Sensu Stricto Sphaeralcea Munroana

Total Page:16

File Type:pdf, Size:1020Kb

Sensu Stricto Sphaeralcea Munroana Fabales Fabaceae Fabaceae / Leguminosae Lupinus spp. lupine Laburnum anagyroides Cysus scoparius golden chain tree Scotch broom Astragalus spp. Wisteria spp. Albizia julibrissin milk-vetch wisteria Persian silk tree Fabaceae / Leguminosae Glycine max Arachis hypogaea Vigna unguiculata soybean peanut black-eyed pea Phaseolus vulgaris Pisum savum Lens culinaris green bean pea lenl Fabaceae / Leguminosae leaves with s=pules and o>en pinnately compound Subfamily Faboideae/Papilionoideae zygomorphic flowers 5 petals differen=ated into banner (1), wings (2), and keel (2) 10 stamens, connate Subfamily Caesalpinioideae ac=nomorphic or zygomorphic flowers 5 petals free 1-10 stamens, free Subfamily Mimosoideae ac=nomorphic flowers many stamens, connate Fabaceae Phylogeny Doyle et al., 1997 Fabaceae / Leguminosae pis=l simple, 1; ovary superior fruit: legume Fabaceae / Leguminosae root nodules symbiosis with nitrogen-fixing bacteria (Rhizobium) Geraniales Geraniaceae Geraniaceae Geranium viscosissimum s=cky crane’s-bill Geranium cul=var Pelargonium x hortorum crane’s-bill zonal geranium Erodium cicutarium Geranium roberanum common stork’s-bill herb Robert Geraniaceae flowers 5-merous, pis=l with 5 s=gma lobes Geraniaceae pis=l on persistent, elongate column Geraniaceae fruit: schizocarp Myrtales Onagraceae Myrtales Onagraceae Lythraceae (loosestrife), Myrtaceae (eucalyptus) Onagraceae Chamerion angusfolium Fuchsia cul=var fireweed fuchsia Oenothera biennis common evening-primrose Clarkia pulchella Clarkia amoena pinkfairies godea Onagraceae flowers 4-merous Onagraceae inferior ovary Onagraceae hypanthium common Onagraceae pollen with viscin threads Onagraceae fruit: capsule or berry Brassicales Brassicaceae Brassicales Brassicaceae Capparidaceae (caper), Caricaceae (papaya) Brassicaceae / Cruciferae cabbage kale Brussels sprouts broccoli cauliflower kohlrabi Brassica oleracea Brassicaceae / Cruciferae Brassica napus Brassica rapa Brassica nigra canola turnip black mustard Raphanus savus Brassica rapa Armoracia rus9cana Eutrema japonicum radish Chinese cabbage horseradish wasabi Brassicaceae / Cruciferae Cardamine hirsuta hairy biercress Erysimum capitatum wallflower Arabidopsis thaliana thale cress Phoenicaulis cheiranthoides Alliaria pe9olata daggerpod garlic mustard Brassicaceae / Cruciferae flowers 4-merous Brassicaceae / Cruciferae stamens tetradynamous (4 long + 2 short) Brassicaceae / Cruciferae fruit: silique or silicle Brassicaceae / Cruciferae persistent false septum thickened rim (replum) Brassicaceae / Cruciferae Malvales Malvaceae Malvaceae Malvaceae Tilia spp. Theobroma cacao chocolate linden cacao tree Durio zibethinus Adansonia spp. durian baobab Malvaceae sensu stricto Malvaceae sensu stricto Sphaeralcea munroana Gossypium hirsutum Hibiscus rosa-sinensis globemallow coon Chinese hibiscus Iliamna rivularis Abelmoschus esculentus Alcea rosea globemallow okra hollyhock Malvaceae sensu stricto hairs usually stellate Malvaceae sensu stricto mucilage canals Malvaceae sensu stricto epicalyx common Malvaceae sensu stricto flowers 5-merous, usually with many stamens Malvaceae sensu stricto stamens monadelphous (all filaments fused to form tube) Malvaceae sensu stricto fruit: capsule or schizocarp Sapindales Aceraceae Sapindales Aceraceae Anacardiaceae (sumac), Rutaceae (citrus) Aceraceae Acer macrophyllum Acer sp. Acer palmatum big-leaf maple maples in deciduous forest Japanese maple Acer circinatum Acer saccharum maple syrup vine maple sugar maple Aceraceae leaves opposite Aceraceae flowers 4- or 5-merous, o>en with nectary disk, pis=l compound with 2 carpels Aceraceae petals reduced in wind-pollinated species Aceraceae petals reduced in wind-pollinated species Aceraceae fruit: samaroid schizocarp Sapindaceae Sols et al., 2000 Sapindaceae sensu stricto Sapindaceae sensu lato Sols et al., 2000 .
