Design of Stormwater Filtering Systems

Total Page:16

File Type:pdf, Size:1020Kb

Design of Stormwater Filtering Systems Design of Stormwater Filtering Systems Prepared by Richard A. Claytor and Thomas R. Schueler The Center for Watershed Protection 8391 Main Street Ellicott City, MD 21043 (410) 461-8323 Prepared for Chesapeake Research Consortium, Inc. P.O. Box 1280 Solomons, MD 20688 (410) 326-6700 with supplemental funding by U.S. Environmental Protection Agency, Region 5 The contents do not necessarily reflect the views and policies of the Chesapeake Research Consortium, Inc. or the Environmental Protection Agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use. December 1996 Printed on Recycled Paper Abstract: Title: Design of Stormwater Filtering Systems Date: December, 1996 Authors: Richard A. Claytor and Thomas R. Schueler Center for Watershed Protection Publisher: Published under a cooperative agreement with the Chesapeake Research Consortium with supplemental funding by Region 5 of the Environmental Protection Agency by the Center for Watershed Protection. The Center for Watershed Protection is a non-profit organization dedicated to the protection, restoration, and stewardship of our nation’s water resources and watersheds through sensitive management of the land. The Center promotes the advancement of innovative and effective land and water management techniques, and serves as a forum for planners, engineers, landscape architects, and municipal officials engaged in watershed protection. Abstract: The project is oriented to create a unified design manual for stormwater filtering systems to remove pollutants from urban runoff generated at smaller sites within the Chesapeake Bay watershed. The primary audience for the manual are engineers, planners and landscape architects at the local or state level that need to comply with stormwater regulations in urban or suburban areas. The manual presents detailed engineering guidance on eleven different filtering systems. The term stormwater filter refers to a diverse spectrum of stormwater treatment methods utilizing various media, such as sand, peat, grass, soil or compost to filter out pollutants entrained in urban stormwater. These filters are typically designed solely for pollutant removal, and serve small development sites. The three broad groups include: sand filters (surface, underground, perimeter, organic, and pocket designs), bioretention, and vegetated channels (grass channels, dry swales and wet swales, filter strips, and gravel wetlands). The seven chapter design manual promotes a volume-based sizing criteria for all filtering systems utilizing principles of small storm hydrology, provides detailed guidance on the selection of appropriate filter types for various applications, reviews pollutant performance data and pathways for stormwater filtering systems, and provides detailed engineering design principles and guidance. The manual provides several design examples and contains over one-hundred tables and figures. Price: $30.00 Available from: The Center for Watershed Protection 8737 Colesville Road Silver Spring, MD 20910 (301) 589-1890 PREFACE This project is oriented to create a unified design manual for stormwater filtering systems to remove pollutants from urban runoff generated at smaller sites within the Chesapeake Bay watershed. The primary audience for the manual are engineers, planners and landscape architects at the local or state level that need to comply with stormwater regulations in urban or suburban areas. This manual continues the Center's efforts to produce urban stormwater practice design manuals targeted at specific categories of systems. Stormwater filtering is just one of these targeted areas. Existing and future manuals will cover areas such as wetland systems and pond systems. Primary funding support for the preparation of this manual has been provided by a grant from The Chesapeake Resource Consortium with supplemental funding by Region 5 of the U.S. Environmental Protection Agency to complete Chapter 6, and the appendices. ACKNOWLEDGMENTS Preparation of this manual would not have been possible without the contributions from many experts in the stormwater management filtering field. The authors would like to extend our appreciation and acknowledge the following individuals for their contributions and constructive comments: Robert Pitt, Warren Bell, Richard Horner, Earl Shaver, Hung Van Truong, Larry Coffman, and John Galli. We would expressly like to thank Earl, Warren and several of their co-workers for taking time out of their busy schedules to show us several examples of stormwater filters and their adaption to real world problems. This provided a much welcomed “reality check” for some of our design parameters contained herein. Special gratitude to Don Koch of Engineering Technologies Associate for his contributions on the bioretention water balance analysis, Tim Schueler and Rick Scaffidi of Environmental Quality Resources for their insightful comments and suggestions, Ricardo Gonzalez and Jeffery Everhart for their diligent work on the grass species selection guide, Keith Bowers for his contributions to the bioretention species selection guide, Dean Geiser and Donna deMars for their superb preparation of graphic figures and drawings, and Arlene Allegretto for her tireless efforts in making this manual a reality. I INTRODUCTION The manual presents detailed engineering guidance on ten different filtering systems. The term stormwater filter refers to a diverse spectrum of stormwater treatment methods which utilize an artificial media , such as sand, peat, grass, soil or compost to filter out pollutants entrained in urban stormwater. These filters are typically designed solely