View Additional Information

Total Page:16

File Type:pdf, Size:1020Kb

View Additional Information PRODUCT INFORMATION SHEET APHID CONTROL: Micromus varietgatus, BROWN LACEWING Product: 50 or 100 adults per bottle. This Brown Lacewing is an exceptional predator. It was first collected during a survey of greenhouse peppers, looking for Foxglove Aphid Parasitoids. During the survey, this species was frequently associated with active Foxglove Aphid colonies. Unlike most Green Lacewings, Brown Lacewings are predator at all mobile stages of their lifecycle; in fact, it is the adult that does most of the predation, usually at night. Its eggs are laid low in the plant, providing excellent low level control, which is rare. Adults are 8 mm in length with several dark brown markings on wings. Target: Their range of prey is equally impressive, aggressively consuming any of the sucking insects such as Aphids, Whitefly, Mealybug etc. They appear to find prey by smell. Has been seen feeding on: Foxglove Aphid, Aulacorthum solani, Pea Aphid, Acyrthosiphon pisum Release: 50 to 100 in hot spot upon arrival. These insect can not be stored and need to be released immediately. Rate: 50 to 100 in hot spot Temperature: They can complete their lifecycle in temperatures as low as 40C making it an excellent predator in ornamentals during the winter. Notes: -Brown Lacewing should be used in conjunction with other biological controls. -It was recorded for the first time from North America in 1988, from Galiano Island, on the coast of southwestern British Columbia. The present records confirm the occurrence of this species in eastern Canada. -Micromus variegatus is a living relative of the Jurassic Lacewing Leptolingia. Both are in the order Neuroptera. Micromus variegatus is a member of the suborder Hemerobiiformia, the superfamily Hemerobioidea, and the family Hemerobiidae. Leptolingia is in the extinct family Grammolingiidae. Micromus variegatus is widely distributed. It is quite common in Europe and Asia. This lacewing has also been seen in Canada. Phone: 905-382-2904; Email: [email protected] Please let NIC know within 24 hours upon receipt if there are a n y p r o b l e m s with your live insect order. For further Information Contact: NATURAL INSECT CONTROL, 3737 Netherby Road, Stevensville, Ontario, L0S 1S0 905-382-2904; 905-382-4418 (Fax); [email protected] For further Information on all NIC Beneficial Insects go to www.naturalinsectcontrol.com www.naturalinsectcontrol.com Aphid Controls: Ladybugs (Hippodamia convergens) -general predator will feed on many aphids species, does not feed well on melon/cotton aphids. Lacewings (Chrysoperla spp.) -general predator and try our Lacewing on Strings for easy application. Brown Lacewing (Micromus variegates)-Cool season predator (works at 40C) Aphelinus abdominalis -Potato and Foxglove aphids. 2019 Aphidoletes aphidimyza -Green peach, melon/cotton, potato Crop and foxglove. Your best Preventative Aphid control Recommendation Aphidius colemani -melon/cotton aphids. Aphidius matricariae -Green peach, same melon/cotton aphids. Aphidius ervi –Potato and foxglove aphids Aphids This pest can come on quickly, scout your plants on a Beneficial Pests General Release regular basis (1 to 2 per week) and keep records. Aphids are Insect Rates drawn to plants that are high in nitrogen. Add your nitrogen Ladybugs Most Aphid 1000 Ladybugs in small amounts over a longer period of time as this can Species covers 50m2 (550 make the plants less like “aphid magnets”. You will find ft2) that some plants are more prone to certain pests, from your Lacewings Most Aphid 1000 eggs cover list keep an eye on Calibrachoa (we have other customers Species 18.5 to 46.5 m2 that find this is an aphid favorite and it needs to be treated (200 to 500 chemically). ft2)/week Brown Most Aphid 1/m2 (10 ft2) or Lacewing Species 100 per hotspot Know your Aphids