Dramatic Decline of the Vulnerable Reeves's Pheasant Syrmaticus Reevesii, Endemic to Central China

Total Page:16

File Type:pdf, Size:1020Kb

Dramatic Decline of the Vulnerable Reeves's Pheasant Syrmaticus Reevesii, Endemic to Central China Dramatic decline of the Vulnerable Reeves’s pheasant Syrmaticus reevesii, endemic to central China C HUNFA Z HOU,JILIANG X U and Z HENGWANG Z HANG Abstract The current status and distribution of the regions (Zheng & Wang, 1998; Collar et al., 2001). Reeves’s Vulnerable Reeves’s pheasant Syrmaticus reevesii, endemic pheasant is sensitive to expansion of development and there to central China, is poorly known. To obtain updated is no space for the species to shift its range in central China, information on its status we selected 89 candidate sites in six especially with the high degree of habitat fragmentation in provinces and one municipality in central China and this area (Zheng & Wang, 1998). Previous surveys (Xu et al., conducted interviews and field surveys from April 2011 to 1996; Ma et al., 2009) have indicated declines in the April 2012. Interviews demonstrated the pheasant has distribution and population density of Reeves’s pheasant disappeared from 46% of the surveyed sites. Our results but these surveys did not cover the entire range of the also revealed a population decline at 46 sites, including species or lacked accurate data. protected areas, although population densities in protected In the study reported here we conducted a large-scale areas were higher than those in non-protected areas. Eighty- and intensive survey of Reeves’s pheasant from April 2011 three, 26 and 20% of the surveyed sites had evidence of to April 2012. We aimed to: (1) ascertain the current poaching, habitat loss and use of poison, respectively, which distribution and population status of Reeves’s pheasant in were the three major threats to this species. To ensure the China, (2) identify the challenges for its conservation, and long-term survival of Reeves’s pheasant in China, protection (3) provide recommendations for appropriate conservation and management need to be enforced in both protected and measures. non-protected areas. We recommend that this species should be upgraded to a national first-level protected Study area species in China and recategorized as Endangered on the IUCN Red List. The survey covered the entire post-1980 range in which ’ Keywords China, distribution, population status, Reeves’s Reeves s pheasant was known to occur in central China pheasant, Syrmaticus reevesii, threats (Anhui, Guizhou, Henan, Hubei, Hunan and Shaanxi provinces and Chongqing municipality; Fig. 1; Zheng & This paper contains supplementary material that can be Wang, 1998). This region is normally subject to the found online at http://journals.cambridge.org south-east subtropical monsoon, resulting in abundant precipitation and a moderate mean air temperature (Zhao et al., 2005). The natural vegetation of the region is Introduction evergreen broadleaf forest, deciduous broadleaf forest, or mixed conifer and broadleaf forest (Cheng et al., 1978; eeves’s pheasant Syrmaticus reevesii, endemic to central Wu et al., 1991, 1994; Xu et al., 1991). In addition to Reeves’s RChina, is categorized as Vulnerable on the IUCN Red pheasant, sympatric pheasants in this region include List (IUCN, 2012) and as a national second-level protected the ring-necked Phasianus colchicus, golden Chrysolophus species (State Council, 1988). It was once widely distributed pictus and koklass Pucrasia macrolopha pheasants, and relatively common (Cheng et al., 1978). However, Temminck’s tragopan Tragopan temminckii and five other because of illegal hunting, habitat loss and fragmentation species of Galliformes (Zheng, 2011). (Xu et al., 1991, 1995; MacKinnon et al., 1996; Zheng & Wang, 1998), some populations have been extirpated and the species’ range has become divided into eastern and western Methods We collected data on the