Chemotactic Cytokines, Obesity and Type 2 Diabetes: in Vivo and in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

Chemotactic Cytokines, Obesity and Type 2 Diabetes: in Vivo and in Vitro Proceedings of the Nutrition Society (2009), 68, 378–384 doi:10.1017/S0029665109990218 g The Authors 2009 First published online 24 August 2009 A Meeting of the Nutrition Society, hosted by the Scottish Section, was held at the Royal Society of Edinburgh, Edinburgh on 7 and 8 April 2009 Symposium on ‘Frontiers in adipose tissue biology’ Chemotactic cytokines, obesity and type 2 diabetes: in vivo and in vitro evidence for a possible causal correlation? Henrike Sell and Ju¨rgen Eckel* Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Du¨sseldorf, Germany A strong causal link between increased adipose tissue mass and insulin resistance in tissues such as liver and skeletal muscle exists in obesity-related disorders such as type 2 diabetes. Increased adipose tissue mass in obese patients and patients with diabetes is associated with altered secretion of adipokines, which also includes chemotactic proteins. Adipose tissue releases a wide range of chemotactic proteins including many chemokines and chemerin, which are interesting targets for adipose tissue biology and for biomedical research in obesity and obesity-related diseases. This class of adipokines may be directly linked to a chronic state of low-grade inflammation and macrophage infiltration in adipose tissue, a concept intensively studied in adipose tissue biology in recent years. The inflammatory state of adipose tissue in obese patients may be the most important factor linking increased adipose tissue mass to insulin resistance. Furthermore, chemoattractant adipokines may play an important role in this situation, as many of these proteins possess biological activity beyond the recruitment of immune cells including effects on adipogenesis and glucose homeostasis in insulin-sensitive tissues. The present review provides a summary of experimental evidence of the role of adipose tissue-derived chemotactic cytokines and their function in insulin resistance in vivo and in vitro. Chemokine: Chemerin: Insulin resistance: Adipose tissue: Obesity Proceedings of the Nutrition Society Obesity with increased adipose tissue mass is associated adipokines. Increased adipose tissue mass in obese patients with insulin resistance, hyperglycaemia, dyslipidaemia, and patients with diabetes has been found to be associated hypertension and other components of the metabolic syn- with altered secretion of adipokines, the most important of drome(1,2). Type 2 diabetes has markedly increased in which are TNFa, IL-6 and adiponectin(7). Adipose tissue prevalence; 50% of men and 70% of women with diabetes also releases a wide range of chemotactic proteins includ- are obese and obesity predisposes strongly to diabetes(3). ing many chemokines, which are becoming increasingly Furthermore, type 2 diabetes is becoming a serious health interesting in relation to adipose tissue biology as well as issue in overweight or obese children and adolescents(4). biomedical research in obesity and obesity-related dis- Indeed, there is clearly a strong causal link between eases. This class of adipokines may be directly linked to a increased adipose tissue mass and insulin resistance in chronic state of low-grade inflammation and macrophage tissues such as liver and skeletal muscle in patients with infiltration in adipose tissue, a concept that has been diabetes(5,6). intensively studied in adipose tissue biology in recent Adipocytes, the predominant cell type in adipose tissue, years. The inflammatory state of adipose tissue in obese are insulin-sensitive cells that store TAG, but in addition patients may be the most important factor linking increased to their storage function they are also active endocrine adipose tissue mass to insulin resistance, and chemo- cells that produce and release various proteins termed attractant adipokines might play an important role in this Abbreviations: CCR, chemokine CC motif receptor; CMKLR1, chemokine-like receptor 1; CXCL, chemokine CXC motif ligand; MCP, monocyte chemoattractant protein. *Corresponding author: Professor Ju¨rgen Eckel, fax + 49 211 3382697, email [email protected] Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.19, on 29 Sep 2021 at 12:17:59, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0029665109990218 Chemotactic cytokines, obesity and type 2 diabetes 379 Table 1. Clinical data showing the association between chemotactic cytokines and obesity and type 2 diabetes Chemotactic cytokine Clinical data related to obesity and type 2 diabetes References MCP-1 (CCL2) Increased in obesity and diabetes Christiansen et al.