Species: every 2 weeks. Green Peach Aphids: can be green, pink or red in color. Aphelinus Potato and 0.5-2/m2 (0.5- The cornicles (2 “tall pipes” that stick out the back of the abdominalis Foxglove aphids 2/10ft2) insect) are green and slightly swollen at tip. This is the most Aphidoletes Green peach, 250 Aphidoletes common species, watch for this one on peppers. aphidimyza melon/cotton, per 500m2 (5500 potato and ft2) Melon/Cotton Aphids: can be brown to dark green with foxglove aphids black cornicles. Watch for this on peppers and cucumbers. Aphidius melon/cotton 0.5 to 1 /m2. (10 This very common aphid species in greenhouses. colemani aphids ft2)/week Aphidius Green peach, 0.5 to 1/m2 (10 Potato Aphids: a long legged and spindle-shaped aphid matricariae same ft2)/week with black cornicles. These can be found on tomatoes and melon/cotton peppers. Not as common, but a few greenhouses are seeing aphids them. Aphidius ervi Potato and 0.5-1 Aphidius/m² foxglove aphids (10ft2)/week Foxglove Aphids: can be whitish green to green body with a dark green spot at base of cornicles. These can be seen on tomatoes, peppers and many other annual crops. Many thanks to Applied Bionomics for these recommendations. Looking for Prevention? Aphid preventative program, use Aphidoletes aphidimyza. You should release 250 Aphidoletes per 5500 ft2/500m2 every week. If the aphid population begins to rise, we can introduce other beneficials depending on the aphid species. Bug Bites: Tips on Aphid Control To improve the cool season performance of Aphidoletes, the addition of LED Christmas light (green range) will significantly increase the effectiveness. With these lights, Aphidoletes are able to control Green Peach aphids and then move on to other species like Foxglove. For further Information Contact: NATURAL INSECT CONTROL, 3737 Netherby Road, Stevensville, Ontario, L0S 1S0 905-382-2904; 905-382-4418 (Fax); [email protected] For further Information on all NIC Beneficial Insects go to www.naturalinsectcontrol.com www.naturalinsectcontrol.com .
Recommended publications
  • Soybean Mosaic Virus
    -- CALIFORNIA D EP AUM ENT OF cdfa FOOD & AGRICULTURE ~ California Pest Rating Proposal for Soybean mosaic virus Current Pest Rating: none Proposed Pest Rating: C Kingdom: Orthornavirae; Phylum: Pisuviricota Class: Stelpaviricetes; Order: Patatavirales Family: Potyviridae; Genus: Potyvirus Comment Period: 6/15/2020 through 7/30/2020 Initiating Event: On August 9, 2019, USDA-APHIS published a list of “Native and Naturalized Plant Pests Permitted by Regulation”. Interstate movement of these plant pests is no longer federally regulated within the 48 contiguous United States. There are 49 plant pathogens (bacteria, fungi, viruses, and nematodes) on this list. California may choose to continue to regulate movement of some or all these pathogens into and within the state. In order to assess the needs and potential requirements to issue a state permit, a formal risk analysis for Soybean mosaic virus is given herein and a permanent pest rating is proposed. History & Status: Background: The family Potyviridae contains six genera and members are notable for forming cylindrical inclusion bodies in infected cells that can be seen with light microscopy. Of the six genera, the genus Potyvirus contains by far the highest number of important plant pathogens Named after Potato virus Y, “pot-y-virus” particles are flexuous and filamentous and composed of ssRNA and a protein coat. Most diseases caused by potyviruses appear primarily as mosaics, mottling, chlorotic rings, or color break on foliage, flowers, fruits, and stems. Many cause severe stunting of young plants and drastically reduced yields with leaf, fruit, and stem malformations, fruit drop, and necrosis (Agrios, 2005). Soybean is one of the most important sources of edible oil and proteins for people and animals, and a source of biofuel.