historical distribution of Reeves’s 1978 1991 CHUNFA ZHOU and ZHENGWANG ZHANG (Corresponding author) Ministry of pheasant (Cheng et al., ; Xu et al., ; Zheng & Wang, Education Key Laboratory for Biodiversity Science and Ecological Engineering, 1998; Collar et al., 2001) and on the current distribution, College of Life Sciences, Beijing Normal University, Beijing 100875, China fi E-mail [email protected] using interviews and eld surveys. Personnel of provincial forestry departments responsible for wildlife conserva- JILIANG XU College of Nature Conservation, Beijing Forestry University, Beijing 100083, China tion and management provided a general outline of the Received 27 February 2013. Revision requested 29 April 2013. distribution of the species in each of the seven provinces/ Accepted 12 June 2013. First published online 11 August 2014. municipality. We then consulted staff of relevant county Oryx, 2015, 49(3), 529–534 © 2014 Fauna & Flora International doi:10.1017/S0030605313000914 http://journals.cambridge.org Downloaded: 30 Mar 2016 IP address: 202.112.87.204 530 C. Zhou et al. FIG. 1 The locations of sites surveyed for Reeves’s pheasant Syrmaticus reevesii, indicating signs of presence and where the species appears to have been extirpated (some symbols represent more than one site). The rectangle on the inset indicates the location of the main map in China. forestry bureaus to obtain more detailed information on the distributed randomly within survey sites and located using species, obtaining such information for 78 counties (71%of a global positioning system. We surveyed a fixed width of the 110 counties in which the species was known post-1980; 50 m each side of the transects and within this assessed Zheng & Wang, 1998; Collar et al., 2001). In 60 of these abundance by sightings, sound of wing-whirring displays counties we identified 78 candidate sites for further and occurrence of moulted feathers. If two moulted feathers enquiries, and disregarded seven counties for which there were found at least 300 m apart, we considered them as was convincing evidence the species was extirpated. two independent individuals, given the home range size The 78 sites represented the best habitat for the survival of of Reeves’s pheasant (Xu et al., 2009). Any evidence of the pheasant in these counties; the distance between sites poaching or illegal hunting (e.g. poachers, electric power was at least 20 km, reducing spatial autocorrelation lines set above the ground to kill passing wildlife, or traps (Dormann et al., 2007). From interviews with four local encountered), and habitat loss or habitat fragmentation, was researchers familiar with Reeves’s pheasant we obtained also recorded along the transects. information on 11 more sites (Supplementary Table S1). We calculated population density as the number of Finally, we interviewed local residents to gather preliminary pheasants seen along a transect divided by the area of information on the status of and possible threats to Reeves’s the transect (length x 100 m; Bibby, 2000), and used Mann– pheasant. When conducting interviews with village heads, Whitney U tests to compare densities between protected and elders and hunters, we verified the ability of the interviewees non-protected areas. We used paired sample t-tests to test to identify Reeves’s pheasant by showing them photographs the difference in population density between 2011–2012 and of males of Reeves’s, ring-necked, golden and koklass 2003–2005 (Zhang, 2004; Liu, 2006), as the values met the pheasants and Temminck’s tragopan. In determining which assumptions of a normal distribution. We classified the sites to survey we only included information from threats (indicated during interviews or observed along the interviewees who identified Reeves’s pheasant correctly. transects) in each site and then ranked the main threats Where there was no evidence of Reeves’s pheasant for based on the percentage of survey sites with the corre- . 