(11), Kim et al.(12), Herder et al.(13), Malavazos et al.(14), Huber et al.(15), Piemonti et al.(16), Simeoni et al.(17) RANTES (CCL5) Associated with diabetes Herder et al.(26) MCP-3 (CCL7) Elevated in obesity Jiao et al.(25) MCP-2 (CCL8) Elevated in obesity Huber et al.(15), Murdolo et al.(24) Eotaxin (CCL11) Increased in obesity but not associated with Hashimoto et al.(23), Vasudevan et al.(27) insulin resistance MCP-4 (CCL13) Elevated in obesity Hashimoto et al.(23) CXCL5 Linking obesity and insulin resistance Chavey et al.(32) IL-8 (CXCL8) Increased in obesity and diabetes Kim et al.(12), Herder et al.(13) IP-10 (CXCL10) Increased in obesity but not associated with Herder et al.(26,31) insulin resistance Chemerin Increased in obesity but not related to Bozaoglu et al.(9) type 2 diabetes MCP, monocyte chemoattractant protein; CCL, chemokine CC motif ligand; CXCL, chemokine CXC motif ligand; IP-10, 10 kDa interferon g-induced protein. scenario. The present review provides a summary of tissue such as visceral, subcutaneous and epicardial adi- experimental evidence of the role of adipose tissue-derived pose tissue show increased expression of MCP-1(14,15). chemoattractant proteins and their function in insulin resis- Clinical data provide good evidence for a relationship tance in vivo and in vitro. The aim is to provide an overview between serum MCP-1 levels and insulin resistance, as of known relationships between the chemokines and chemo- well as type 2 diabetes. Several studies have demonstrated tactic cytokines being released from adipose tissue and that patients with type 2 diabetes display elevated MCP-1 obesity and type 2 diabetes. Mechanisms of obesity-related levels(13,16,17). High MCP-1 levels have been shown to disorders that underlie adipose tissue inflammation and that contribute to diabetes risk independently of previously- may be related to chemotactic cytokines are also discussed. described clinical, metabolic and immunological risk factors(13). Conversely, diabetes treatments such as exer- cise(18), pioglitazone(19) and weight loss(20), all of which improve insulin sensitivity in obese patients, reduce MCP-1 Chemotactic proteins in obesity and type 2 diabetes plasma concentrations. Expression of MCP-1 has been Chemotactic proteins, particularly those of the chemokine found to be higher in visceral adipose tissue than in sub- family, have been shown to be related in vivo to the cutaneous tissue and is closely related to the number of metabolic syndrome, obesity and type 2 diabetes (Table 1) resident macrophages(21). Conversely, obese patients that and to be adipokines secreted from adipocytes or other cell lose weight after bariatric surgery show decreased levels of types residing in adipose tissue. Chemokines are small MCP-1(20), probably in parallel with lower macrophage proteins that attract various immune cells such as mono- infiltration in adipose tissue(22). Proceedings of the Nutritioncytes, Society neutrophils, T lymphocytes, basophils or eosinophils Fewer data are available for other MCP such as MCP-2, (each chemokine activating one or more target cell -3 and -4 but it is clear that these adipokines are elevated types)(8). Chemokines are characterized by the presence of in obese patients(15,23–25). Measurement of these factors in four highly-conserved cysteine residues. CXC chemokines adipose tissue has shown a marked increase in expression have two amino-terminal cysteine residues separated by together with an increased expression of the corresponding only one amino acid. In CC chemokines, the other main receptors in obese patients(15). subfamily of chemokines, the amino-terminal cysteine Other CC chemokines such as RANTES (or chemokine residues are adjacent(8). In addition, other chemoattractant CC motif ligand 5) and eotaxin (or chemokine CC motif proteins such as chemerin, which has been shown to attract ligand 11) are also elevated in the serum of obese patients macrophages and dendritic cells but is not structurally as compared with lean controls(23,26,27). Eotaxin is over- related to any chemokine family, comprise the adipokines expressed