    [Show full text]
  • The New Fossil Lacewings of Grammolingiidae (Neuroptera) from the Jurassic of Central Asia and Mongolia, with Notes on Biogeography of the Family
    Zootaxa 3478: 297–308 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:5EA14648-EF42-4CE2-9C68-CA0892C24E3E The new fossil lacewings of Grammolingiidae (Neuroptera) from the Jurassic of Central Asia and Mongolia, with notes on biogeography of the family ALEXANDER V. KHRAMOV Paleontological institute of the Russian Academy of Science, Profsouznaya str. 123, 117997, Moscow, Russia. [email protected] Abstract A new genus and three new species of the family Grammolingiidae are described: Protolingia mira gen. et sp. nov. and Litholingia longa sp. nov. from the Sai-Sagul locality (Kyrgyzstan, upper Lower Jurassic–lower Middle Jurassic) and Lep- tolingia oblonga sp. nov. from the Houtiyn-Hotgor locality (Mongolia, Upper Jurassic). Grammolingiidae are recorded from the Karatau locality (Kazakhstan, Upper Jurassic). This fossil lacewing family occurred in the South of Central Asia and in East Asia during the Middle and Upper Jurassic; its distribution was limited by Mongol-Okhotsk and Turgai seas. Grammolingiidae from Sai-Sagul is the oldest record of this family. They demonstrate unusual characteristics for the fam- ily, such as the pectinate CuP and the distal fusion of Sc and R1. Key words: Neuroptera, Grammolingiidae, Jurassic, Mongol-Okhotsk sea Introduction Grammolingiidae is an extinct Jurassic family of Neuroptera, which currently includes four genera and fourteen species. Thirteen species came from the Middle Jurassic Daohugou locality, China, Inner Mongolia (Ren 2002; Shi et al. 2011; Liu et al. 2011; Shi et al. 2012), and only one was found outside Daohugou, in the Upper Jurassic Shar- Teg locality, Mongolia (Khramov 2010).
    [Show full text]
  • Iáe Comparative Host Plant Range Studies Ofthebluealfaifa
    STMSÍ^- ^ iáe Comparative Host Science and Education Administration Plant Range Studies Technical Bulletin oftheBlueAlfaifa Number 1 639 Aphiid, Acyrthosiphon Kon do/Sh in ji, and the Pea Aphid, Acyrthosiphon Pisum (l-iarris) (IHomoptera: Aphid idae) O :"-.;::>-"' C'" p _ ' ./ -• - -. -.^^ ■ ■ ■ ■ 'Zl'-'- CO ^::!:' ^. ^:"^"^ >^. 1 - «# V1--; '"^I I-*"' Í""' C30 '-' C3 ci :x: :'— -xj- -- rr- ^ T> r-^- C".' 1- 03—' O '-■:: —<' C-_- ;z: ë^GO Acknowledgments Contents Page The authors wish to thank Robert O. Kuehl and the staff Introduction -| of the Center for Quantitative Studies, University of Materials and methods -| Arizona, for their assistance in statistical analysis of Greenhouse studies -| these data. We are also grateful to S. M. Dietz, G. L Jordan, A. M. Davis, and W. H. Skrdia for providing seed Field studies 2 used in these studies. Statistical analyses 3 Resultsanddiscussion 3 Abstract Greenhouse studies 3 Field studies 5 Ellsbury, Michael M., and Nielsen, Mervin W. 1981. Classification of hosts studied in field and Comparative Host Plant Range Studies of the Blue greenhouse experiments 5 Alfalfa Aphid, Acyrthosiphon kondoi Shinji, and the Pea Conclusions Q Aphid, Acyrthosiphon pisum (Harris) (Homoptera: Literature cited 5 Aphididae). U.S. Departnnent of Agriculture, Technical Appendix 7 Bulletin No. 1639, 14 p. Host plant ranges of the blue alfalfa aphid (BAA), Acyrthosiphon kondoi Shinji, and the pea aphid (PA), Acyrthosiphon pisum (Harris), were investigated on leguminous plant species. Fecundities of BAA and PA were determined on 84 plant species from the genera Astragalus, Coronilla, Lathyrus, Lens, Lotus, Lupinus, Medicago, Melilotus, Ononis, Phaseolus, Pisum, Trifolium, Vicia, and Vigna in greenhouse studies. Both aphids displayed a broad reproductive host range extending to species in all genera tested except Phaseolus.