10 years and no habitat suitable for the species we sponding threat. We used an α level of P , 0.05 for all considered it to be locally extirpated (Harrison, 1991). statistical tests, which were performed with STATISTICA During the surveys additional informal interviews were v. 10.0 (StatSoft, Tulsa, USA). conducted to reaffirm findings. We identified 43 sites for field surveys, for which we used the protocols employed by previous studies in the same area Results (Zhang, 2004; Liu, 2006). Line transect sampling was used to estimate the density of Reeves’s pheasant. Transects To obtain general information about the status of Reeves’s of 850–3,600 m length across altitudes of 160–2,150 m were pheasant we interviewed 20 personnel of provincial and Oryx, 2015, 49(3), 529–534 © 2014 Fauna & Flora International doi:10.1017/S0030605313000914 http://journals.cambridge.org Downloaded: 30 Mar 2016 IP address: 202.112.87.204 Reeves’s pheasant in China 531 TABLE 1 Number of candidate sites (of 89 surveyed) where Reeves’s pheasant Syrmaticus reevesii has declined, disappeared, or is stable, and the main threats or causes of extinction in the six provinces and one municipality in the post-1980 range of the species in central China. Number of sites Province/ Absent for Absent for Absent for municipality Declined 10–15 years 16–25 years .25 years Stable Main threats/cause of extirpation* Anhui 7 1 Poaching, habitat loss Guizhou 4 4 4 4 Poaching, poison, habitat loss Henan 5 1 1 1 Poaching, habitat loss, inappropriate management Hubei 15 4 3 3 1 Poaching, habitat loss, poison Hunan 3 Inappropriate management, poaching Shaanxi 14 3 4 2 Poaching, poison, habitat loss Chongqing 1 2 1 1 Poaching, habitat loss, inappropriate management Total 46 14 16 11 2 *Only the three main factors are listed; for full details of threats, see Supplementary Table S1. TABLE 2 The number of sites and line transects and total length of transects surveyed in the provinces in which there was convincing evidence of the presence of Reeves’s pheasant, with number of individual pheasants detected, population density, and number of sites with evidence of poaching (including the number of electric fences, hunters or traps found or observed). No. of No. of sites with No. of No.
Recommended publications
  • CITES Cop16 Prop. 15 IUCN-TRAFFIC Analysis (PDF
    Ref. CoP16 Prop. 15 Deletion of Grey Junglefowl Gallus sonneratii from Appendix II Proponent: Switzerland, as Depositary Government, at the Request of the Animals Committee (prepared by New Zealand) Summary: The Grey Junglefowl Gallus sonneratii is endemic to India and inhabits subtropical and tropical moist forests, bamboo thickets, open woodlands and dry deciduous shrubland. The species has a wide range, estimated at around 1 million km2. It is believed to be affected by habitat loss and by some illegal hunting for its meat for domestic consumption. Good populations are likely now to be mainly confined to protected areas. The overall population is believed likely to be declining, though not at a rate fast enough to merit classifying the species as threatened. It was assessed as of Least Concern in 2012 by BirdLife International. Gallus sonneratii was one of several species of Galliform included in Appendix II in 1975 owing to concerns about the international trade in their feathers – the males possess long neck hackles (elongated feathers) with very distinctive patterning, which are in demand for making fishing flies. In the period 2000–2010, nearly 240 000 G. sonneratii feathers were recorded in the CITES trade database as in international trade; 99% of these were reported as coming from captive- bred birds and virtually all exported from non-range States. Over half were exported from the UK to the USA in 2001. Very little trade in feathers has been reported since 2004. There is a small amount of trade in live, captive-bred birds. The species is reported to be easy to keep in captivity.