in visceral adipose tissue of obese patients as and factors shown to be involved in obesity and obesity- compared with lean controls and subcutaneous fat. While related pathologies(9). RANTES has also been found to be associated with type 2 Monocyte chemoattractant protein (MCP)-1 is a chemo- diabetes in a large German study cohort, eotaxin is not kine and a member of the small inducible cytokine family associated with insulin resistance(26). that plays a role in the recruitment of monocytes and T IL-8 and 10 kDa interferon g-induced protein (or chemo- lymphocytes to sites of injury and infection(10). Its main kine CXC motif ligand (CXCL) 10) are CXC chemokines. receptor is the chemokine CC motif receptor (CCR) 2. IL-8 is secreted from adipose tissue and its plasma levels Plasma MCP-1 levels are markedly higher in obese are increased in obesity(28–30). However, a correlation patients(11,12) and patients with diabetes(13), and in relation between higher levels of IL-8 in obesity and increased to these pathologies MCP-1 is one of the most studied insulin resistance has not yet been fully established, as the chemokines. In obese patients different depots of adipose association between IL-8 and diabetes(13) is attenuated by Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.19, on 29 Sep 2021 at 12:17:59, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
Recommended publications
  • In a Lung Disease Model an Anti-Inflammatory Activity Of
    Mouse ChemR23 Is Expressed in Dendritic Cell Subsets and Macrophages, and Mediates an Anti-Inflammatory Activity of Chemerin in a Lung Disease Model This information is current as of September 29, 2021. Souphalone Luangsay, Valérie Wittamer, Benjamin Bondue, Olivier De Henau, Laurie Rouger, Maryse Brait, Jean-Denis Franssen, Patricia de Nadai, François Huaux and Marc Parmentier J Immunol 2009; 183:6489-6499; Prepublished online 19 Downloaded from October 2009; doi: 10.4049/jimmunol.0901037 http://www.jimmunol.org/content/183/10/6489 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2009/10/20/jimmunol.090103 Material 7.DC1 References This article cites 60 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/183/10/6489.full#ref-list-1 by guest on September 29, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright
    [Show full text]
  • Neutrophil Chemoattractant Receptors in Health and Disease: Double-Edged Swords
    Cellular & Molecular Immunology www.nature.com/cmi REVIEW ARTICLE Neutrophil chemoattractant receptors in health and disease: double-edged swords Mieke Metzemaekers1, Mieke Gouwy1 and Paul Proost 1 Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview
    [Show full text]
  • Dampening Cytokine Production HIV Susceptibility Locus Targeting
    RESEARCH HIGHLIGHTS Dampening cytokine production circulating pDCs uniquely express a chemokine receptor known as che- mokine-like receptor 1 (CMKLR1, also known as ChmeR23 or DEZ) that Although TRAIL receptor (TRAIL-R) signaling is associated with distinguishes them from mDCs. The ligand for CMKLR1, chemerin, was apoptosis induction in vitro, the in vivo function of TRAIL-R is not detectable in human sera. The mRNA of chemerin was also present in well understood. In Immunity, Winoto and colleagues show that the many tissues, including the liver, pancreas and adrenal glands. Chemerin innate immune response to certain pathogens is enhanced in TRAIL- attracted blood pDCs but not mDCs. Because active chemerin requires R-deficient mice. Increased clearance of mouse cytomegalovirus proteolytic processing, the presence of these enzymes at sites of inflam- from the spleen was associated with increased IL-12, IFN-α and mation and tissue damage may serve to recruit pDCs. PTL IFN-β production by dendritic cells and macrophages. Likewise, J. Immunol. 174, 244–251 (2005) Toll-like receptor 2 (TLR2), TLR3 and TLR4 stimulation, along with mycobacterial stimulation, enhanced cytokine production and also induced upregulation of TRAIL expression by these innate immune HIV susceptibility locus cells. Specifically, TRAIL-R deficiency affected re-expression of IκBα at later times after TLR signaling. These data show TRAIL-R The CC chemokine CCL31L, also called MIP-1αP, has a signaling normally negatively regulates the cytokine response of the suppressive function in HIV infection. CCL31L is the main ligand innate immune system. JDKW for the HIV co-receptor CCR5. In Science, Gonzalez et al.