Recommended publications
  • Mérsékelt Égövi Cserjepótló Mályvafélék Többcélú Hasznosítása
    DEBRECENI EGYETEM KERPELY KÁLMÁN NÖVÉNYTERMESZTÉSI- ÉS KERTÉSZETI TUDOMÁNYOK DOKTORI ISKOLA Doktori iskola vezető: Prof. Dr. Nagy János egyetemi tanár Témavezető: Prof. Dr. Fári Miklós Gábor egyetemi tanár MÉRSÉKELT ÉGÖVI CSERJEPÓTLÓ MÁLYVAFÉLÉK TÖBBCÉLÚ HASZNOSÍTÁSA Készítette: Kurucz Erika doktorjelölt DEBRECEN 2018 MÉRSÉKELT ÉGÖVI CSERJEPÓTLÓ MÁLYVAFÉLÉK TÖBBCÉLÚ HASZNOSÍTÁSA Értekezés a doktori (PhD) fokozat megszerzése érdekében a növénytermesztési és kertészeti tudományok tudományágban Írta: Kurucz Erika okleveles agrármérnök Készült a Debreceni Egyetem Kerpely Kálmán doktori iskolája Növénytermesztési és kertészeti tudományok doktori programja keretében Témavezető: Prof. Dr. Fári Miklós Gábor A doktori szigorlati bizottság: elnök: Dr Hodossi Sándor DSc tagok: Dr. Dobrányszki Judit DSc Dr. Bisztrai György DSc A doktori szigorlat időpontja: 2016.03.11. Az értekezés bírálói: név fokozat aláírás A bírálóbizottság: név fokozat aláírás elnök: tagok: titkár: Az értekezés védésének időpontja: 20… . ……………… … . 2 TARTALOMJEGYZÉK 1. BEVEZETÉS ............................................................................................................ 7 2. IRODALMI ÁTTEKINTÉS ................................................................................... 11 2.1. Az alulértékelt (underestimated), alternatív hasznosítású növényfajok nemesítésének nemzetközi helyzete ............................................................................... 11 2.2. A mályvafélék jelentősége ..................................................................................
    [Show full text]
  • Molecular Evolutionary Rates Predict Both Extinction and Speciation In
    Lancaster BMC Evolutionary Biology 2010, 10:162 http://www.biomedcentral.com/1471-2148/10/162 RESEARCH ARTICLE Open Access MolecularResearch article evolutionary rates predict both extinction and speciation in temperate angiosperm lineages Lesley T Lancaster Abstract Background: A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process. Results: Using a new database of 13 time-calibrated angiosperm phylogenies based on internal transcribed spacer (ITS) sequences, and controlling for extrinsic variables of life history and habitat, I evaluated several potential intrinsic causes of this correlation. Speciation rates (λ) and relative extinction rates (ε) were positively correlated with mean substitution rates, but were uncorrelated with substitution rate heterogeneity. It is unlikely that the positive diversification-substitution correlation is due to accelerated molecular evolution during speciation (e.g., via enhanced selection or drift), because punctuated increases in ITS rate (i.e., greater mean and variation in ITS rate for rapidly speciating clades) were not observed. Instead, fast molecular evolution likely increases speciation rate (via increased mutational variation as a substrate for selection and reproductive isolation) but also increases extinction (via mutational genetic load). Conclusions: In general, these results predict that clades with higher background substitution rates may undergo successful diversification under new conditions while clades with lower substitution rates may experience decreased extinction during environmental stasis.