    [Show full text]
  • Scottish Birds 22: 9-19
    Scottish Birds THE JOURNAL OF THE SOC Vol 22 No 1 June 2001 Roof and ground nesting Eurasian Oystercatchers in Aberdeen The contrasting status of Ring Ouzels in 2 areas of upper Deeside The distribution of Crested Tits in Scotland during the 1990s Western Capercaillie captures in snares Amendments to the Scottish List Scottish List: species and subspecies Breeding biology of Ring Ouzels in Glen Esk Scottish Birds The Journal of the Scottish Ornithologists' Club Editor: Dr S da Prato Assisted by: Dr I Bainbridge, Professor D Jenkins, Dr M Marquiss, Dr J B Nelson, and R Swann Business Editor: The Secretary sac, 21 Regent Terrace Edinburgh EH7 5BT (tel 0131-5566042, fax 0131 5589947, email [email protected]). Scottish Birds, the official journal of the Scottish Ornithologists' Club, publishes original material relating to ornithology in Scotland. Papers and notes should be sent to The Editor, Scottish Birds, 21 Regent Terrace, Edinburgh EH7 SBT. Two issues of Scottish Birds are published each year, in June and in December. Scottish Birds is issued free to members of the Scottish Ornithologists' Club, who also receive the quarterly newsletter Scottish Bird News, the annual Scottish Bird Report and the annual Raplor round up. These are available to Institutions at a subscription rate (1997) of £36. The Scottish Ornithologists' Club was formed in 1936 to encourage all aspects of ornithology in Scotland. It has local branches which meet in Aberdeen, Ayr, the Borders, Dumfries, Dundee, Edinburgh, Glasgow, Inverness, New Galloway, Orkney, St Andrews, Stirling, Stranraer and Thurso, each with its own programme of field meetings and winter lectures.
    [Show full text]
  • Status of the Vulnerable Western Tragopan (Tragopan Melanocephalus) in Pir-Chinasi/Pir- Hasimar Zone, Azad Jammu & Kashmir, Pakistan
    Status of Western Tragopan in Pir-Chinasi/Pir-Hasimar Zone of Jhelum Valley Status of the Vulnerable Western Tragopan (Tragopan melanocephalus) in Pir-Chinasi/Pir- Hasimar zone, Azad Jammu & Kashmir, Pakistan. Final Report (2011-12) Muhammad Naeem Awan* Project sponsor: Himalayan Nature Conservation Foundation Oriental Bird Club, UK Status of Western Tragopan in Pir-Chinasi/Pir-Hasimar Zone of Jhelum Valley Suggested Citation: Awan, M. N., 2012. Status of the Vulnerable Western Tragopan (Tragopan melanocephalus) in Jhelum Valley (Pir-Chinasi/Pir-Hasimar zone), Azad Jammu & Kashmir, Pakistan. Final Progress Report submitted to Oriental Bird Club, UK. Pp. 18. Cover Photos: A view of survey plot (WT10) in Pir-Chinasi area, Muzaffarabad, Azad Kashmir, Pakistan, where Tragopan was confirmed. Contact Information: Muhammad Naeem Awan Himalayan Nature Conservation Foundation (HNCF) Challa Bandi, Muzaffrarabad Azad Jammu & Kashmir Pakistan. 13100 [email protected] Status of Western Tragopan in Pir-Chinasi/Pir-Hasimar Zone of Jhelum Valley Abbreviations and Acronyms AJ&K : Azad Jammu & Kashmir HNCF: Himalayan Nature Conservation Foundation PAs: Protected Areas PCPH: Pir-Chinasi/Pir-Hasimar A A newly shot Tragopan B View of PCPH C Monal Pheasant’s head used as decoration in one home in the study area D Summer houses in the PCPH Status of Western Tragopan in Pir-Chinasi/Pir-Hasimar Zone of Jhelum Valley EXECUTIVE SUMMARY Study area, Pir-Chinasi/Pir-Hasimar (PCPH) zone (34.220-460N, 73.480-720E) is a part of the Western Himalayan landscape in Azad Kashmir, Pakistan; situated on both sides along a mountain ridge in the northeast of Muzaffarabad (capital town of AJ&K).
