Final Bedore Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Final Bedore Dissertation VISUAL AND ELECTROSENSORY ECOLOGY OF BATOID ELASMOBRANCHS by Christine N. Bedore A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL August 2013 Copyright by Christine N. Bedore 2013 ii ACKNOWLEDGEMENTS This work would not be possible without the advice, help, and support that I have received from so many people. To all of you: I am eternally grateful, thank you! Several funding sources provided financial support of this work, including Florida Atlantic University Department of Biological Sciences and Graduate College, American Elasmobranch Society, Society for Integrative and Comparative Biology, Sigma Xi Scientific Research Society, and American Museum of Natural History. The Bank of Dad helped to financially supported my research before grant funds were secured, thanks Dad! I would like to offer my sincere gratitude to my dissertation committee for their years of support, advice, and encouragement. John Baldwin, Tammy Frank, Bob Hueter, and Mikki McComb have all significantly contributed to my scientific development, each in a unique way. A special thanks goes to Tammy Frank and Mikki McComb who have each allowed me to borrow their ERG equipment and have spent countless hours combing over data, reviewing manuscripts, writing letters of recommendation, and troubleshooting with me. Another very special thanks goes to my committee Chair, Steve Kajiura. Steve taught me more than I ever expected to learn about biology, physics, and life. He stood by me through my successes and failures, offered me some amazing opportunities, allowed me the freedom to follow my crazy iv ideas and interests, and gave me free reign over his office. For that, I am forever indebted and thankful. I am fortunate to have the absolute best lab mates I could ever ask for. I am lucky to have you as part of my extended family. Tricia Meredith, Laura Macesic- Ekstrom, Dave McGowan, Shari Tellman, Kier Smith, Sara McCutcheon, Marianne Porter, Kyle Newton, Jordan Snyder, Theresa Gunn, Eloise Cave, Avery Siciliano, Nicole Blahut, Kim Denesha, Gabby Barbarite, and Joey Perez have endured collection trips, tank cleaning, animal food prep, fixing gillnets, have helped teach me electrophysiology, run my experiments, and edit grant proposals and manuscripts. I am especially thankful to Lindsay who has been my partner in crime for the past five years. We have been through a lot together and she will always be my favorite Lamenologist! Several other FAU people have offered advice and support: Mark Royer, Neal Tempel, Jeanette Wyneken, Mike Salmon, Margueritte Koch, Tanja Godenschwege, Jenny Govender, Michelle Cavallo, Jim Nichols, Kristen Ware, Elisa Gaucher, Dennis Hanisak, Rod Murphey, and Gary Perry. Personnel at Gumbo Limbo and Mote Marine have provided experimental, technical, and husbandry assistance: Kirt Rusenko, Cody Mott, Jack Morris, Carl Luer, Krystle Harvey, Jayne Gardiner, Jim DelBene, Andy Stamper, and Lynne Byrd. Florida Fish and Wildlife Commission in Tequesta, FL, Dynasty Marine, and Keys Marine Lab have helped provide fish for experiments. Rich Brill, Nathan Hart, Kara Yopak, Dean Grubbs, Matt Kolmann, Alan Henningson, Robert Fischer, Joe Bizzarro, Eric Noonburg, Sönke Johnsen, and Yakir Gagnon have provided invaluable advice on statistics, visual biology, and elasmobranch ecology. Ellis Loew graciously afforded me the opportunity to visit his lab and entertained me with his tales v of his adventures in visual ecology. Many friends have been supportive in every aspect of my dissertation and they made the good days great and the bad days tolerable. Finally, I need to give respectful appreciation to all of the rays that gave their lives for my research. They inspired me to ask questions and investigate their quirks as an answer to those questions, provided intellectual stimulation for my fellow graduate and undergraduate students, and provided entertainment and an opportunity for learning for thousands of Gumbo Limbo visitors over the years. “You are capable of more than you know. Choose a goal that seems right for you and strive to be the best, no matter however hard the path. Aim high. Behave honorably. Prepare to be alone at times, and to endure failure. Persist! The world needs all you can give.” - E.O. Wilson vi ABSTRACT Author: Christine N. Bedore Title: Visual and electrosensory ecology of batoid elasmobranchs Institution: Florida Atlantic University Dissertation Advisor: Dr. Stephen M. Kajiura Degree: Doctor of Philosophy Year: 2013 The electrosensory and visual adaptations of elasmobranchs to the environment have been more studied than most other senses, however, work on these senses is mostly limited to descriptive analyses of sensitivity, morphology, and behavior. The goal of this work was to explore electrosensory and visual capabilities in a more ecological context. To gain