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • The Atypical Receptor Ccrl2 (C-C Chemokine Receptor-Like 2) Does Not Act As a Decoy Receptor in Endothelial Cells
    ORIGINAL RESEARCH published: 06 October 2017 doi: 10.3389/fimmu.2017.01233 The Atypical Receptor CCRL2 (C-C Chemokine Receptor-Like 2) Does Not Act As a Decoy Receptor in Endothelial Cells Chiara Mazzotti1, Vincenzo Gagliostro1, Daniela Bosisio1, Annalisa Del Prete1,2, Laura Tiberio1, Marcus Thelen 3 and Silvano Sozzani1,2* 1 Laboratory of Experimental Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy, 2 Humanitas Clinical and Research Centre, Rozzano, Italy, 3 Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland C-C chemokine receptor-like 2 (CCRL2) is a non-signaling seven-transmembrane domain (7-TMD) receptor related to the atypical chemokine receptor (ACKR) family. ACKRs bind chemokines but do not activate G protein-dependent signaling or cell functions. ACKRs were shown to regulate immune functions in vivo by their ability Edited by: to scavenge chemokines from the local environment. This study was performed to Ji Ming Wang, National Cancer Institute investigate whether CCRL2 shares two of the main characteristics of ACKRs, namely at Frederick, United States the ability to internalize and scavenge the ligands. Cell membrane analysis of CCRL2- Reviewed by: transfected cells revealed a weak, constitutive, ligand-independent internalization, and Santos Mañes, recycling of CCRL2, with a kinetics that was slower than those observed with ACKR3, Consejo Superior de Investigaciones Científicas a prototypic ACKR, or other chemotactic signaling receptors [i.e., chemokine-like (CSIC), Spain receptor 1 and C-X-C motif chemokine receptor 2]. Intracellularly, CCRL2 colocalized Diana Boraschi, Consiglio Nazionale with early endosome antigen 1-positive and Rab5-positive vesicles and with recycling Delle Ricerche (CNR), Italy compartments mainly characterized by Rab11-positive vesicles.
    [Show full text]
  • Part One Fundamentals of Chemokines and Chemokine Receptors
    Part One Fundamentals of Chemokines and Chemokine Receptors Chemokine Receptors as Drug Targets. Edited by Martine J. Smit, Sergio A. Lira, and Rob Leurs Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32118-6 j3 1 Structural Aspects of Chemokines and their Interactions with Receptors and Glycosaminoglycans Amanda E. I. Proudfoot, India Severin, Damon Hamel, and Tracy M. Handel 1.1 Introduction Chemokines are a large subfamily of cytokines (50 in humans) that can be distinguished from other cytokines due to several features. They share a common biological activity, which is the control of the directional migration of leukocytes, hence their name, chemoattractant cytokines. They are all small proteins (approx. 8 kDa) that are highly basic, with two exceptions (MIP-1a, MIP-1b). Also, they have a highly conserved monomeric fold, constrained by 1–3 disulfides which are formed from a conserved pattern of cysteine residues (the majority of chemokines have four cysteines). The pattern of cysteine residues is used as the basis of their division into subclasses and for their nomenclature. The first class, referred to as CXC or a-chemokines, have a single residue between the first N-terminal Cys residues, whereas in the CC class, or b-chemokines, these two Cys residues are adjacent. While most chemokines have two disulfides, the CC subclass also has three members that contain three. Subsequent to the CC and CXC families, two fi additional subclasses were identi ed, the CX3C subclass [1, 2], which has three amino acids separating the N-terminal Cys pair, and the C subclass, which has a single disulfide.
