Introduction to Knot Theory 25/02/2018

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Knot Theory 25/02/2018 Introduction to Knot Theory 25/02/2018 1.4. Operations on knots. We will now discuss certain operations on knots and links. Definition 1.15. The mirror image L! of a knot/linkL is the result of applying toL the reflection (x,y,z) 7→(−x,y,z). The reversed ←− knot/link L isL with orientation of all components reversed. We say ←− thatL is anticheiral ifL∼L ! and cheiral otherwise. IfL∼ L then we say thatL is reversi!le . Example 1.16. "igure#eight is anticheiral (e$ercise) whereas the mir# ror image of a right#handed trefoil is the left#handed one% mirror We will show later that these two knots are not e&uivalent so that the trefoil is a cheiral knot. It is also reversi!le% to see this rotate its diagram !y 1'( degrees with respect to an a$is in the plane of the pro)ection% rotate Definition 1.17. *etL 1 andL 2 !e two links and pick pointsp i ∈L i fori+1, ,. The connected sum L1-L2 ofL 1 andL 2 is the result of cutting the links at the pointsp i and regluing them in an oriented way% p1 p2 L1 L2 L1 L2 1 2 Theorem 1.18. The connected sumL 1-L2 does not depend on the choice ofp 1 andp 2 whenL 1 andL 2 are knots. Sketch of Proof. We will use the following facts from topology. (1) . tame knotK has a regular neigh!orhood that is an em!ed# ding of a solid torush%S 1 ×D 2 →R 3 such thatK(t)+h(t, (). (,) /iven closed !allsO ′ ⊂ O there is an am!ient isotopy that takesO intoO ′ and does not move points outside a given open neigh!orhoodU ofO. (0) There is an isotopy 1 of a solid torus such that it it (e , r) ifr+1, and 1(e , r)+ i(t+s) 1 �(e , r) ifr< 2 for a givens. ′ *etp 1 !e another point onL 1 and 2$ a regular neigh!orhoodV of the knot. 3onsider a !allO that intersectsL 1 in an arc aroundp 1 ′ and which contains knotL 2. 4hrink it into a !allO aroundp 1 that is ′ contained inV then move it alongV to reach the pointp 1 using (0). Then e$pand it !ack using (,). This descri!es an isotopy that takes the connected sum with respect to pointsp 1 andp 2 to the one with ′ respect top 1 andp 2. � Property 1.19. The connected sum is a commutative monoid opera- tion on knots: (1) the unknotU is the neutral element:U-K∼K∼K-U, (,) it is associative:K-(K ′-K′′)∼(K-K ′)-K′′, (0) it commutes:K-K ′ ∼K ′-K. We will see later that - has no inverses% the only inverti!le knot is the unknot. Example 1.20. The connected sum of two right trefoils is the granny knot whereas the connected sum of the left and right trefoil is the s&uare knot% granny knot square knot 3 There is an empirical proof5 that these two knots are not e&uivalent% shoelaces tied as the s&uare knot are more dura!le that those tied as the granny knot. ,. Simple invariants It is a di6cult pro!lem to see whether two knots/links are e&uiva# lent or not. 4uch &uestions can !e often answered !y computing link invariants% certain &uantities that are the same for e&uivalent knots. There are two sources of link invariants% • topological invariants which are computed directly from a link and are preserved under am!ient isotopies and • combinatorial invariants which are computed from a link dia# grams and are preserved under 7eidemeister moves. The former can !e easily de2ned and are usually very powerful !ut very hard to compute. 3ontrary com!inatorial invariants are harder to de2ne (one has to check all 7eidemeister moves) !ut usually easier to compute. The following is an e$ample of a full invariant which takes different values for different knots !ut completely useless in practice% there is no good way to compare such invariants algorithmically. Example 2.1. 9e2ne the knot type :K; ofK as the e&uivalence class of its diagram modulo 7eidemeister moves. In what follows we construct other more tacka!le invariants. ,.1. Crossing an! unknotting num#ers. Example 2.2. 9e2ne the crossing num!er c(L) of a linkL as the min# imal num!er of crossings among its diagrams. It has the following properties% (1)c(L) + ( if and only ifL is an unlink (,)c(K)� 0 for a nontrivial knotK (0) the crossing num!er of a trefoil is 0. It is very easy to 2nd an upper !ound forc(K) (any diagram gives one) !ut very hard to computec(K). 4 Proposition 2.