    [Show full text]
  • Changes to Category C of the British List†
    Ibis (2005), 147, 803–820 Blackwell Publishing, Ltd. Changes to Category C of the British List† STEVE P. DUDLEY* British Ornithologists’ Union, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK In its maintenance of the British List, the British Ornithologists’ Union Records Committee (BOURC) is responsible for assigning species to categories to indicate their status on the List. In 1995, the British Ornithologists’ Union (BOU) and the Joint Nature Conservation Committee (JNCC) held a conference on naturalized and introduced birds in Britain (Holmes & Simons 1996). This led to a review of the process of establishment of such species and the terms that best describe their status (Holmes & Stroud 1995) as well as a major review of the categorization of species on the British List (Holmes et al. 1998). The BOURC continues to review the occurrence and establishment of birds of captive origin in Britain. This paper sum- marizes the status of naturalized and introduced birds in Britain and announces changes to the categorization of many on the British List or its associated appendices (Categories D and E): Mute Swan Cygnus olor Categories AC change to AC2 Black Swan Cygnus atratus Category E* – no change Greylag Goose Anser anser Categories ACE* change to AC2C4E* Snow Goose Anser caerulescens Categories AE* change to AC2E* Greater Canada Goose Branta canadensis Categories ACE* change to C2E* Barnacle Goose Branta leucopsis Categories AE* change to AC2E* Egyptian Goose Alopochen aegyptiacus Categories CE* change
    [Show full text]
  • Golden Pheasant Chrysolophus Pictus
    Young Golden Pheasant Chrysolophus pictus What is the history of my relationship to man? The Golden Pheasant is commonly found in zoos and aviaries, but often as impure specimens that have the similar Lady Amherst's Pheasant in their lineage. Habitat / Climate Where am I from? dark young conifer forests The Golden Pheasant or "Chinese Pheasant",is a parrot like Map with sparse undergrowth gamebird of the order Galliformes. It is native to forests in mountainous areas of western China but feral populations have been established in the United Kingdom and elsewhere. Other family members: Caspian snowcock Who are my relatives? Gray partridge Silver Pheasant, Little chachalaca, Yellow- knobbed curassow and Western capercaillie the Turkey Breeding Potential How am I born? We lay 8-12 eggs at a time and will then incubate these for around 22-23 days. Clutch size 8 to 12 eggs When we hatch we are able to walk and look for food with in hours. By a few weeks we will loose our down and have our feathers in. How long does it take me to grow up and how long do I live Once we have gotten our feathers we will keep getting bigger. By 3 months we will be full Breeding Season grown, we might add a few pounds after that but wont get larger. We can live up to 6 years. J F M A M J J A S O N D A E A P A U U U E C O E N B R R Y N L G P T V C What kind of family life do I have? We are extremely territorial.
    [Show full text]
  • Hybridization & Zoogeographic Patterns in Pheasants
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Johnsgard Collection Papers in the Biological Sciences 1983 Hybridization & Zoogeographic Patterns in Pheasants Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/johnsgard Part of the Ornithology Commons Johnsgard, Paul A., "Hybridization & Zoogeographic Patterns in Pheasants" (1983). Paul Johnsgard Collection. 17. https://digitalcommons.unl.edu/johnsgard/17 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Johnsgard Collection by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HYBRIDIZATION & ZOOGEOGRAPHIC PATTERNS IN PHEASANTS PAUL A. JOHNSGARD The purpose of this paper is to infonn members of the W.P.A. of an unusual scientific use of the extent and significance of hybridization among pheasants (tribe Phasianini in the proposed classification of Johnsgard~ 1973). This has occasionally occurred naturally, as for example between such locally sympatric species pairs as the kalij (Lophura leucol11elana) and the silver pheasant (L. nycthelnera), but usually occurs "'accidentally" in captive birds, especially in the absence of conspecific mates. Rarely has it been specifically planned for scientific purposes, such as for obtaining genetic, morphological, or biochemical information on hybrid haemoglobins (Brush. 1967), trans­ ferins (Crozier, 1967), or immunoelectrophoretic comparisons of blood sera (Sato, Ishi and HiraI, 1967). The literature has been summarized by Gray (1958), Delacour (1977), and Rutgers and Norris (1970). Some of these alleged hybrids, especially those not involving other Galliformes, were inadequately doculnented, and in a few cases such as a supposed hybrid between domestic fowl (Gallus gal/us) and the lyrebird (Menura novaehollandiae) can be discounted.