for pollutant removal (quantity bypassed), and serve small development sites (usually less than five acres). The three broad groups include: sand filters (surface, underground, perimeter, organic, and pocket designs), bioretention and vegetated channels (grass channels, dry swales wet swales, and filter strips). The underlying concept of the manual is that a common and unified approach was needed to design each type of stormwater filter, so that this useful technology can gain wider engineering acceptance at the local level. Therefore, each stormwater filter incorporates four standard engineering features: a flow regulator, a pretreatment mechanism , filter media and bed specification, and overflow channels. In addition, the manual presents a single volumetric sizing requirement for each filter which is to capture and treat 90% of the runoff producing events that occur each year. Many prior design approaches had been rate-based, and resulted in limited and unreliable pollutant removal rates. A third feature of the manual is that it utilizes new techniques for calculating runoff rates and volumes that reflect small storm hydrology from small, heterogeneous urban sites. Field research has indicated these methods are superior to traditional applications of the National Resource Conservation Service (NRCS) runoff forecasting models (such as TR-55 and TR- 20). The manual also includes numerous step-by-step design examples that help an engineer apply the new design techniques. Lastly, the manual synthesizes recent research and field experience on the pollutant removal performance, longevity, cost, and maintenance burden of each type of stormwater filter, drawn from a national literature and phone survey. This information has been condensed in a series of tables that help designers and municipal officials select the most effective stormwater filter for their situation, and compare the performance of stormwater filters to that of other stormwater BMP options (e.g., ponds, wetlands, and infiltration systems). Although stormwater filters can be applied to a diverse range of development conditions as a group, individual designs are limited to a more narrow range of site conditions . The most economical and feasible options are identified for five broad categories of development: ultra-urban, parking lots, roads, residential subdivisions, II DESIGN OF STORMWATER FILTERING SYSTEMS INTRODUCTION and backyard/rooftop drainage. Key feasibility factors that influence the selection of stormwater filters include space consumption, minimum head, maintenance burden, cost/acre and soil conditions. During the study, over thirty published and unpublished studies on the pollutant removal performance of stormwater filtering systems were consulted (and are abstracted in Appendix A and cited in the References). Estimated removal rates for each of the stormwater filters are derived in Chapter 4, based on monitoring studies, infiltration rates, modeling and inference from similar technologies. Despite their many differences in design, stormwater filters have many similarities in performance. The performance, feasibility, and environmental restrictions of stormwater filters are compared to three other groups of stormwater BMPs that are currently in widespread use by engineers in the Chesapeake Bay region-ponds, wetlands and infiltration systems. In general, stormwater filters are the most feasible option for smaller development sites (less than 5 acres) but are not typically cost effective beyond that drainage area. Other BMPs, most notably ponds and wetlands, also have higher or more reliable removal rates for nutrients, bacteria and hydrocarbons. Ponds and wetlands, however, cannot usually be applied on small development sites and ultra urban conditions. Another key advantage of stormwater filters as a group is their lack of environmental drawbacks,
Recommended publications
  • Stormwater Treatment Facilities
    To find out more about specific Stormwater Pollutants on streets can be washed into storm drains and reach our stormwater facilities on a creeks and Bay, harming the fish, plants, and wildlife that live there. property, contact: City of San José Development Services Treatment You can help keep pollutants out of the storm drain system by adhering (408) 535-3555 to municipal code requirements and properly or visit the Facilities maintaining and operating the stormwater Operation & Maintenance Permit Center Planning Counter treatment facilities on your property. San José City Hall Requirements 200 E. Santa Clara Street – Floor 1 Validated parking available under the City Hall Tower; enter from 6th Street between Santa Clara and San Fernando streets. Rain or irrigation water can pick up motor development projects of a certain size For more information about the oil, pesticides, solvents, litter, and other to incorporate stormwater treatment City of San José’s stormwater pollutants as it flows over rooftops, parking facilities to treat runoff for pollutants before protection programs, visit: lots, roadways, sidewalks, and landscaping. it flows into the storm drain system. As done www.sanjoseca.gov/esd/stormwater Installing stormwater treatment facilities — in other cities, San José inspectors will inspect such as swales, biofilters, or infiltration these facilities to ensure they are operating basins — can help capture and prevent and maintained. pollutants from reaching the storm drain system. Property owners are required by Please review the steps for proper Title 20.95.120 of the San Jose Municipal maintenance in this brochure — and Working together Code to properly maintain and keep in contact your City inspector if you for the greener good good repair all such facilities and devices.