    [Show full text]
  • Sphaeralcea Coccinea Scarlet Globemallow
    Sphaeralcea coccinea Scarlet Globemallow by Kathy Lloyd Montana Native Plant Society Photo: Drake Barton Sphaeralcea coccinea (Scarlet Globemallow) is not an authentic Lewis and Clark collection. They believe the scarlet globemallow plants on that sheet carlet globemallow, a member of the mallow were grown from seed collected by Thomas Nuttall family (Malvaceae) was collected by in 1811. The other specimen sheet contains plants SMeriwether Lewis on July 20, 1806 along the Marias collected by Meriwether Lewis in Montana. The River in present-day Toole County. On the same label on the specimen, applied by the botanist day he also collected Gardner’s saltbush (Atriplex Frederick Pursh, says, “A malvaceous Small plant gardneri) and greasewood (Sarcobatus probably a Species of Malope. Plains of Missouri. vermiculatus). Lewis and his small band of men Jul. 20th 1806.” Lewis, always the eager naturalist, were attempting to follow the Marias River drainage took time to write in his journal that day, “the wild north to determine where the river began. They liquorice and sunflower are very abundant in the were hoping to claim land for the United States to plains and river bottoms, the latter is now in full the most northern parallel of the Missouri River blume; the silkgrass and sand rush are also system. Although Lewis did not succeed in staking common.” a claim for more land, he did make significant Scarlet globemallow occurs in dry grassland discoveries that advanced the knowledge of the prairies and plains from Alberta, Saskatchewan, and flora, fauna, ecology, and soils in the area west of Manitoba in Canada, south and eastward to Arizona, the Mississippi River.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • GOOSEBERRYLEAF GLOBEMALLOW Sphaeralcea Grossulariifolia (Hook
    GOOSEBERRYLEAF GLOBEMALLOW Sphaeralcea grossulariifolia (Hook. & Arn.) Rydb. Malvaceae – Mallow family Corey L. Gucker & Nancy L. Shaw | 2018 ORGANIZATION NOMENCLATURE Sphaeralcea grossulariifolia (Hook. & Arn.) Names, subtaxa, chromosome number(s), hybridization. Rydb., hereafter referred to as gooseberryleaf globemallow, belongs to the Malveae tribe of the Malvaceae or mallow family (Kearney 1935; La Duke 2016). Range, habitat, plant associations, elevation, soils. NRCS Plant Code. SPGR2 (USDA NRCS 2017). Subtaxa. The Flora of North America (La Duke 2016) does not recognize any varieties or Life form, morphology, distinguishing characteristics, reproduction. subspecies. Synonyms. Malvastrum coccineum (Nuttall) A. Gray var. grossulariifolium (Hooker & Arnott) Growth rate, successional status, disturbance ecology, importance to animals/people. Torrey, M. grossulariifolium (Hooker & Arnott) A. Gray, Sida grossulariifolia Hooker & Arnott, Sphaeralcea grossulariifolia subsp. pedata Current or potential uses in restoration. (Torrey ex A. Gray) Kearney, S. grossulariifolia var. pedata (Torrey ex A. Gray) Kearney, S. pedata Torrey ex A. Gray (La Duke 2016). Seed sourcing, wildland seed collection, seed cleaning, storage, Common Names. Gooseberryleaf globemallow, testing and marketing standards. current-leaf globemallow (La Duke 2016). Chromosome Number. Chromosome number is stable, 2n = 20, and plants are diploid (La Duke Recommendations/guidelines for producing seed. 2016). Hybridization. Hybridization occurs within the Sphaeralcea genus.
    [Show full text]
  • Determining Heavy Metal Contents of Hollyhock (Alcea Rosea L.) in Roadside Soils of a Turkish Lake Basin
    Pol. J. Environ. Stud. Vol. 27, No. 5 (2018), 2081-2087 DOI: 10.15244/pjoes/79270 ONLINE PUBLICATION DATE: 2018-05-09 Original Research Determining Heavy Metal Contents of Hollyhock (Alcea rosea L.) in Roadside Soils of a Turkish Lake Basin Ilhan Kaya1*, Füsun Gülser2 1Yuzuncu Yil University Agriculture Faculty, Department of Plant Protection, Van, Turkey 2Yuzuncu Yil University Agriculture Faculty, Department of Soil Science, Van, Turkey Received: 3 September 2017 Accepted: 26 October 2017 Abstract This study was carried out to determine the heavy metal contents of hollyhock (Alcea rosea L.) in roadside soils of Van Lake Basin. The leaf samples of the hollyhock were taken from the roadside areas affected by heavy metal pollution due to intensive motorized traffic and from areas 30 m from the roadside by taking into account prevailing wind direction in 10 different locations. There were only significant differences for Mn, Cu, and Zn contents of leaves according to the sampling locations. The mean Fe (383.3 mg kg-1), Mn (50.2 mg kg-1), Cu (19.2 mg kg-1), Zn (23.9 mg kg-1), Cd (17.9 mg kg-1), Cr (5.1 mg kg-1), Ni (3.2 mg kg-1), and Pb (3.2 mg kg-1) contents of leaves sampled from roadside areas were significantly higher than mean heavy metal contents of leaves sampled from the areas 30 m from the roadside. The increasing ratios in mean heavy metal contents of leaves were ordered as Cd (309.3%) > Cr (248.9%) > Ni (130.6%) > Fe (75.9%) > Pb (64.3%) > Mn (40.6%) > Cu (26.1%) > Zn (22.7%).