$. The crossing number is subadditive:c(L-L ′)� c(L)<c(L ′) for any linksL andL ′. Proof. 3hoose minimal diagramsD andD ′ of the linksL andL ′. Then D-D′ is a diagram ofL-L ′ withc(L)<c(L ′) crossings.� .dditivity ofc(L) is an open pro!lem% there is neither a proof nor a counter#e$ample. Problem. Is it true thatc(L-L ′) +c(L)<c(L ′)= 3onsider the following move called the crossing change% With this move we can reduce every link diagram to a diagram of an unlink. Proposition 2.%. LetD be a diagram of a linkL. Then there is a diagramD ′ of an unlink obtained fromD by changing some of its crossings. Proof. 3onsider the regular pro)ectionπ(L) of the linkL used to con# structD. It is a union of loops one per component ofL. >ick one loopγ parametri?ed asγ(t)+(x(t), y(t)) witht∈ :(, 1; and consider a particle P moving inR 3 a!oveγ in a descending way e$cept near the endpoints where it goes &uickly upwards i.e.P(t)+(x(t), y(t), z(t)) wherez(t) has the following graph% z(t) t ( 1 ThenP is an unknot (e$ercise% 2nd the isotopy). 7epeat the a!ove for each component ofL putting each of them !elow the previous one. This results in an unlinkL ′ with the same pro)ection asL. @ence 5 their diagramD andD ′ have the same shape !ut they may differ at crossings. � Definition 2.5. The unknotting num!er u(D) of a link diagramD is the smallest num!er of crossing changes re&uired to reduceD to a diagram of an unlink. The unknotting num!er u(L) of a linkL is the minimal unknotting num!er of its diagrams. Example 2.6. The unknotting num!eru(K) + ( if and only ifK is an unlink. Aoth a trefoil and a 2gure#eight knot have unknotting num!er 1% −→ −→ The unknotting num!er of the cin&uefoil is at most ,% −→ −→ ,.,. &inking num#er and 'rithe. 9e2ne the sign sgn(c) of a cross# ingc as follows% < − This convention follows the right-hand rule% !end slightly the 2ngers of your right hand e$cept the thum! which you should make orthogonal to the rest. Thinking of the thum! as the underpass and the other 2n# gers as the overpass they de2ne the orientation of the positive crossing. Definition 2.7. The writhe w(D) of a link diagramD is the sum of signs of its crossings. The linking num!er lk(L1,L2) of componentsL 1 andL 2 of a linkL is half the sum of signs of crossings !etweenL 1 and L2. 6 Example 2.8. w+<0 lk + <1 w+−0 lk +−1 The linking num!er is a link invariant which implies that the two @opf links are not e&uivalentB they are also nontrivially link. Cn the other hand writhe is not a link invariant as its value is not preserved !y the 2rst 7eidemeister move. Proposition 2.9. The linking number lk(L1,L2) is preserved by Rei- demeister moves. The writhew(D) is preserved by the second and third Reidemester move, but not by the rst one: w +w <1 andw +w −1. � � � � � � � � Proof. The second 7eidemester moves creates or destroys two cross# ings of opposite signs whereas the third 7eidemesiter moves preserves the amount of positive and negative crossings. The 2rst 7eidemeis# ter move only changes the num!er of self#crossings so that the linking num!er is not affected. � Definition 2.10. framed knot is a em!edding of an annulusS 1×:(, 1; intoR 3. em!edding of several annuli is a framed link. "ramed knots/links also admits diagrams. Dsually we re&uire that the pro)ection is one#to#one on each section{p}×:(, 1; of the annulusE if so we say that the diagram has a !lack!oard framing. There is a variant of 7eidemeister Theorem for diagrams of framed links% we 7 are still allowed to perform the second and third move !ut the 2rst one is replaced with ←→ Fotice that the other con2guration of kinks already follows from the sec# ond and third move. Example 2.11. It follows from >roposition ,.G that the writhe is an in# variant of framed knots. Aecause the two trefoils have different writhe they are not e&uivalent as framed knots. ,.0. Colorings. Definition 2.12. 0#coloring of a link diagramD is an assignment of a colorEred green or !lueEto each arc ofD such that at each crossing either all three arcs have the same color or all three colors meet. We say thatD is 0#colora!le if it admits a coloring !y all three colors. Example 2.1$. The standard diagrams of a trefoil and unknot are 0#colora!le% whereas the standard diagrams of the unknot and 2gure#eight are not.