    [Show full text]
  • Field Indicators of Hydric Soils
    United States Department of Field Indicators of Agriculture Natural Resources Hydric Soils in the Conservation Service United States In cooperation with A Guide for Identifying and Delineating the National Technical Committee for Hydric Soils Hydric Soils, Version 8.2, 2018 Field Indicators of Hydric Soils in the United States A Guide for Identifying and Delineating Hydric Soils Version 8.2, 2018 (Including revisions to versions 8.0 and 8.1) United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the National Technical Committee for Hydric Soils Edited by L.M. Vasilas, Soil Scientist, NRCS, Washington, DC; G.W. Hurt, Soil Scientist, University of Florida, Gainesville, FL; and J.F. Berkowitz, Soil Scientist, USACE, Vicksburg, MS ii In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339.
    [Show full text]
  • South Fox Meadow Drainage Improvement Project
    VILLAGE OF SCARSDALE WESTCHESTER COUNTY, NEW YORK COMPREHENSIVE STORM WATER MANAGEMENT SOUTH FOX MEADOW STORMWATER IMPROVEMENT PROJECT In association with WESTCHESTER COUNTY FLOOD MITIGATION PROGRAM Rob DeGiorgio, P.E., CPESC, CPSWQ The Bronx River Watershed Fox Meadow Brook Bronx River Watershed Area in Westchester 48.3 square miles (30,932 acres) 15 Sub-watersheds Percent of undeveloped land in the Watershed 3.3% (0.8 acres in Fox Meadow Brook (FMB) FMB watershed) 928 acres (5.7% of watershed) Bronx River Watershed Fox Meadow Brook George Field Park High School Duck Pond Project Philosophy and Goals •Provide flood mitigation within the Fox Meadow Brook Drainage Basin. •Reduce peak run off rates in the Bronx River Watershed through dry detention storage. •Rehabilitate and preserve natural landscapes and wetlands through invasive species management and re- construction. •Improve water quality. • Petition for and obtain County grant funding to subsidize the project. Village of Scarsdale Fox Meadow Brook Watershed SR-2 BR-4 SR-3 BR-7 BR-8 SR-5 Village of Scarsdale History •In 2009 the Village completed a Comprehensive Storm Water Management Plan. •Critical Bronx River sub drainage basin areas identified inclusive of Fox Meadow Brook (BR-4, BR-7, BR-8). •26 Capital Improvement Projects were identified, several of which comprise the Fox Meadow Detention Improvement Project. •Project included in Village’s Capital Budget. •Project has been reviewed by the NYS DEC. •NYS EFC has approved financing for the project granting Scarsdale a 50% subsidy for their local share of the costs. Village of Scarsdale Site Locations – 7 Segments 7 Project Segments 1.