    [Show full text]
  • Assessment of Hematological Indices of Indian Peafowl (Pavo Cristatus) Kept at Wildlife Breeding Centre, Gatwala, Faisalabad, Pakistan
    Journal of Zoological Research Volume 4, Issue 1, 2020, PP 29-33 ISSN 2637-5575 Assessment of Hematological Indices of Indian Peafowl (Pavo Cristatus) Kept at Wildlife Breeding Centre, Gatwala, Faisalabad, Pakistan Misbah Sarwar1* Zahid Ali1, and Muhammad Bilal Chaudhary2 1Punjab Wildlife Research Centre, Gatwala, Faisalabad Department of Wildlife & Parks, Punjab Pakistan 2Department of Zoology, GC University, Faisalabad, Pakistan *Corresponding Author: Misbah Sarwar, Punjab Wildlife Research Centre, Gatwala, Faisalabad Department of Wildlife & Parks, Punjab Pakistan. Email: [email protected] ABSTRACT Indian peafowl (Pavo cristatus) or blue peafowl has been maintained in captivity since long where due to selective breeding, several color mutations/varieties have appeared of which white peafowl, black-shouldered peafowl and pied peafowl are common. Since, hematological analysis is crucial for clinical diagnosis of wild and captive avifauna, so we collected blood samples from healthy male blue peafowl, white peafowl and black- shouldered peafowl kept at Wildlife Breeding Centre, Gatwala, Faisalabad and compared erythrocyte and leucocyte indices among them. Our results indicated that blood physiological values for MO (%), Hgb, HCT, MCH and MCHC were significantly different (P<0.05) between blue peafowl and white peafowl whereas MCV and RDW were significantly different (P<0.05) between blue peafowl and black-shouldered peafowl. The comparison of hematological parameters between white peafowl and black-shouldered peafowl showed that GR(%), RBC, HCT, MCV and MCHC differ significantly (P<0.05) between the two varieties. Our results support the studies indicating high quality color patterns reflect increased resistance and immunity to pathogens. Keywords: Indian peafowl, Color Mutations, hematology. INTRODUCTION 2005; Takahashi and Hasegawa, 2008; Harikrishnan et al., 2010, Naseer et al., 2017).
    [Show full text]
  • Why Do Eared-Pheasants of the Eastern Qinghai-Tibet Plateau Show So Much Morphological Variation?
    Bird Conservation International (2000) 10:305–309. BirdLife International 2000 Why do eared-pheasants of the eastern Qinghai-Tibet plateau show so much morphological variation? XIN LU and GUANG-MEI ZHENG Summary It is known that White Eared-pheasants Crossoptilon crossoptilon drouyni interbreed widely with Tibetan Eared-pheasants C. harmani at the boundary of their ranges. A new hybrid zone has been found recently in eastern Tibet, far away from the boundary of the parental species’ ranges. Based on ecological observations of eared-pheasants and the geographical history and pattern of modern glaciers, we have attributed the complex morphological variation of eared-pheasants and the high biodiversity of the eastern Qinghai-Tibet plateau to its varied geography. Introduction The eared-pheasant genus Crossoptilon is endemic to China and includes four species. The Brown Eared-pheasant C. mantchuricum is found in northern China and the Blue Eared-pheasant C. auritum occurs on the plateau of northern Qinghai-Tibet. These species show no morphological variation and have no described subspecies. The White Eared-pheasant C. crossoptilon shows greater variations in plumage colour and four subspecies have been recognised: crossopti- lon in western Sichuan and south-eastern Tibet, lichiangense in north-western Yunnan, drouyni in the area between the Nujiang River and the Jinsha River, and dolani in Yushu of southern Qinghai. The Tibetan Eared-pheasant C. harmani is restricted to Tibet, north of the main axis of the Himalayas (Ludlow and Kinnear 1944). It was formerly treated as a subspecies of the White Eared-pheasant (Delacour 1977, Cheng et al. 1978), but more recently has been considered a full species (Sibley and Monroe 1990, Cheng 1994), mainly because of its dark blue- grey plumage, which is distinct from the predominately white plumage of the other subspecies.