    [Show full text]
  • Taxonomy Geographical Distribution
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Beiträge zur Entomologie = Contributions to Entomology... Beitr. Ent., Berlin 25 (1975) 2, S. 2 57 -2 6 0 W i l h e l m PiECK-Universität R ostock Sektion Biologie Eorschungsgruppe Phyto-Entomologie Rostock F r i t z P a u l M u l l e r Incidence of the aphid Acyrthosiphon gossypii M o r d v i l k o on legumes and on cotton (Homoptera: Aphididae) With 2 text figures Some recently published papers have shown the aphid Acyrthosiphon sesbaniae K a s a - k a r a j D a v i d to he an efficacious vector for viruses of cultivated Fabaceae. K a i s e r & S o h a l k (1973) carried out transmission experiments with the circulative pea leaf roll virus which can cause serious losses in food legume crops in Iran and obtained high trans­ mission rates with A. sesbaniae. In the Northern Province of the Sudan A b ij S a l i h et al. (1973) ascertained the efficient transmissibility of the Sudanese broad bean mosaic virus by A. sesbaniae on Vida faba. The book of S chmtjtterer (1963) relates A. sesbaniae as an effective vector of the pea mosaic virus in central Sudan. During a visit in the Hudeiha Research Station in the Northern Province of the Sudan the present author found Vicia faba crops heavily infested by A. sesbaniae. Despite of the considerable virus transmitting ability and the mass infestation of particularly suitable host plants there exists no survey on the biology, host range and geographical distribution of the aphid.
    [Show full text]
  • Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
    Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture.
    [Show full text]
  • Parasitoids Induce Production of the Dispersal Morph of the Pea Aphid, Acyrthosiphon Pisum
    OIKOS 98: 323–333, 2002 Parasitoids induce production of the dispersal morph of the pea aphid, Acyrthosiphon pisum John J. Sloggett and Wolfgang W. Weisser Sloggett, J. J. and Weisser, W. W. 2002. Parasitoids induce production of the dispersal morph of the pea aphid, Acyrthosiphon pisum. – Oikos 98: 323–333. In animals, inducible morphological defences against natural enemies mostly involve structures that are protective or make the individual invulnerable to future attack. In the majority of such examples, predators are the selecting agent while examples involving parasites are much less common. Aphids produce a winged dispersal morph under adverse conditions, such as crowding or poor plant quality. It has recently been demonstrated that pea aphids, Acyrthosiphon pisum, also produce winged offspring when exposed to predatory ladybirds, the first example of an enemy-in- duced morphological change facilitating dispersal. We examined the response of A. pisum to another important natural enemy, the parasitoid Aphidius er6i, in two sets of experiments. In the first set of experiments, two aphid clones both produced the highest proportion of winged offspring when exposed as colonies on plants to parasitoid females. In all cases, aphids exposed to male parasitoids produced a higher mean proportion of winged offspring than controls, but not significantly so. Aphid disturbance by parasitoids was greatest in female treatments, much less in male treatments and least in controls, tending to match the pattern of winged offspring production. In a second set of experiments, directly parasitised aphids produced no greater proportion of winged offspring than unparasitised controls, thus being parasitised itself is not used by aphids for induction of the winged morph.
    [Show full text]
  • Describing Undiscovered Insect Diversity: an Introduction to Collected Papers Describing 150 New Taxa
    Zootaxa 3478: 7–10 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Editorial ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:BE8BE638-A9E4-415D-8ADA-493BBCCE55B7 Describing undiscovered insect diversity: an introduction to collected papers describing 150 new taxa ZHI-QIANG ZHANG New Zealand Arthropod Collection, Landcare Research, 231 Morrin Road, St. Johns, Auckland 1072, New Zealand; E-mail: [email protected] The number of species on earth is estimated to be 8.7 million, with 87% of them to be discovered and described (Mora et al. 2011). The total of 8.7 million seems to be an underestimate, because for Animalia alone, over 1.5 million species have been described (Zhang 2011b). The most successful group, the Insecta, accounts for almost two-thirds of all animals. Zootaxa has been a major force in facilitating the descriptions of undiscovered animal species in the world—publishing about 20% of all new species indexed in Zoological Record each year (Zhang 2011a). In the first week since the publication of the ICZN amendment allowing e-only publication (ICZN 2012), Zootaxa has published 484 new taxa. In this special volume highlighting undiscovered global diversity of insects, Zootaxa publishes 150 new taxa (143 species + 7 genera) of 12 insect orders in 44 papers by authors from different parts of the world (Table 1). TABLE 1. Numbers of new taxa (species-group and genus-group) by insect order (listed following sequence in Zhang 2011c) with references. Insect order Number of new taxa References Species-group Genus-group Ephemeroptera 1 0 Flowers (2012) Orthoptera 2 2 Bolfarini et al.