    [Show full text]
  • Timbered Rock Final EIS, Appendix L: Botany
    Appendix L-Botany Appendix L Botany L-1 Appendix L-Botany L-2 Appendix L-Botany Special Status Plants Special Status Plant Categories Threatened, Endangered, and Proposed plants (FT, FE, and FP) Plant species formally listed by the US Fish and Wildlife Service (USFWS) protected under the Endangered Species Act. It is the policy of the BLM to conserve listed species and the ecosystems on which they depend (USDI 2001). To date, T&E species include only vascular plants. State Threatened, Endangered, or Proposed (STO, SEO, SPO) Plant species listed by the State of Oregon. BLM policy is to manage for the conservation of those species and to comply with state laws protecting them to the extent they are consistent with the Federal Land Policy and Management Act (USDI 2001). Bureau Sensitive (BSO) Plants that could easily become endangered or extinct within the State. BLM policy requires that any Bureau action will not contribute to the need to list any of these species (USDI 2001). The Sensitive Species list, which includes vascular plants, lichens, and bryophytes, is tiered to State fish/wildlife/botanical agenciesʼ and Oregon Natural Heritage Program (ONHP) designations. Bureau Assessment (BAO) Plants not presently eligible for official federal or state status, but of concern in Oregon and Washington and, at a minimum, may need protection or mitigation from BLM activities (USDI 2001). These vascular plants, lichens, and bryophytes are also tracked by the ONHP. Bureau Tracking (BTO) Plant species for which the BLM wishes to collect data in order to enable an early warning for species that may become of concern in the future, species for which more information is needed to determine their status, or species that no longer need active management.
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • Globemallows
    RANGELANDS15(3), June 1993 127 Globemallows Bruce M. Pendery and Melvin D. Rumbaugh We initiated research on the ecological and forage ona, New Mexico, and Texas have the most species. characteristicsof globemallows(Sphaeralcea) in 1986 Sphaeralcea coccinea is the most widely distributed during a search for beneficialforbs that are well adapted species. to cold desertand steppe rangelands receivingless than Generally, globemallowspecies in the U.S. are peren- 12 inches of precipitation annually. Globemallows are nial, cool-season forbs or half-shrubs (Shaw andMonsen well adapted to such stressful environments. They also 1983, Pendery and Rumbaugh 1986). Most have showy are native species, which may be desired or required in orangeflowers borneon multiple stems that arise from a some situations. basalcrown. However, S. coccinea is moreprostrate and spreadsby rhizomes. In the western U.S. globemallows Characteristics and Ecology grow best in open or disturbed sites (especially road- Globemallows (see cover photos)are in the family Mal- sides) on sandy- to clay-loamsoils, or on gravelly foot- vaceae,which includes species such as cotton, okra, and hills receivingabout 8 to 12 inches of precipitationannu- hollyhock. Sphaeralcea occurs primarily in North and ally (Wasser 1982). Sphaeralcea grossulariifoliais found South America (Kearney 1935). There are 25 globemal- on alkaline soils and tolerates moderate salinity, but it low species on western U.S. rangelands (Table 1). Ariz- does not tolerate sodic soils. Recentwork hasshed lighton globemallowlife-history This article is a cooperativeinvestigation of the USDA-ARS and the Utah Agricultural ExperimentStation, Logan,Utah. Journal PaperNo. 4384. strategies,which may improveour management abilities. Authors are range scientist and retired Research Geneticist, respectively, Under natural conditions establish USDA,Agricultural Research Service, Logan.Utah 84322-6300.