Recommended publications
  • The Borromean Rings: a Video About the New IMU Logo
    The Borromean Rings: A Video about the New IMU Logo Charles Gunn and John M. Sullivan∗ Technische Universitat¨ Berlin Institut fur¨ Mathematik, MA 3–2 Str. des 17. Juni 136 10623 Berlin, Germany Email: {gunn,sullivan}@math.tu-berlin.de Abstract This paper describes our video The Borromean Rings: A new logo for the IMU, which was premiered at the opening ceremony of the last International Congress. The video explains some of the mathematics behind the logo of the In- ternational Mathematical Union, which is based on the tight configuration of the Borromean rings. This configuration has pyritohedral symmetry, so the video includes an exploration of this interesting symmetry group. Figure 1: The IMU logo depicts the tight config- Figure 2: A typical diagram for the Borromean uration of the Borromean rings. Its symmetry is rings uses three round circles, with alternating pyritohedral, as defined in Section 3. crossings. In the upper corners are diagrams for two other three-component Brunnian links. 1 The IMU Logo and the Borromean Rings In 2004, the International Mathematical Union (IMU), which had never had a logo, announced a competition to design one. The winning entry, shown in Figure 1, was designed by one of us (Sullivan) with help from Nancy Wrinkle. It depicts the Borromean rings, not in the usual diagram (Figure 2) but instead in their tight configuration, the shape they have when tied tight in thick rope. This IMU logo was unveiled at the opening ceremony of the International Congress of Mathematicians (ICM 2006) in Madrid. We were invited to produce a short video [10] about some of the mathematics behind the logo; it was shown at the opening and closing ceremonies, and can be viewed at www.isama.org/jms/Videos/imu/.
    [Show full text]
  • Conservation of Complex Knotting and Slipknotting Patterns in Proteins
    Conservation of complex knotting and PNAS PLUS slipknotting patterns in proteins Joanna I. Sułkowskaa,1,2, Eric J. Rawdonb,1, Kenneth C. Millettc, Jose N. Onuchicd,2, and Andrzej Stasiake aCenter for Theoretical Biological Physics, University of California at San Diego, La Jolla, CA 92037; bDepartment of Mathematics, University of St. Thomas, Saint Paul, MN 55105; cDepartment of Mathematics, University of California, Santa Barbara, CA 93106; dCenter for Theoretical Biological Physics , Rice University, Houston, TX 77005; and eCenter for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland Edited by* Michael S. Waterman, University of Southern California, Los Angeles, CA, and approved May 4, 2012 (received for review April 17, 2012) While analyzing all available protein structures for the presence of ers fixed configurations, in this case proteins in their native folded knots and slipknots, we detected a strict conservation of complex structures. Then they may be treated as frozen and thus unable to knotting patterns within and between several protein families undergo any deformation. despite their large sequence divergence. Because protein folding Several papers have described various interesting closure pathways leading to knotted native protein structures are slower procedures to capture the knot type of the native structure of and less efficient than those leading to unknotted proteins with a protein or a subchain of a closed chain (1, 3, 29–33). In general, similar size and sequence, the strict conservation of the knotting the strategy is to ensure that the closure procedure does not affect patterns indicates an important physiological role of knots and slip- the inherent entanglement in the analyzed protein chain or sub- knots in these proteins.