    [Show full text]
  • WATER-QUALITY SWALES Maria Cahill, Derek C
    OREGON STATE UNIVERSITY EXTENSION SERVICE Photo: Clean Water Services LOW-IMPACT DEVELOPMENT FACT SHEET WATER-QUALITY SWALES Maria Cahill, Derek C. Godwin, and Jenna H. Tilt most Oregon jurisdictions have moved away from grass. hink of a water-quality swale as a rain garden Design elements may vary in several aspects, including in motion: It treats runoff while simultaneously function, vegetation type, and physical setting. Tmoving it from one place to another. The terms “rain garden” and “swale” are often used Water-quality swales (WQ swales) are linear, vegetat- interchangeably, but rain gardens hold runoff and treat ed, channeled depressions in the landscape that convey it, while swales treat runoff as it is conveyed. Depending and treat runoff from a variety of surfaces. Runoff may on the design, the resulting water-quality benefits can be piped or channeled, or it may flow overland to a differ greatly, but water-quality swales generally provide swale. As water passes through the swale, some runoff lower benefit than rain gardens or stormwater planters. may infiltrate, or seep, into the soil. Not all swales are WQ swales. Conveyance swales, Maria Cahill, principal, Green Girl Land Development Solutions; such as ditches, move water from one place to another. Derek Godwin, watershed management faculty, professor, But these are likely narrow channels with no vegetation biological and ecological engineering, College of Agricultural Sciences, Oregon State University; Jenna H. Tilt, assistant and little to no water-quality benefits. WQ swales may be professor (senior research), College of Earth, Ocean, and planted either with grass or landscape plants, although Atmospheric Sciences, Oregon State University EM 9209 June 2018 Site conditions The channel and linear design of swales make them suitable for roadside runoff capture, although residen- tial areas with frequent, closely spaced driveway cul- verts may not be ideal locations (Barr 2001).
    [Show full text]
  • Natural Vegetation of the Carolinas: Classification and Description of Plant Communities of the Lumber (Little Pee Dee) and Waccamaw Rivers
    Natural vegetation of the Carolinas: Classification and Description of Plant Communities of the Lumber (Little Pee Dee) and Waccamaw Rivers A report prepared for the Ecosystem Enhancement Program, North Carolina Department of Environment and Natural Resources in partial fulfillments of contract D07042. By M. Forbes Boyle, Robert K. Peet, Thomas R. Wentworth, Michael P. Schafale, and Michael Lee Carolina Vegetation Survey Curriculum in Ecology, CB#3275 University of North Carolina Chapel Hill, NC 27599‐3275 Version 1. May 19, 2009 1 INTRODUCTION The riverine and associated vegetation of the Waccamaw, Lumber, and Little Pee Rivers of North and South Carolina are ecologically significant and floristically unique components of the southeastern Atlantic Coastal Plain. Stretching from northern Scotland County, NC to western Brunswick County, NC, the Lumber and northern Waccamaw Rivers influence a vast amount of landscape in the southeastern corner of NC. Not far south across the interstate border, the Lumber River meets the Little Pee Dee River, influencing a large portion of western Horry County and southern Marion County, SC before flowing into the Great Pee Dee River. The Waccamaw River, an oddity among Atlantic Coastal Plain rivers in that its significant flow direction is southwest rather that southeast, influences a significant portion of the eastern Horry and eastern Georgetown Counties, SC before draining into Winyah Bay along with the Great Pee Dee and several other SC blackwater rivers. The Waccamaw River originates from Lake Waccamaw in Columbus County, NC and flows ~225 km parallel to the ocean before abrubtly turning southeast in Georgetown County, SC and dumping into Winyah Bay.