    [Show full text]
  • Petition to List Iliamna Lake Seal, a Distinct Population Segment of Pacific Harbor Seal (Phoca Vitulina Richardsi) Under the Endangered Species Act
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST ILIAMNA LAKE SEAL, A DISTINCT POPULATION SEGMENT OF PACIFIC HARBOR SEAL (PHOCA VITULINA RICHARDSI) UNDER THE ENDANGERED SPECIES ACT CENTER FOR BIOLOGICAL DIVERSITY NOVEMBER 19, 2012 Notice of Petition Rebecca M. Blank Acting Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave, NW Washington, D.C. 20230 Email: [email protected] Samuel Rauch Assistant Administrator for Fisheries 1315 East West Highway Silver Spring, MD 20910 Ph: (301) 427-8000 Email: [email protected] PETITIONER The Center for Biological Diversity PO Box 100599 Anchorage, AK 99510-0599 Ph: (907) 274-1110 Fax: (907) 258-6177 Date: November 19, 2012 Kiersten Lippmann Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 § 1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 533(e), and 50 C.F.R. § 424.14(a), the Center for Biological Diversity (“Petitioner”) hereby petitions the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (“NOAA”), through the National Marine Fisheries Service (“NMFS” or “NOAA Fisheries”), to list the Iliamna Lake seal as a threatened or endangered species and to designate critical habitat to ensure its survival and recovery. The Center for Biological Diversity (“Center”) is a non-profit, public interest environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center has approximately 40,000 members, and over 474,000 members and online activists throughout the United States and internationally. The Center and its members are concerned with the conservation of endangered species, including seal species, and the effective implementation of the ESA.
    [Show full text]
  • Landscaping with Native Plants by Stephen L
    SHORT-SEASON, HIGH-ALTITUDE GARDENING BULLETIN 862 Landscaping with native plants by Stephen L. Love, Kathy Noble, Jo Ann Robbins, Bob Wilson, and Tony McCammon INTRODUCTION There are many reasons to consider a native plant landscape in Idaho’s short- season, high-altitude regions, including water savings, decreased mainte- nance, healthy and adapted plants, and a desire to create a local theme CONTENTS around your home. Most plants sold for landscaping are native to the eastern Introduction . 1 United States and the moist climates of Europe. They require acid soils, con- The concept of native . 3 stant moisture, and humid air to survive and remain attractive. Most also Landscaping Principles for Native Plant Gardens . 3 require a longer growing season than we have available in the harshest cli- Establishing Native Landscapes and Gardens . 4 mates of Idaho. Choosing to landscape with these unadapted plants means Designing a Dry High-Desert Landscape . 5 Designing a Modified High-Desert Landscape . 6 accepting the work and problems of constantly recreating a suitable artificial Designing a High-Elevation Mountain Landscape . 6 environment. Native plants will help create a landscape that is more “com- Designing a Northern Idaho Mountain/Valley fortable” in the climates and soils that surround us, and will reduce the Landscape . 8 resources necessary to maintain the landscape. Finding Sources of Native Plants . 21 The single major factor that influences Idaho’s short-season, high-altitude climates is limited summer moisture. Snow and rainfall are relatively abun- dant in the winter, but for 3 to 4 months beginning in June, we receive only a YOU ARE A SHORT-SEASON, few inches of rain.
    [Show full text]
  • Gardening for Native Bees in Utah and Beyond James H
    Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-133-09 January 2013 Gardening for Native Bees in Utah and Beyond James H. Cane Linda Kervin Research Entomologist, USDA ARS Logan, UT Pollinating Insect-Biology, Management, Systematics Research Do You Know? • 900 species of native bees reside in Utah. • Some wild bees are superb pollinators of Utah’s tree fruits, raspberries, squashes, melons and cucumbers. • Few of our native bees have much venom or any inclination to sting. • Our native bees use hundreds of varieties of garden flowers, many of them water-wise. • A garden plant need not be native to attract and feed native bees. tah is home to more than 20 percent Uof the 4,000+ named species of wild Fig. 1. Carder bee (Anthidium) foraging at lavender (Lavendula: Lamiaceae).1 bees that are native to North America. Except for bumblebees and some sweat bees, our native bees are solitary, not so- cial, many with just one annual generation that coincides with bloom by their favorite floral hosts. In contrast, the familiar honey- bee is highly social, has perennial colonies, and was brought to North America by settlers from Europe. Regardless of these differences, however, all of our bees need pollen and nectar from flowers. The sugars in sweet nectar power their flight; mother bees also imbibe some nectar to mix with pollen that they gather. Pollen is fortified with proteins, oils and minerals that are es- sential for the diets of their grub-like larvae back at the nest. Our flower gardens can become valuable cafeterias for local populations of diverse native bees.
    [Show full text]