    [Show full text]
  • A Knot-Vice's Guide to Untangling Knot Theory, Undergraduate
    A Knot-vice’s Guide to Untangling Knot Theory Rebecca Hardenbrook Department of Mathematics University of Utah Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 1 / 26 What is Not a Knot? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 2 / 26 What is a Knot? 2 A knot is an embedding of the circle in the Euclidean plane (R ). 3 Also defined as a closed, non-self-intersecting curve in R . 2 Represented by knot projections in R . Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 3 / 26 Why Knots? Late nineteenth century chemists and physicists believed that a substance known as aether existed throughout all of space. Could knots represent the elements? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 4 / 26 Why Knots? Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 5 / 26 Why Knots? Unfortunately, no. Nevertheless, mathematicians continued to study knots! Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 6 / 26 Current Applications Natural knotting in DNA molecules (1980s). Credit: K. Kimura et al. (1999) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 7 / 26 Current Applications Chemical synthesis of knotted molecules – Dietrich-Buchecker and Sauvage (1988). Credit: J. Guo et al. (2010) Rebecca Hardenbrook A Knot-vice’s Guide to Untangling Knot Theory 8 / 26 Current Applications Use of lattice models, e.g. the Ising model (1925), and planar projection of knots to find a knot invariant via statistical mechanics. Credit: D. Chicherin, V.P.
    [Show full text]
  • Notes on the Self-Linking Number
    NOTES ON THE SELF-LINKING NUMBER ALBERTO S. CATTANEO The aim of this note is to review the results of [4, 8, 9] in view of integrals over configuration spaces and also to discuss a generalization to other 3-manifolds. Recall that the linking number of two non-intersecting curves in R3 can be expressed as the integral (Gauss formula) of a 2-form on the Cartesian product of the curves. It also makes sense to integrate over the product of an embedded curve with itself and define its self-linking number this way. This is not an invariant as it changes continuously with deformations of the embedding; in addition, it has a jump when- ever a crossing is switched. There exists another function, the integrated torsion, which has op- posite variation under continuous deformations but is defined on the whole space of immersions (and consequently has no discontinuities at a crossing change), but depends on a choice of framing. The sum of the self-linking number and the integrated torsion is therefore an invariant of embedded curves with framings and turns out simply to be the linking number between the given embedding and its small displacement by the framing. This also allows one to compute the jump at a crossing change. The main application is that the self-linking number or the integrated torsion may be added to the integral expressions of [3] to make them into knot invariants. We also discuss on the geometrical meaning of the integrated torsion. 1. The trivial case Let us start recalling the case of embeddings and immersions in R3.
    [Show full text]
  • CROSSING CHANGES and MINIMAL DIAGRAMS the Unknotting
    CROSSING CHANGES AND MINIMAL DIAGRAMS ISABEL K. DARCY The unknotting number of a knot is the minimal number of crossing changes needed to convert the knot into the unknot where the minimum is taken over all possible diagrams of the knot. For example, the minimal diagram of the knot 108 requires 3 crossing changes in order to change it to the unknot. Thus, by looking only at the minimal diagram of 108, it is clear that u(108) ≤ 3 (figure 1). Nakanishi [5] and Bleiler [2] proved that u(108) = 2. They found a non-minimal diagram of the knot 108 in which two crossing changes suffice to obtain the unknot (figure 2). Lower bounds on unknotting number can be found by looking at how knot invariants are affected by crossing changes. Nakanishi [5] and Bleiler [2] used signature to prove that u(108)=2. Figure 1. Minimal dia- Figure 2. A non-minimal dia- gram of knot 108 gram of knot 108 Bernhard [1] noticed that one can determine that u(108) = 2 by using a sequence of crossing changes within minimal diagrams and ambient isotopies as shown in figure. A crossing change within the minimal diagram of 108 results in the knot 62. We then use an ambient isotopy to change this non-minimal diagram of 62 to a minimal diagram. The unknot can then be obtained by changing one crossing within the minimal diagram of 62. Bernhard hypothesized that the unknotting number of a knot could be determined by only looking at minimal diagrams by using ambient isotopies between crossing changes.