    [Show full text]
  • Data Collection Requirements and Procedures for Mapping Wetland, Deepwater, and Related Habitats of the United States (Version 3)
    Data Collection Requirements and Procedures for Mapping Wetland, Deepwater, and Related Habitats of the United States (version 3) U.S. FISH & WILDLIFE SERVICE - ECOLOGICAL SERVICES DIVISION OF BUDGET AND TECHNICAL SUPPORT BRANCH OF GEOSPATIAL MAPPING AND TECHNICAL SUPPORT FALLS CHURCH, VA 2204 REVISED JULY 2020 1 Acknowledgements The authors would like to acknowledge the following individuals for their support and contributions: Bill Kirchner, USFWS, Region 1, Portland, OR; Elaine Blok, USFWS, Region 8, Portland, OR Brian Huberty, USFWS, Region 3, Twin Cities, MN; Ralph Tiner, USFWS, Region 5, Hadley, MA: Kevin Bon, USFWS, Region 6, Denver, CO; Jerry Tande, USFWS, Region 7, Anchorage, AK; Julie Michaelson, USFWS, Region 7, Anchorage, AK; Norm Mangrum, USFWS, St. Petersburg, FL; Dennis Fowler, USFWS, St. Petersburg, FL; Jim Terry, USFWS, St. Petersburg, FL; Martin Kodis, USFWS, Chief - Branch of Resources and Mapping Support, Washington, D.C. and David J. Stout, USFWS, Chief - Division of Habitat and Resource Conservation, Washington, D.C. Peer review was provided by the following subject matter experts: Dr. Shawna Dark and Danielle Bram, California State University - Northridge. Robb Macleod, Ducks Unlimited, Great Lakes and Atlantic Regional Office, Ann Arbor, MI; Michael Kjellson, Dept. Wildlife and Fisheries, South Dakota State University, Brookings, SD; and Deborah (Jane) Awl, Tennessee Valley Authority, Knoxville, TN. This document may be referenced as: Dahl, T.E., J. Dick, J. Swords, and B.O. Wilen. 2020. Data Collection Requirements and Procedures for Mapping Wetland, Deepwater and Related Habitats of the United States. Division of Habitat and Resource Conservation (version 3), National Wetlands Inventory, Madison, WI. 91 p.
    [Show full text]
  • National Wetlands Inventory
    3/23/2016 Wetlands Mapper National Wetlands Inventory Ecological Services ES Home About Us Species Wildlife and Habitat Conservation Development and Energy FWS Regions Library Newsroom NWI Menu Wetlands Mapper NWI Home The Wetlands Mapper integrates digital map data with other resource information to produce timely and relevant management and decision support tools. We recommend looking at the following prior to launching a map: Wetlands Data » Please read the Disclaimer, Data Limitations, Exclusions and Precautions, and Status and Trends » the Wetlands Geodatabase User Caution. Wetlands Layer » Refer to the following links for documentation and answers to frequently asked New: Wetland Mapping questions: Other Topics » Projects Mapper! Wetlands Mapper Documentation and Instructions Manual (PDF) Frequently Asked Questions: Wetlands Mapper (PDF) Click below to open the Mapper. National Wetlands Frequently Asked Questions web page Printing maps with the Wetlands Inventory Mapper (PDF) Mapper Introduction Contact Information » VIDEO: How to find and use the U.S Fish and Wildlife Service's Wetlands Mapper Help and Contacts Click Here to Open the Wetlands Mapper* (data last modified on October 1, 2015; best viewed by maximizing your browser window) To beta test our new HTML5 (non­Flash) mapper on your desktop, click here (FAQs). Frequently Asked Please note: Questions When in the wetlands mapper, you can change major geographic regions by using the "Zoom to: select" pull down menu located at the upper right side corner. For help with the new mobile mapper location function, please read this FAQ. Adobe Flash™ is required to access the Wetlands Mapper. Please visit the Adobe Flash Player website (http://www.adobe.com/products/flashplayer/) to download the latest version of the player.
