a− tridiagonal− matrix is doubly stochastic, it must be symmetric, so the additional hypothesis of symmetry can be dropped in that case. We are interested in positivity conditions for symmetric tridiagonal and pentadiagonal matrices. A stronger condition than positive semidefiniteness, known as complete positivity, arXiv:2009.05100v2 [math.CO] 10 Mar 2021 has applications in a variety of areas of study, including block designs, maximin efficiency- robust tests, modelling DNA evolution, and more [5, Chapter 2], as well as recent use in mathematical optimization and quantum information theory (see [14] and the references therein).
    [Show full text]
  • Hamiltonian Matrix Representations for the Determination of Approximate Wave Functions for Molecular Resonances
    Journal of Applied and Fundamental Sciences HAMILTONIAN MATRIX REPRESENTATIONS FOR THE DETERMINATION OF APPROXIMATE WAVE FUNCTIONS FOR MOLECULAR RESONANCES Robert J. Buenker Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaussstr. 20, D-42097 Wuppertal, Germany *For correspondence. ([email protected]) Abstract: Wave functions obtained using a standard complex Hamiltonian matrix diagonalization procedure are square integrable and therefore constitute only approximations to the corresponding resonance solutions of the Schrödinger equation. The nature of this approximation is investigated by means of explicit calculations using the above method which employ accurate diabatic potentials of the B 1Σ+ - D’ 1Σ+ vibronic resonance states of the CO molecule. It is shown that expanding the basis of complex harmonic oscillator functions gradually improves the description of the exact resonance wave functions out to ever larger internuclear distances before they take on their unwanted bound-state characteristics. The justification of the above matrix method has been based on a theorem that states that the eigenvalues of a complex-scaled Hamiltonian H (ReiΘ) are associated with the energy position and linewidth of resonance states (R is an internuclear coordinate and Θ is a real number). It is well known, however, that the results of the approximate method can be obtained directly using the unscaled Hamiltonian H (R) in real coordinates provided a particular rule is followed for the evaluation of the corresponding matrix elements. It is shown that the latter rule can itself be justified by carrying out the complex diagonalization of the Hamiltonian in real space via a product of two transformation matrices, one of which is unitary and the other is complex orthogonal, in which case only the symmetric scalar product is actually used in the evaluation of all matrix elements.
    [Show full text]
  • Hamiltonian Matrices and the Algebraic Riccati Equation Seminar Presentation
    Hamiltonian Matrices and the Algebraic Riccati Equation Seminar presentation by Piyapong Yuantong 7th December 2009 Technische Universit¨atChemnitz Piyapong Yuantong Hamiltonian Matrices and the Algebraic Riccati Equation 1 Hamiltonian matrices We start by introducing the square matrix J 2 R 2n×2n defined by " # O I J = n n ; (1) −In On where n×n On 2 R − zero matrix n×n In 2 R − identity matrix: Remark It is not very complicated to prove the following properties of the matrix J: i. J T = −J ii. J −1 = J T T iii. J J = I2n T T iv. J J = −I2n 2 v. J = −I2n vi. det J = 1 Definition 1 A matrix A 2 R 2n×2n is called Hamiltonian if JA is symmetric, so JA = (JA) T ) A T J + JA = 0 where J 2 R 2n×2n is from (1). We will denote { } Hn = A 2 R 2n×2n j A T J + JA = 0 the set of 2n × 2n Hamiltonian matrices. 1 Piyapong Yuantong Hamiltonian Matrices and the Algebraic Riccati Equation Proposition 1.1 The following are equivalent: a) A is a Hamiltionian matrix b) A = JS, where S = S T c) (JA) T = JA Proof a ! b A = JJ −1 A ! A = J(−J)A 2Hn A ! (J(−JA)) T J + JA = 0 ! (−JA) T J T J = −JA T J J=!I2n (−JA) T = −JA ! J(−JA) T = A If − JA = S ! A = J(−JA) = J(−JA) T ! A = JS = JS T =) S = S T a ! c A T J + JA = 0 ! A T J = −JA ()T ! (A T J) T = (−JA) T ! J T A = −(JA) T ! −JA = −(JA) T ! (JA) T = JA 2 Piyapong Yuantong Hamiltonian Matrices and the Algebraic Riccati Equation Proposition 1.2 Let A; B 2 Hn.