    [Show full text]
  • Gauss' Linking Number Revisited
    October 18, 2011 9:17 WSPC/S0218-2165 134-JKTR S0218216511009261 Journal of Knot Theory and Its Ramifications Vol. 20, No. 10 (2011) 1325–1343 c World Scientific Publishing Company DOI: 10.1142/S0218216511009261 GAUSS’ LINKING NUMBER REVISITED RENZO L. RICCA∗ Department of Mathematics and Applications, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy [email protected] BERNARDO NIPOTI Department of Mathematics “F. Casorati”, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy Accepted 6 August 2010 ABSTRACT In this paper we provide a mathematical reconstruction of what might have been Gauss’ own derivation of the linking number of 1833, providing also an alternative, explicit proof of its modern interpretation in terms of degree, signed crossings and inter- section number. The reconstruction presented here is entirely based on an accurate study of Gauss’ own work on terrestrial magnetism. A brief discussion of a possibly indepen- dent derivation made by Maxwell in 1867 completes this reconstruction. Since the linking number interpretations in terms of degree, signed crossings and intersection index play such an important role in modern mathematical physics, we offer a direct proof of their equivalence. Explicit examples of its interpretation in terms of oriented area are also provided. Keywords: Linking number; potential; degree; signed crossings; intersection number; oriented area. Mathematics Subject Classification 2010: 57M25, 57M27, 78A25 1. Introduction The concept of linking number was introduced by Gauss in a brief note on his diary in 1833 (see Sec. 2 below), but no proof was given, neither of its derivation, nor of its topological meaning. Its derivation remained indeed a mystery.
    [Show full text]
  • Knots: a Handout for Mathcircles
    Knots: a handout for mathcircles Mladen Bestvina February 2003 1 Knots Informally, a knot is a knotted loop of string. You can create one easily enough in one of the following ways: • Take an extension cord, tie a knot in it, and then plug one end into the other. • Let your cat play with a ball of yarn for a while. Then find the two ends (good luck!) and tie them together. This is usually a very complicated knot. • Draw a diagram such as those pictured below. Such a diagram is a called a knot diagram or a knot projection. Trefoil and the figure 8 knot 1 The above two knots are the world's simplest knots. At the end of the handout you can see many more pictures of knots (from Robert Scharein's web site). The same picture contains many links as well. A link consists of several loops of string. Some links are so famous that they have names. For 2 2 3 example, 21 is the Hopf link, 51 is the Whitehead link, and 62 are the Bor- romean rings. They have the feature that individual strings (or components in mathematical parlance) are untangled (or unknotted) but you can't pull the strings apart without cutting. A bit of terminology: A crossing is a place where the knot crosses itself. The first number in knot's \name" is the number of crossings. Can you figure out the meaning of the other number(s)? 2 Reidemeister moves There are many knot diagrams representing the same knot. For example, both diagrams below represent the unknot.