    [Show full text]
  • Chemerin Is Associated with Markers of Inflammation and Components Of
    European Journal of Endocrinology (2009) 161 339–344 ISSN 0804-4643 CLINICAL STUDY Chemerin is associated with markers of inflammation and components of the metabolic syndrome but does not predict coronary atherosclerosis Michael Lehrke1, Alexander Becker2, Martin Greif2, Renee Stark3,Ru¨diger P Laubender4, Franz von Ziegler2, Corinna Lebherz2, Janine Tittus2, Maximilian Reiser5, Christoph Becker5, Burkhard Go¨ke1, Alexander W Leber2, Klaus G Parhofer1 and Uli C Broedl1 Departments of 1Internal Medicine II and 2Internal Medicine I, University of Munich, Campus Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, 3Helmholtz-Zentrum, Munich, Germany, 4Institute for Medical Informatics, Biometry and Epidemiology (IBE) and 5Department of Radiology, University of Munich, Munich, Germany (Correspondence should be addressed to U C Broedl; Email: [email protected]) Abstract Objectives: Chemerin is a recently discovered adipokine that regulates adipocyte differentiation and modulates chemotaxis and activation of dendritic cells and macrophages. Given the convergence of adipocyte and macrophage function, chemerin may provide an interesting link between obesity, inflammation and atherosclerosis in humans. We sought to examine the relationship of i) chemerin and markers of inflammation, ii) chemerin and components of the metabolic syndrome, and iii) chemerin and coronary atherosclerotic plaque burden and morphology. Design: Serum chemerin levels were determined in 303 patients with stable typical or atypical chest pain who underwent dual-source multi-slice CT-angiography to exclude coronary artery stenosis. Atherosclerotic plaques were classified as calcified, mixed, or non-calcified. Results: Chemerin levels were highly correlated with high sensitivity C-reactive protein (rZ0.44, P!0.0001), interleukin-6 (rZ0.18, PZ0.002), tumor necrosis factor-a (rZ0.24, P!0.0001), resistin (rZ0.28, P!0.0001), and leptin (rZ0.36, P!0.0001) concentrations.
    [Show full text]
  • Chemerin-Activated Functions of CMKLR1 Are Regulated by G Protein- Coupled Receptor Kinase 6 (GRK6) and Β-Arrestin 2 in Inflammatory T Macrophages
    Molecular Immunology 106 (2019) 12–21 Contents lists available at ScienceDirect Molecular Immunology journal homepage: www.elsevier.com/locate/molimm Chemerin-activated functions of CMKLR1 are regulated by G protein- coupled receptor kinase 6 (GRK6) and β-arrestin 2 in inflammatory T macrophages D. Stephen Serafina, Brittney Allyna,g, Maria F. Sassanob, Roman G. Timoshchenkoa, Daniel Mattoxa, Jaime M. Brozowskic,g, David P. Siderovskid, Young K. Truonge, ⁎ Denise Essermanf, Teresa K. Tarranta,g, Matthew J. Billarda,h, a Thurston Arthritis Research Center and the Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States b Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States c Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, United States d Department of Physiology & Pharmacology, West Virginia University, Morgantown, WV, 26506, United States e Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States f Yale School of Public Health, New Haven, CT 06510, United States g Duke University, Department of Medicine, Division of Rheumatology and Immunology, Durham, NC 27710, United States h Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States ARTICLE INFO ABSTRACT Keywords: Chemerin receptor (CMKLR1) is a G protein-coupled receptor (GPCR) implicated in macrophage-mediated in- Chemerin flammation and in several forms of human arthritis. Analogous to other GPCR, CMKLR1 is likely regulated by G G protein-coupled receptor kinase (GRK) protein-coupled receptor kinase (GRK) phosphorylation of intracellular domains in an activation-dependent Arrestin manner, which leads to recruitment and termination of intracellular signaling via desensitization and inter- Arthritis nalization of the receptor.
