animals Article Modeling of Heat Stress in Sows—Part 1: Establishment of the Prediction Model for the Equivalent Temperature Index of the Sows Mengbing Cao 1,2, Chao Zong 1,2,*, Xiaoshuai Wang 3, Guanghui Teng 1,2, Yanrong Zhuang 1,2 and Kaidong Lei 1,2 1 College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China;
[email protected] (M.C.);
[email protected] (G.T.);
[email protected] (Y.Z.);
[email protected] (K.L.) 2 Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China 3 College of Biosystems Engineering and Food Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China;
[email protected] * Correspondence:
[email protected] Simple Summary: Sows are susceptible to heat stress. Various indicators can be found in the literature assessing the level of heat stress in pigs, but none of them is specific to assess the sows’ thermal condition. Moreover, previous thermal indices have been developed by considering only partial environment parameters, and the interaction between the index and the animal’s physiological response are not always included. Therefore, this study aims to develop and assess a new thermal index specified for sows, called equivalent temperature index for sows (ETIS), with a comprehensive consideration of the influencing factors. An experiment was conducted, and the experimental Citation: Cao, M.; Zong, C.; Wang, data was applied for model development and validation. The equivalent temperatures have been X.; Teng, G.; Zhuang, Y.; Lei, K. transformed on the basis of equal effects of air velocity, relative humidity, floor heat conduction and Modeling of Heat Stress in indoor radiation on the thermal index, and used for the ETIS combination.