    [Show full text]
  • Seasonal Abundance of Acyrthosiphon Pisum (Harris) (Homoptera: Aphididae) and Therioaphis Trifola (Monell) (Homoptera: Callaphididae) on Lucerne in Central Greece1
    ENTOMOLOGIA ÌIELLENICA 8 ( 1990): 41-46 Seasonal Abundance of Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) and Therioaphis trifola (Monell) (Homoptera: Callaphididae) on Lucerne in Central Greece1 D. P. LYKOURESSIS and CH. P. POLATSIDIS Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, 75 lera Odos, GR 118 55 Athens, Greece ABSTRACT Acyrthosiphonpisum (Harris) and Therioaphis trifolii (Monell) were the most abun­ dant aphid species on lucerne at Kopais, Co. Boiotia in central Greece from April 1984 to November 1986. Population fluctuations for A. pisum showed two peaks, the first during April-May and the second in November. Low numbers or zero were found during summer and till mid October as well as during winter and March. The abundance of this species during the year agrees generally with the effects of pre­ vailing temperatures in the region on aphid development and reproduction. T. tri­ fola also showed two population peaks but at different periods. The first occurred in July and the second from mid September to mid October. The first peak was higher than the second. The sharp decline in population densities that occurred in early August and lasted till mid September is not accounted for by adverse climatic conditions, but natural enemies and/or other limiting factors are possibly respon­ sible for that population reduction. Numbers were zero from December till March. while they kept at low levels during the rest of spring and part of June as well as from mid October till the end of November. Introduction species occurring quite frequently on lucerne in Several aphid species are known to attack temperate regions.
    [Show full text]
  • Proposal to Sequence the Genome of the Pea Aphid (Acyrthosiphon Pisum)
    Proposal To Sequence the Genome of the Pea Aphid (Acyrthosiphon pisum) The International Aphid Genomics Consortium (IAGC) Steering Committee (in alphabetical order): Marina Caillauda, Owain Edwardsb, Linda Fieldc, Danièle Giblot- Ducrayd, Stewart Graye, David Hawthornef, Wayne Hunterg, Georg Janderh, Nancy Morani, Andres Moyaj, Atsushi Nakabachik, Hugh Robertsonl, Kevin Shufranm, Jean- Christophe Simond, David Sternn, Denis Tagud Contact: D. Stern; Ph. 609-258-0759; FAX 609-258-7892; [email protected] Abstract We propose sequencing of the 300Mb nuclear genome of the pea aphid, Acyrthosiphon pisum. Aphids display a diversity of biological problems that are not easily studied in other genetic model systems. First, because they are the premier model for the study of bacterial endosymbiosis and because they vector many well-studied plant viruses, aphids are an excellent model for studying animal interactions with microbes. Second, because their normal life cycle displays extreme developmental plasticity as well as both clonal and sexual reproduction, aphids provide the opportunity to understand the basis of phenotypic plasticity as well as the genomic consequences of sexual versus asexual reproduction. Their alternative reproductive modes can also be exploited in genetic experiments, because clones can be maintained indefinitely in the laboratory with sexual generations induced at will1,2. Third, aphids provide some of the best studied instances of adaptation, in the form of both insecticide resistance, which has evolved through several molecular mechanisms, and host plant adaptation, which has repeatedly generated novel aphid lineages specialized to particular crop plant cultivars and which is presumably the basis for the radiation of aphids onto many specialized host plants during their long evolutionary history.