    [Show full text]
  • A Remarkable 20-Crossing Tangle Shalom Eliahou, Jean Fromentin
    A remarkable 20-crossing tangle Shalom Eliahou, Jean Fromentin To cite this version: Shalom Eliahou, Jean Fromentin. A remarkable 20-crossing tangle. 2016. hal-01382778v2 HAL Id: hal-01382778 https://hal.archives-ouvertes.fr/hal-01382778v2 Preprint submitted on 16 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A REMARKABLE 20-CROSSING TANGLE SHALOM ELIAHOU AND JEAN FROMENTIN Abstract. For any positive integer r, we exhibit a nontrivial knot Kr with r− r (20·2 1 +1) crossings whose Jones polynomial V (Kr) is equal to 1 modulo 2 . Our construction rests on a certain 20-crossing tangle T20 which is undetectable by the Kauffman bracket polynomial pair mod 2. 1. Introduction In [6], M. B. Thistlethwaite gave two 2–component links and one 3–component link which are nontrivial and yet have the same Jones polynomial as the corre- sponding unlink U 2 and U 3, respectively. These were the first known examples of nontrivial links undetectable by the Jones polynomial. Shortly thereafter, it was shown in [2] that, for any integer k ≥ 2, there exist infinitely many nontrivial k–component links whose Jones polynomial is equal to that of the k–component unlink U k.
    [Show full text]
  • Absolutely Exotic Compact 4-Manifolds
    ABSOLUTELY EXOTIC COMPACT 4-MANIFOLDS 1 2 SELMAN AKBULUT AND DANIEL RUBERMAN Abstract. We show how to construct absolutely exotic smooth struc- tures on compact 4-manifolds with boundary, including contractible manifolds. In particular, we prove that any compact smooth 4-manifold W with boundary that admits a relatively exotic structure contains a pair of codimension-zero submanifolds homotopy equivalent to W that are absolutely exotic copies of each other. In this context, absolute means that the exotic structure is not relative to a particular parame- terization of the boundary. Our examples are constructed by modifying a relatively exotic manifold by adding an invertible homology cobor- dism along its boundary. Applying this technique to corks (contractible manifolds with a diffeomorphism of the boundary that does not extend to a diffeomorphism of the interior) gives examples of absolutely exotic smooth structures on contractible 4-manifolds. 1. Introduction One goal of 4-dimensional topology is to find exotic smooth structures on the simplest of closed 4-manifolds, such as S4 and CP2. Amongst mani- folds with boundary, there are very simple exotic structures coming from the phenomenon of corks, which are relatively exotic contractible mani- arXiv:1410.1461v3 [math.GT] 11 Dec 2014 folds discovered by the first-named author [2]. More specifically, a cork is a compact smooth contractible manifold W together with a diffeomor- phism f : ∂W → ∂W which does not extend to a self-diffeomorphism of W , although it does extend to a self-homeomorphism F : W → W . This gives an exotic smooth structure on W relative to its boundary, namely the pullback smooth structure by F.
    [Show full text]
  • Introduction to Vassiliev Knot Invariants First Draft. Comments
    Introduction to Vassiliev Knot Invariants First draft. Comments welcome. July 20, 2010 S. Chmutov S. Duzhin J. Mostovoy The Ohio State University, Mansfield Campus, 1680 Univer- sity Drive, Mansfield, OH 44906, USA E-mail address: [email protected] Steklov Institute of Mathematics, St. Petersburg Division, Fontanka 27, St. Petersburg, 191011, Russia E-mail address: [email protected] Departamento de Matematicas,´ CINVESTAV, Apartado Postal 14-740, C.P. 07000 Mexico,´ D.F. Mexico E-mail address: [email protected] Contents Preface 8 Part 1. Fundamentals Chapter 1. Knots and their relatives 15 1.1. Definitions and examples 15 § 1.2. Isotopy 16 § 1.3. Plane knot diagrams 19 § 1.4. Inverses and mirror images 21 § 1.5. Knot tables 23 § 1.6. Algebra of knots 25 § 1.7. Tangles, string links and braids 25 § 1.8. Variations 30 § Exercises 34 Chapter 2. Knot invariants 39 2.1. Definition and first examples 39 § 2.2. Linking number 40 § 2.3. Conway polynomial 43 § 2.4. Jones polynomial 45 § 2.5. Algebra of knot invariants 47 § 2.6. Quantum invariants 47 § 2.7. Two-variable link polynomials 55 § Exercises 62 3 4 Contents Chapter 3. Finite type invariants 69 3.1. Definition of Vassiliev invariants 69 § 3.2. Algebra of Vassiliev invariants 72 § 3.3. Vassiliev invariants of degrees 0, 1 and 2 76 § 3.4. Chord diagrams 78 § 3.5. Invariants of framed knots 80 § 3.6. Classical knot polynomials as Vassiliev invariants 82 § 3.7. Actuality tables 88 § 3.8. Vassiliev invariants of tangles 91 § Exercises 93 Chapter 4.