    [Show full text]
  • (Syrmaticus Reevesii) Lysozyme
    Agric. Biol. Chem., 55 (7), 1707-1713, 1991 1707 The AminoAcid Sequence of Reeves' Pheasant (Syrmaticus reevesii) Lysozyme Tomohiro Araki,* MayumiKuramoto and Takao Torikata Laboratory of Biochemistry, Faculty of Agriculture, Kyushu Tokai University, Aso, Kumamoto 869-14, Japan Received November 13, 1990 The amino acid sequence of reeves' pheasant lysozyme was analyzed. Carboxymethylated lysozyme was digested with trypsin and resulting peptides were analyzed using the DABITC/PITCdouble coupling manual Edmanmethod. The established amino acid sequence had seven substitutions, Tyr3, Leul5, His41, His77, Ser79, ArglO2, and Asnl21, compared with hen egg-white lysozyme. Ser79 was the first found in a bird lysozyme. A substitution in the active site was found in position 102 which has been considered to participate in the substrate binding at subsites A-C. Lysozymeis one of the most characterized and concluded that the enhancement of the hydrolases, which cleave /M,4 linkage of transglycosylation was correlated with the TV-acetylglucosamine (GlcNAc) homopolymer binding of substrate at subsite A. The substrate or GlcNAc-7V-acetylmuramic acid hetero- binding at subsite A has further been polymer. This enzyme is composed of 129-130 investigated by an NMR study.6) The co- amino acids, and the tertiary structure of hen valently bound glucosamine on AsplOl at egg-white lysozyme (HEWL) has been eluci- subsite Acaused a change of the indole proton dated by X-ray refraction study.1} The of Trp62. This result strongly suggested that mechanism of catalytic reaction of this protein the amino acid at position 101 participates in has also been elucidated in detail. The enzyme the interaction between the substrate and contains six substrate binding subsites (A-F) substrate binding site of lysozyme.
    [Show full text]
  • Copper Pheasant
    Bird Research News Vol.3 No.11 2006.11.10. Last Revised:2013.11.28. Copper Pheasant Yamadori (Jpn) Syrmaticus soemmerringii Morphology and classification bly smaller white part in the boundary zone between the two sub- species ranges (Kawaji 2004). Confusion between the two subspe- cies poses a problem to game hunters and government officials Classification: Galliformes Phasianidae concerned every year because ijimae has been removed from game Wing length: ♂ 205-230mm ♀ 192-219mm bird list since 1979 due to the population decline. Since subspecies Tail length: ♂ 415-952mm ♀ 164-205mm classification could become a major issue in conservation and Culmen length: ♂ 23-31mm ♀ 22-26mm social scenes in the future, genetic analyses are currently underway Tarsus length: ♂ 57-69mm ♀ 53-60mm (Sakanashi et al. 2006). Weight: ♂ 943-1348g ♀ 745-1000g Habitat: All measurement values are of subspecies Syrmaticus soemmerringii scintillans after Kiyosu (1978). Copper Pheasants are a forest dweller, generally preferring a broad -leaved forest. But they also occur in conifer plantations, such as Appearance: Japanese cedar and cypress. They occasionally bathe in the sun Plumage colors of Copper Pheasants and dust in grasslands of a cutover. vary between subspecies. In general, however, male is reddish brown on the Life history upper and underparts with black, chest- nut, yellow and white lateral bars in the 123456789101112 long tail (Photo 1). In the subspecies of breeding season non-breeding season the southern Japan (S.s. soemmerringii and ijimae), the plumage is generally Breeding system: darker with dark red brown and black Copper Pheasants are assumed to be polygamous like Common horizontal bars in the tail.