    [Show full text]
  • Destin Harbor, Joe's Bayou, and Indian Bayou Water Quality
    FLORIDA RECIPIENT City of Destin, Florida Destin Harbor, Joe’s Bayou, and Indian AMOUNT $3,593,600 Bayou Water Quality Improvement LEVERAGE This project includes six projects in three focal areas included in the City of Destin’s $50,000 Master Stormwater Management plan to improve surface water quality in Destin LOCATION Harbor, Joe’s Bayou, and Indian Bayou that directly feed into the southwestern Okaloosa County, Florida portion of Choctawhatchee Bay. As part of the project, the City of Destin will establish roadside swale systems to provide treatment for shallow aquifer recharge ANNOUNCEMENT DATE November 2014 prior to discharge, construct exfiltration systems to provide stormwater treatment, and repair poorly performing culverts. Choctawhatchee Bay is a 27-mile-long estuary that PROGRESS UPDATE supports diverse aquatic and wetland habitats. No new or significant work to report. (April 2015) Submerged Aquatic Vegetation (SAV) habitat decline is a significant limiting factor for the overall productivity of the Choctawhatchee Bay, and efforts to improve water quality through the reduction of sediment input into the bay is anticipated to improve the viability of SAV in the western portions of the bay. Seagrass beds in Choctawhatchee Bay support diverse populations of fish and invertebrates, including many recreational and commercial species such as shrimp, eastern oysters, spotted seatrout, gulf menhaden, red drum, blue crab, gulf flounder and mullet. This work is complementary to additional stormwater treatment projects being supported through other oil spill settlement funds. The Gulf Environmental Benefit This suite of Fund, administered by the projects will National Fish and Wildlife complete the Foundation (NFWF), supports actions identified projects to remedy harm and in the City of eliminate or reduce the risk of Destin’s Master harm to Gulf Coast natural Stormwater resources affected by the 2010 Deepwater Horizon oil spill.
    [Show full text]
  • Engineered Bioretention Media Literature Review
    Protecting People, Property, and the Environment Engineered Bioretention Media Literature Review Mile High Flood District May 29, 2020 Denver, Colorado Engineered Bioretention Media Literature Review May 29, 2020 Table of Contents Table of Contents ............................................................................................................................ 2 List of Tables .............................................................................................................................. 3 List of Figures ............................................................................................................................. 3 Acronyms and Abbreviations ......................................................................................................... 4 Introduction ..................................................................................................................................... 5 Objectives ................................................................................................................................... 5 1. Media ...................................................................................................................................... 6 1.1 Gradation............................................................................................................................... 6 1.1.1 Current Guidance ........................................................................................................... 6 1.1.2 Literature Review General Findings .............................................................................
    [Show full text]
  • Chapter 6 Water Quality
    CHAPTER 6 WATER QUALITY Contents 6.0 BMP SIZING AND SELECTIONS 6-1 6.1 STEP-BY-STEP SELECTION PROCESS FOR TREATMENT FACILITIES 6-1 6.2 OIL CONTROL TREATMENT 6-4 6.2.1 Application on the Project Site 6-4 6.2.2 Performance Goal 6-4 6.2.3 Options 6-4 6.3 PHOSPHORUS TREATMENT MENU 6-5 6.3.1 Performance Goal 6-5 6.3.2 Options 6-5 6.4 ENHANCED TREATMENT MENU 6-5 6.4.1 Performance Goal 6-5 6.4.2 Options 6-6 6.5 BASIC TREATMENT MENU 6-6 6.5.1 Performance Goal 6-6 6.5.2 Options 6-6 6.6 GENERAL REQUIREMENTS FOR STORMWATER FACILITIES 6-7 6.6.1 Off-Line vs. On-Line Facilities 6-7 6.6.2 Flows Requiring Treatment 6-7 6.6.3 Sequence of Facilities 6-8 6.6.4 Facility Liners 6-9 6.6.5 Hydraulic Structures 6-12 6.7 PRETREATMENT 6-12 6.7.1 Purpose 6-12 6.7.2 Best Management