    [Show full text]
  • Chemerin Is a Novel Adipocyte-Derived Factor Inducing Insulin Resistance in Primary Human Skeletal Muscle Cells
    Diabetes Publish Ahead of Print, published online August 31, 2009 Chemerin and muscle insulin resistance CHEMERIN IS A NOVEL ADIPOCYTE-DERIVED FACTOR INDUCING INSULIN RESISTANCE IN PRIMARY HUMAN SKELETAL MUSCLE CELLS Henrike Sell†, Jurga Laurencikiene¶, Annika Taube†, Kristin Eckardt†, Andrea Cramer†, Angelika Horrighs†, Peter Arner¶ and Jürgen Eckel†. †Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany ¶Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden. Running title: Chemerin and muscle insulin resistance Address correspondence to: Dr. Henrike Sell, E-mail: [email protected] Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org Submitted 24 February 2009 and accepted 10 August 2009. This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org. Copyright American Diabetes Association, Inc., 2009 Chemerin and muscle insulin resistance Objective: Chemerin is an adipokine that affects adipogenesis and glucose homeostasis in adipocytes and increases with BMI in humans. This study aimed at investigating the regulation of chemerin release and its effects on glucose metabolism in skeletal muscle cells. Research Design and Methods: Human skeletal muscle cells were treated with chemerin to study insulin signaling, glucose uptake and activation of stress kinases. The release of chemerin was analyzed from in vitro differentiated human adipocytes and adipose tissue explants from 27 lean and 26 obese patients.
    [Show full text]
  • Expressıon and Functıonal Analysıs of Ccrl2 Atypıcal Chemokıne Receptor
    REPUBLIC OF TURKEY HACETTEPE UNIVERSITY INSTITUTE OF HEALTH SCIENCES EXPRESSION AND FUNCTIONAL ANALYSIS OF CCRL2 ATYPICAL CHEMOKINE RECEPTOR VARIANTS ON BREAST CANCER CELLS Dr. Parisa SARMADİ Tumor Biology and Immunology PhD THESIS ANKARA 2014 REPUBLIC OF TURKEY HACETTEPE UNIVERSITY INSTITUTE OF HEALTH SCIENCES EXPRESSION AND FUNCTIONAL ANALYSIS OF CCRL2 ATYPICAL CHEMOKINE RECEPTOR VARIANTS ON BREAST CANCER CELLS Dr. Parisa SARMADİ Tumor Biology and Immunology PhD THESIS Advisor of Thesis Assoc. Prof. Dr. Güneş ESENDAĞLI ANKARA 2014 iii iv ACKNOWLEDGEMENTS I would like to express my deepest gratitude and appreciation to my advisor Assoc. Prof. Dr. Güneş ESENDAĞLI for his support, encouragement, and guidance during all parts of my PhD study. I would like to express my deepest gratitude to Prof. Dr. Emin KANSU for his constitutive support and gentle and kind attitude; also, for his passion in science and transferring it to and inspiring students. I deeply and faithfully thank Prof. Dr. Dicle GÜÇ for her continuous support, kind-heartedness and guidance and for sharing her knowledge and experiences. I would like to gratefully thank Prof. Dr. A. Lale DOĞAN for her support, delicacy and kindness. I would like to cordially express my deepest and infinite gratitude and thankfulness to Asst. Prof. Dr. Hande CANPINAR for her support. I would like to gratefully thank Assoc. Prof. Dr. Güldal YILMAZ from Pathology Department at Gazi University for the great Immunohistochemistry analysis of breast cancer tissues. I would like to thank Asst. Prof. Dr. Füsun ÖZMEN for her kind attitude and support. I would like to gratefully thank Prof. Dr. Petek KORKUSUZ from Histology and Embryology Department and Prof.