    [Show full text]
  • Inverse Eigenvalue Problems Involving Multiple Spectra
    Inverse eigenvalue problems involving multiple spectra G.M.L. Gladwell Department of Civil Engineering University of Waterloo Waterloo, Ontario, Canada N2L 3G1 [email protected] URL: http://www.civil.uwaterloo.ca/ggladwell Abstract If A Mn, its spectrum is denoted by σ(A).IfA is oscillatory (O) then σ(A∈) is positive and discrete, the submatrix A[r +1,...,n] is O and itsspectrumisdenotedbyσr(A). Itisknownthatthereisaunique symmetric tridiagonal O matrix with given, positive, strictly interlacing spectra σ0, σ1. It is shown that there is not necessarily a pentadiagonal O matrix with given, positive strictly interlacing spectra σ0, σ1, σ2, but that there is a family of such matrices with positive strictly interlacing spectra σ0, σ1. The concept of inner total positivity (ITP) is introduced, and it is shown that an ITP matrix may be reduced to ITP band form, or filled in to become TP. These reductions and filling-in procedures are used to construct ITP matrices with given multiple common spectra. 1Introduction My interest in inverse eigenvalue problems (IEP) stems from the fact that they appear in inverse vibration problems, see [7]. In these problems the matrices that appear are usually symmetric; in this paper we shall often assume that the matrices are symmetric: A Sn. ∈ If A Sn, its eigenvalues are real; we denote its spectrum by σ(A)= ∈ λ1, λ2,...,λn ,whereλ1 λ2 λn. The direct problem of finding σ{(A) from A is} well understood.≤ At≤ fi···rst≤ sight it appears that inverse eigenvalue T problems are trivial: every A Sn with spectrum σ(A) has the form Q Q ∈ ∧ where Q is orthogonal and = diag(λ1, λ2,...,λn).
    [Show full text]
  • Mathematical Physics-14-Eigenvalue Problems.Nb
    Eigenvalue problems Main idea and formulation in the linear algebra The word "eigenvalue" stems from the German word "Eigenwert" that can be translated into English as "Its own value" or "Inherent value". This is a value of a parameter in the equation or system of equations for which this equation has a nontriv- ial (nonzero) solution. Mathematically, the simplest formulation of the eigenvalue problem is in the linear algebra. For a given square matrix A one has to find such values of l, for which the equation (actually the system of linear equations) A.X λX (1) has a nontrivial solution for a vector (column) X. Moving the right part to the left, one obtains the equation A − λI .X 0, H L where I is the identity matrix having all diagonal elements one and nondiagonal elements zero. This matrix equation has nontrivial solutions only if its determinant is zero, Det A − λI 0. @ D This is equivalent to a Nth order algebraic equation for l, where N is the rank of the mathrix A. Thus there are N different eigenvalues ln (that can be complex), for which one can find the corresponding eigenvectors Xn. Eigenvectors are defined up to an arbitrary numerical factor, so that usually they are normalized by requiring T∗ Xn .Xn 1, where X T* is the row transposed and complex conjugate to the column X. It can be proven that eigenvectors that belong to different eigenvalues are orthogonal, so that, more generally than above, one has T∗ Xm .Xn δmn . Here dmn is the Kronecker symbol, 1, m n δ = mn µ 0, m ≠ n.
    [Show full text]
  • The Rule of Hessenberg Matrix for Computing the Determinant of Centrosymmetric Matrices
    CAUCHY –Jurnal Matematika Murni dan Aplikasi Volume 6(3) (2020), Pages 140-148 p-ISSN: 2086-0382; e-ISSN: 2477-3344 The Rule of Hessenberg Matrix for Computing the Determinant of Centrosymmetric Matrices Nur Khasanah1, Agustin Absari Wahyu Kuntarini 2 1,2Department of Mathematics, Faculty of Science and Technology UIN Walisongo Semarang Email: [email protected] ABSTRACT The application of centrosymmetric matrix on engineering takes their part, particularly about determinant rule. This basic rule needs a computational process for determining the appropriate algorithm. Therefore, the algorithm of the determinant kind of Hessenberg matrix is used for computing the determinant of the centrosymmetric matrix more efficiently. This paper shows the algorithm of lower Hessenberg and sparse Hessenberg matrix to construct the efficient algorithm of the determinant of a centrosymmetric matrix. Using the special structure of a centrosymmetric matrix, the algorithm of this determinant is useful for their characteristics. Key Words : Hessenberg; Determinant; Centrosymmetric INTRODUCTION One of the widely used studies in the use of centrosymmetric matrices is how to get determinant from centrosymmetric matrices. Besides this special matrix has some applications [1], it also has some properties used for determinant purpose [2]. Special characteristic centrosymmetric at this entry is evaluated at [3] resulting in the algorithm of centrosymmetric matrix at determinant. Due to sparse structure of this entry, the evaluation of the determinant matrix has simpler operations than full matrix entries. One special sparse matrix having rules on numerical analysis and arise at centrosymmetric the determinant matrix is the Hessenberg matrix. The role of Hessenberg matrix decomposition is the important role of computing the eigenvalue matrix.