    [Show full text]
  • CHAPTER 5 PRODUCTS of ANIMAL ORIGIN, NOT ELSEWHERE SPECIFIED OR INCLUDED I 5-1 Notes: 1
    )&f1y3X CHAPTER 5 PRODUCTS OF ANIMAL ORIGIN, NOT ELSEWHERE SPECIFIED OR INCLUDED I 5-1 Notes: 1. This chapter does not cover: (a) Edible products (other than guts, bladders and stomachs of animals, whole and pieces thereof, and animal blood, liquid or dried); (b) Hides or skins (including furskins) other than goods of heading 0505 and parings and simlar waste of raw hides or skins of heading 0511 (chapter 41 or 43); (c) Animal textile materials, other than horsehair and horsehair waste (section XI); or (d) Prepared knots or tufts for broom or brush making (heading 9603). 2. For the purposes of heading 0501, the sorting of hair by length (provided the root ends and tip ends, respectively, are not arranged together) shall be deemed not to constitute working. 3. Throughout the tariff schedule, elephant, walrus, narwhal and wild boar tusks, rhinoceros horns and the teeth of all animals are regarded as "ivory." 4. Throughout the tariff schedule, the expression "horsehair" means hair of the manes or tails of equine or bovine animals. Additional U.S. Note 1. (a) Except as provided in paragraphs (b) and (c) of this note, the importation of the feathers or skin of any bird is hereby prohibited. Such prohibition shall apply to the feathers or skin of any bird: (i) Whether raw or processed; (ii) Whether the whole plumage or skin or any part of either; (iii) Whether or not attached to a whole bird or any part thereof; and (iv) Whether or not forming part of another article. (b) Paragraph (a) shall not apply: (i) In respect of any of the following birds (other than any such bird which, whether or not raised in captivity, is a wild bird): chickens (including hens and roosters), turkeys, guineas, geese, ducks, pigeons, ostriches, rheas, English ring-necked pheasants and pea fowl; (ii) To any importation for scientific or educational purposes; (iii) To the importation of fully manufactured artificial flies used for fishing; (iv) To the importation of birds which are classifiable under subheading 9804.00.55; and (v) To the importation of live birds.
    [Show full text]
  • Phylogenetic Relationships of the Phasianidae Reveals Possible Non-Pheasant Taxa
    Journal of Heredity 2003:94(6):472–489 Ó 2003 The American Genetic Association DOI: 10.1093/jhered/esg092 Phylogenetic Relationships of the Phasianidae Reveals Possible Non-Pheasant Taxa K. L. BUSH AND C. STROBECK From the Department of Biological Sciences, University of Alberta–Edmonton, Edmonton, Alberta T6G 2E9, Canada. Address correspondence to Krista Bush at the address above, or e-mail: [email protected]. Abstract The phylogenetic relationships of 21 pheasant and 6 non-pheasant species were determined using nucleotide sequences from the mitochondrial cytochrome b gene. Maximum parsimony and maximum likelihood analysis were used to try to resolve the phylogenetic relationships within Phasianidae. Both the degree of resolution and strength of support are improved over previous studies due to the testing of a number of species from multiple pheasant genera, but several major ambiguities persist. Polyplectron bicalcaratum (grey peacock pheasant) is shown not to be a pheasant. Alternatively, it appears ancestral to either the partridges or peafowl. Pucrasia macrolopha macrolopha (koklass) and Gallus gallus (red jungle fowl) both emerge as non-pheasant genera. Monophyly of the pheasant group is challenged if Pucrasia macrolopha macrolopha and Gallus gallus are considered to be pheasants. The placement of Catreus wallichii (cheer) within the pheasants also remains undetermined, as does the cause for the great sequence divergence in Chrysolophus pictus obscurus (black-throated golden). These results suggest that alterations in taxonomic
    [Show full text]