    [Show full text]
  • Levels of Chemerin and Interleukin 8 in the Synovial Fluid of Patients with Inflammatory Arthritides and Osteoarthritis E
    Levels of chemerin and interleukin 8 in the synovial fluid of patients with inflammatory arthritides and osteoarthritis E. Valcamonica1,2, C.B. Chighizola3,4, D. Comi1, O. De Lucia1, L. Pisoni1, A. Murgo1, V. Salvi5, S. Sozzani5,6, P.L. Meroni1,3,4 1Division of Rheumatology, Istituto G. Pini, Milan, Italy; 2Doctorate Course in Genetics, Oncology and Clinical Medicine, University of Siena, Siena, Italy; 3Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; 4Immunorheumatological Research Laboratory, Istituto Auxologico Italiano, Milan, Italy: 5Department of Molecular and Translation Medicine, University of Brescia, Brescia, Italy; 6Humanitas Clinical and Research Center, Rozzano, Milan, Italy. Abstract Objective Chemerin and interleukin (IL)-8 are pro-inflammatory mediators whose role in joint inflammation and cartilage degradation has been demonstrated in in-vitro findings. Studies on their presence in synovial fluid (SF) samples may offer further information on their pathogenic role. The aim of this study was to investigate SF chemerin and IL-8 levels in patients with different joint diseases. Methods 37 patients were enrolled: 18 with rheumatoid arthritis (RA), 8 with psoriatic arthritis (PsA) and 11 with osteoarthritis (OA). 41 SF samples were obtained by arthrocentesis in case of knee synovitis. Serum samples were obtained from 13 patients (4 with RA, 6 with PsA and 3 with OA) at the time of arthrocentesis. Chemerin, IL-8, TNF-α and IL-6 levels were measured using commercially available ELISA kits. Immunohistochemical analysis of synovial RA specimens was also performed. Results No difference in chemerin SF levels emerged between patients with immune-mediated inflammatory arthritides and those with OA (p=0.0656), while subjects with inflammatory arthritis displayed significantly higher levels of SF IL-8 compared to OA (p=0.0020).
    [Show full text]
  • Functional Expression of CCL8 and Its Interaction with Chemokine Receptor CCR3 Baosheng Ge*, Jiqiang Li, Zhijin Wei, Tingting Sun, Yanzhuo Song and Naseer Ullah Khan
    Ge et al. BMC Immunology (2017) 18:54 DOI 10.1186/s12865-017-0237-5 RESEARCH ARTICLE Open Access Functional expression of CCL8 and its interaction with chemokine receptor CCR3 Baosheng Ge*, Jiqiang Li, Zhijin Wei, Tingting Sun, Yanzhuo Song and Naseer Ullah Khan Abstract Background: Chemokines and their cognate receptors play important role in the control of leukocyte chemotaxis, HIV entry and other inflammatory diseases. Developing an effcient method to investigate the functional expression of chemokines and its interactions with specific receptors will be helpful to asses the structural and functional characteristics as well as the design of new approach to therapeutic intervention. Results: By making systematic optimization study of expression conditions, soluble and functional production of chemokine C-C motif ligand 8 (CCL8) in Escherichia coli (E. coli) has been achieved with approx. 1.5 mg protein/l culture. Quartz crystal microbalance (QCM) analysis exhibited that the purified CCL8 could bind with −7 C-C chemokine receptor type 3 (CCR3) with dissociation equilibrium constant (KD)as1.2×10 Minvitro. Obvious internalization of CCR3 in vivo could be detected in 1 h when exposed to 100 nM of CCL8. Compared with chemokine C-C motif ligand 11 (CCL11) and chemokine C-C motif ligand 24 (CCL24), a weaker chemotactic effect of CCR3 expressing cells was observed when induced by CCL8 with same concentration. Conclusion: This study delivers a simple and applicable way to produce functional chemokines in E. coli. The results clearly confirms that CCL8 can interact with chemokine receptor CCR3, therefore, it is promising area to develop drugs for the treatment of related diseases.
    [Show full text]