Practices (BMPs) for Pretreatment 6-13 6.7.3 Presettling Basin BMP 6.01 6-13 6.7.4 Presettling Vault BMP 6.02 6-13 i 6.8 INFILTRATION AND BIO-INFILTRATION TREATMENT FACILITIES 6-14 6.8.1 Purpose 6-14 6.8.2 Bio-Infiltration Swale BMP 6.13 6-14 6.9 FILTER MEDIA TREATMENT FACILITIES 6-15 6.9.1 Purpose 6-15 6.9.2 Sand Filters 6-16 6.9.3 Sand Filter Vault 6-20 6.9.4 Linear Sand Filters 6-21 6.9.5 StormFilter 6-22 6.9.6 Media Filter Drain 6-24 6.9.7 Bioretention Filter 6-24 6.10 BIOFILTRATION TREATMENT FACILITIES 6-24 6.10.1 Basic Filter Strip BMP 6.31 6-25 6.10.2 Narrow Area Filter Strip BMP 6.32 6-26 6.11 WETPOOL FACILITIES 6-27 6.11.1 Wetponds BMP 6.41 6-27 6.11.2 Wetvaults BMP 6.42 6-41 6.11.3 Stormwater Treatment Wetlands BMP 6-46 6.11.4 Combined Detention and Wetpool Facilities 6-50 6.11.5
    [Show full text]
  • Stormwater Pollution Treatment BMP Discharge Structures Miles F
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nebraska Department of Transportation Research Nebraska LTAP Reports 3-2014 Stormwater Pollution Treatment BMP Discharge Structures Miles F. Simmons University of Nebraska - Lincoln David M. Admiraal University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/ndor Part of the Transportation Engineering Commons Simmons, Miles F. and Admiraal, David M., "Stormwater Pollution Treatment BMP Discharge Structures" (2014). Nebraska Department of Transportation Research Reports. 100. http://digitalcommons.unl.edu/ndor/100 This Article is brought to you for free and open access by the Nebraska LTAP at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Department of Transportation Research Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NDOR Research Project Number M304 Transportation Research Studies STORMWATER POLLUTION TREATMENT BMP DISCHARGE STRUCTURES Miles F. Simmons and David M. Admiraal University of Nebraska – Lincoln N113 Scott Engineering Center Lincoln, NE 68588-6105 Telephone (402) 472-8568 FAX (402) 472-8934 Sponsored by The Nebraska Department of Roads 1500 Nebraska Highway 2 Lincoln, Nebraska 68509-4567 Telephone (402) 479-4337 FAX (402) 479-3975 March 2014 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. M304 4. Title and Subtitle 5. Report Date March 2014 Stormwater Pollution Treatment BMP Discharge Structures 6. Performing Organization Code 7. Author/s 8. Performing Organization Report No. Miles F. Simmons and David M. Admiraal 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Department of Civil Engineering University of Nebraska – Lincoln 11.
    [Show full text]
  • Stormwater Filter Inspection and Maintenance Specs
    Stormwater Filter Inspection and Maintenance Specs Table of Contents 1. StormFilter Inspection and Maintenance Procedures 2. Vortech 3. Filterra Bioretention Systems 4. Modular Wetlands 5. Baysaver Technologies 6. AquaShield Treatment Solutions ENGINEERED SOLUTIONS StormFilter Inspection and Maintenance Procedures Maintenance Guidelines In addition to these two activities, it is important to check the condition of the StormFilter unit after major storms for The primary purpose of the Stormwater Management potential damage caused by high flows and for high sediment StormFilter® is to filter and prevent pollutants from entering our accumulation that may be caused by localized erosion in the waterways. Like any effective filtration system, periodically these drainage area. It may be necessary to adjust the inspection/ pollutants must be removed to restore the StormFilter to its full maintenance schedule depending on the actual operating efficiency and effectiveness. conditions encountered by the system. In general, inspection Maintenance requirements and frequency are dependent on the activities can be conducted at any time, and maintenance should pollutant load characteristics of each site. Maintenance activities occur, if warranted, during dryer months in late summer to early may be required in the event of a chemical spill or due to fall. excessive sediment loading from site erosion or extreme storms. It is a good practice to inspect the system after major storm events. Maintenance Frequency The primary factor for determining frequency of maintenance for Maintenance Procedures the StormFilter is sediment loading. Although there are many effective maintenance options, we A properly functioning system will remove solids from water by believe the following procedure to be efficient, using common trapping particulates in the porous structure of the filter media equipment and existing maintenance protocols.
    [Show full text]