    [Show full text]
  • Some Bivariate Stochastic Models Arising from Group Representation Theory
    Available online at www.sciencedirect.com ScienceDirect Stochastic Processes and their Applications ( ) – www.elsevier.com/locate/spa Some bivariate stochastic models arising from group representation theory Manuel D. de la Iglesiaa,∗, Pablo Románb a Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., 04510, Ciudad de México, Mexico b CIEM, FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n Ciudad Universitaria, Córdoba, Argentina Received 14 September 2016; accepted 31 October 2017 Available online xxxx Abstract The aim of this paper is to study some continuous-time bivariate Markov processes arising from group representation theory. The first component (level) can be either discrete (quasi-birth-and-death processes) or continuous (switching diffusion processes), while the second component (phase) will always be discrete and finite. The infinitesimal operators of these processes will be now matrix-valued (eithera block tridiagonal matrix or a matrix-valued second-order differential operator). The matrix-valued spherical functions associated to the compact symmetric pair (SU(2) × SU(2); diag SU(2)) will be eigenfunctions of these infinitesimal operators, so we can perform spectral analysis and study directly some probabilistic aspects of these processes. Among the models we study there will be rational extensions of the one-server queue and Wright–Fisher models involving only mutation effects. ⃝c 2017 Elsevier B.V. All rights reserved. MSC: 60J10; 60J60; 33C45; 42C05 Keywords: Quasi-birth-and-death processes; Switching diffusions; Matrix-valued orthogonal polynomials; Wright–Fisher models 1. Introduction It is very well known that many important results of one-dimensional stochastic processes can be obtained by using spectral methods.
    [Show full text]
  • Matrix G-Strands
    Technological University Dublin ARROW@TU Dublin Articles School of Mathematics 2014 Matrix G-strands Darryl Holm Imperial College London Rossen Ivanov Technological University Dublin, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/scschmatart Part of the Mathematics Commons, Non-linear Dynamics Commons, and the Partial Differential Equations Commons Recommended Citation Holm, D. and Ivanov, R. Matrix G-Strands, Nonlinearity 27 (2014) 1445–1469; doi:10.1088/0951-7715/27/ 6/1445 This Article is brought to you for free and open access by the School of Mathematics at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Funder: ERC Matrix G-Strands Darryl D. Holm1 and Rossen I. Ivanov2 9 Feb 2014, clean copy Abstract We discuss three examples in which one may extend integrable Euler–Poincar´e ODEs to integrable Euler–Poincar´ePDEs in the matrix G-Strand context. After de- scribing matrix G-Strand examples for SO(3) and SO(4) we turn our attention to SE(3) where the matrix G-Strand equations recover the exact rod theory in the con- vective representation. We then find a zero curvature representation (ZCR) of these equations and establish the conditions under which they are completely integrable. Thus, the G-Strand equations turn out to be a rich source of integrable systems. The treatment is meant to be expository and most concepts are explained in examples in the language of vectors in R3.
    [Show full text]
  • CS321 Numerical Analysis
    CS321 Numerical Analysis Lecture 5 System of Linear Equations Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0046 System of Linear Equations a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2n xn b2 an1 x1 an2 x2 ann xn bn where aij are coefficients, xi are unknowns, and bi are right-hand sides. Written in a compact form is n aij x j bi , i 1,,n j1 The system can also be written in a matrix form Ax b where the matrix is a11 a12 a1n a a a A 21 22 2n an1 an2 ann and x [x , x ,, x ]T ,b [b ,b ,b ]T 1 2 n 1 2 n 2 An Upper Triangular System An upper triangular system a11 x1 a12 x2 a13 x3 a1n xn b1 a22 x2 a23 x3 a2n xn b2 a33 x3 a3n xn b3 an1,n1 xn1 an1,n xn bn1 ann xn bn is much easier to find the solution: bn xn ann from the last equation and substitute its value in other equations and repeat the process n 1 xi bi aij x j aii ji1 for i = n – 1, n – 2,…, 1 3 Karl Friedrich Gauss (April 30, 1777 – February 23, 1855) German Mathematician and Scientist 4 Gaussian Elimination Linear systems are solved by Gaussian elimination, which involves repeated procedure of multiplying a row by a number and adding it to another row to eliminate a certain variable For a particular step, this amounts to aik aij aij akj (k j n) akk aik bi bi bk akk th After this step, the variable xk, is eliminated in the (k + 1) and in the later equations The Gaussian elimination modifies a matrix into an upper triangular form such that aij = 0 for all i > j.
    [Show full text]