    [Show full text]
  • From the Middle Jurassic of Inner Mongolia, China
    Zootaxa 2897: 51–56 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) A new lacewing (Insecta: Neuroptera: Grammolingiidae) from the Middle Jurassic of Inner Mongolia, China YUSHUANG LIU1, 2, CHAOFAN SHI 2& DONG REN2 1Paleontological Institute, Shenyang Normal University, Shenyang 110034, China. E-mail: [email protected] 2College of Life Sciences, Capital Normal University, 105 Xisanhuanbeilu, Haidian District; Beijing 100048; China. E-mail: [email protected] Abstract A new species of the family Grammolingiidae (Neuroptera) (Leptolingia imminuta sp. nov.) is described from Daohugou village (Middle Jurassic), Inner Mongolia, China. In this new species, MA forks at the same level as the separation of Rs2 from Rs, close to the middle of forewing, this structure of MA is peculiar in Grammolingiidae and is different from that of all other known species. Moreover, this new species is the smallest species known in the family Grammolingiidae (30 mm wing span). Key words: Leptolingia, Jiulongshan Formation, new species, Daohugou Introduction Grammolingiidae Ren, 2002 is a small family of Jurassic Neuroptera found in Central and East Asia. Three genera and nine species were described previously in this family. Among them, eight species were found in the Middle Jurassic deposits of Daohugou Village, Inner Mongolia, China (Ren 2002, Shi et al. 2011); only one species (Lep- tolingia shartegica Khramov, 2010) has been found in the Late Jurassic deposits of Sharteg, Mongolia (Khramov 2010). Leptolingia was erected by Ren (2002) who described two species; Shi et al. (2011) revised this genus, iden- tifying definitive generic characters and added a new species, L.
    [Show full text]
  • 00011694.Pdf
    6th International Congress on Fossil Insects, Arthropods and Amber Byblos, April 2013 ----------------------------------------------------------------------------------------------------------------------------------- Current State of Knowledge of the Mesozoic Neuroptera of China Qiang YANG1, Yongjie WANG1, Chaofan SHI1, Yuanyuan PENG1, Vladimir N. MAKARKIN1,2, Dong REN1 1- College of Life Sciences, Capital Normal University, Beijing, 100048, China. E-mail: [email protected] 2- Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia. E-mail: [email protected] The order Neuroptera is known in the fossil record since the Early Permian (about 280 to 260 Ma) and it thrives ever since. The neuropterans occur relatively rare in the pre-Mesozoic localities. The order was most diverse in the Mesozoic. Most of the extinct and extant groups have been present at this time. Many families, genera and species of the Chinese neuropteran fossils have been published since the order was first reported by Ping Chi in 1928. Up to now, 20 families have been recorded from the Mesozoic of China, and 58 genera and 97 species have been described from this era. We mainly study the fossils materials from two localities of northeast China: the Middle Jurassic Daohugou (Jiulongshan Formation) in Inner Mongolia, and the Early Eocene Huangbanjigou (Yixian Formation) in Liaoning Province. The Daohugou beds contain a diverse insect fauna, with 19 insect orders being represented. We have examined approximately 4000 Neuroptera specimens which are housed in the Capital Normal University. Hitherto, only 58 species (29 genera) belonging to 11 families were described. Osmylidae are most abundant and diverse among neuropterans in the assemblage.
    [Show full text]
  • Юрские Сетчатокрылые (Insecta: Neuroptera) Центральной Азии
    РОССИЙСКАЯ АКАДЕМИЯ НАУК ПАЛЕОНТОЛОГИЧЕСКИЙ ИНСТИТУТ им. А.А. Борисяка на правах рукописи Храмов Александр Валерьевич ЮРСКИЕ СЕТЧАТОКРЫЛЫЕ (INSECTA: NEUROPTERA) ЦЕНТРАЛЬНОЙ АЗИИ 25.00.02 Палеонтология и стратиграфия Диссертация на соискание ученой степени кандидата биологических наук Научный руководитель: доктор биологических наук Пономаренко Александр Георгиевич Москва - 2014 Оглавление ВВЕДЕНИЕ............................................................................................................................. стр. 4 Глава 1. История изучения юрских Neuroptera................................................................стр.7 Глава 2. Отряд Neuroptera..................................................................................................стр. 11 2.1. Система и биология современных Neuroptera....................................................... стр. 11 2.2. Строение крыльев и номенклатура жилкования Neuroptera............................. стр. 14 2.3. Палеонтологическая летопись Neuroptera.............................................................. стр. 17 Глава 3. Материалы и методы.......................................................................................... стр. 31 3.1. Коллекции юрских Neuroptera и их обработка...................................................... стр. 31 3.2. Описание местонахождений юрских Neuroptera Центральной Азии................ стр. 32 Глава 4. Обзор фаун юрских Neuroptera Центральной Азии..................................... стр. 42 4.1. Согюты (Киргизия).....................................................................................................
    [Show full text]