    [Show full text]
  • Splitting Numbers of Links
    Splitting numbers of links Jae Choon Cha, Stefan Friedl, and Mark Powell Department of Mathematics, POSTECH, Pohang 790{784, Republic of Korea, and School of Mathematics, Korea Institute for Advanced Study, Seoul 130{722, Republic of Korea E-mail address: [email protected] Mathematisches Institut, Universit¨atzu K¨oln,50931 K¨oln,Germany E-mail address: [email protected] D´epartement de Math´ematiques,Universit´edu Qu´ebec `aMontr´eal,Montr´eal,QC, Canada E-mail address: [email protected] Abstract. The splitting number of a link is the minimal number of crossing changes between different components required, on any diagram, to convert it to a split link. We introduce new techniques to compute the splitting number, involving covering links and Alexander invariants. As an application, we completely determine the splitting numbers of links with 9 or fewer crossings. Also, with these techniques, we either reprove or improve upon the lower bounds for splitting numbers of links computed by J. Batson and C. Seed using Khovanov homology. 1. Introduction Any link in S3 can be converted to the split union of its component knots by a sequence of crossing changes between different components. Following J. Batson and C. Seed [BS13], we define the splitting number of a link L, denoted by sp(L), as the minimal number of crossing changes in such a sequence. We present two new techniques for obtaining lower bounds for the splitting number. The first approach uses covering links, and the second method arises from the multivariable Alexander polynomial of a link. Our general covering link theorem is stated as Theorem 3.2.
    [Show full text]
  • Comultiplication in Link Floer Homologyand Transversely Nonsimple Links
    Algebraic & Geometric Topology 10 (2010) 1417–1436 1417 Comultiplication in link Floer homology and transversely nonsimple links JOHN ABALDWIN For a word w in the braid group Bn , we denote by Tw the corresponding transverse 3 braid in .R ; rot/. We exhibit, for any two g; h Bn , a “comultiplication” map on 2 link Floer homology ˆ HFL.m.Thg// HFL.m.Tg#Th// which sends .Thg/ z W ! z to .z Tg#Th/. We use this comultiplication map to generate infinitely many new examples of prime topological link types which are not transversely simple. 57M27, 57R17 e e 1 Introduction Transverse links feature prominently in the study of contact 3–manifolds. They arise very naturally – for instance, as binding components of open book decompositions – and can be used to discern important properties of the contact structures in which they sit (see Baker, Etnyre and Van Horn-Morris [1, Theorem 1.15] for a recent example). Yet, 3 transverse links, even in the standard tight contact structure std on R , are notoriously difficult to classify up to transverse isotopy. A transverse link T comes equipped with two “classical” invariants which are preserved under transverse isotopy: its topological link type and its self-linking number sl.T /. For transverse links with more than one component, it makes sense to refine the notion of self-linking number as follows. Let T and T 0 be two transverse representatives of some l –component topological link type, and suppose there are labelings T T1 T D [ [ l and T T T of the components of T and T such that 0 D 10 [ [ l0 0 (1) there is a topological isotopy sending T to T 0 which sends Ti to Ti0 for each i , (2) sl.S/ sl.S / for any sublinks S Tn Tn and S T T .
    [Show full text]