an understanding of the content of bioelectric signals, the magnitude and frequency of these stimuli were recorded from a broad survey of elasmobranch prey items. Teleosts produced a greater voltage than invertebrates and elasmobranchs and there was no correlation between voltage strength with frequency, mass, or total length as assumed in previous studies. The DC bioelectric field was reproduced in a behavioral assay and the sensitivity of two batoid elasmobranchs, the cownose ray (Rhinoptera bonasus) and the yellow stingray (Urobatis jamaicensis) to these stimuli was quantified. Cownose rays demonstrated a median sensitivity of 107nV cm-1, vii which was considerably less sensitive than yellow stingrays that demonstrated a sensitivity of 22nV cm-1. Cownose rays may have reduced sensitivity as a mechanism to prevent overstimulation of the electrosensory system by schooling conspecifics. Although it is unlikely that cownose rays use their electrosensory systems to maintain position within a school as hypothesized, their visual adaptations suggest tracking of schoolmates may be primarily visual. Cownose rays had a faster temporal resolution than yellow stingrays, which would support this hypothesis. Color vision adaptations also correlated to the photic environment of each species; cownose rays inhabit turbid, green-dominated waters and had two cone visual pigments that maximize contrast of objects against the green background. Yellow stingrays were trichromatic and likely possess the ability to discriminate colors in their clear, reef and seagrass habitats, which are spectrally rich. Both species showed evidence of ultraviolet sensitivity, which may aid in predator and conspecific detection as an enhanced communication channel. Future studies should investigate the integration of sensory input and sensory involvement in intraspecific communication to gain more insight into ecological adaptations. viii DEDICATION For Dad, Katie, Layne, and Bruce. You have inspired me to achieve my dreams, no matter how outrageous they are, and to always reach for the stars, no matter how far away they are. Thank you for your endless support and encouragement. ix VISUAL AND ELECTROSENSORY ECOLOGY OF BATOID ELASMOBRANCHS LIST OF TABLES ........................................................................................................ xiii LIST OF FIGURES ....................................................................................................... xiv CHAPTER 1: INTRODUCTION .................................................................................... 1 ELECTRORECEPTION .............................................................................................. 2 VISION ........................................................................................................................ 7 RESEARCH GOALS ................................................................................................... 9 CHAPTER 2: BIOELECTRIC FIELDS OF MARINE ORGANSISMS: VOLTAGE AND FREQUENCY CONTRIBUTIONS TO DETECTABILITY BY ELECTRORECEPTIVE PREDATORS ........................................................................ 11 ABSTRACT ............................................................................................................... 11 INTRODUCTION ...................................................................................................... 12 MATERIALS AND METHODS ............................................................................... 15 Animal collection ................................................................................................... 15 Experimental apparatus .......................................................................................... 15 Electrophysiology protocol .................................................................................... 16 Bioelectric field generator electric potential .......................................................... 19 RESULTS ................................................................................................................... 20 Bioelectric field stimulus generator electric potential ............................................ 22 ix DISCUSSION ............................................................................................................ 23 Frequency measurements ....................................................................................... 24 Voltage amplitude .................................................................................................. 25 Voltage decay and
Recommended publications
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Two New Species of Sea Catfish Named
    Media only: Elisabeth King (507) 212-8216; [email protected] June 30, 2017 Sean Mattson (507) 212-8290; [email protected] Media website: http://www.stri.si.edu/english/about_stri/media/press_releases/index.php Two new species of sea catfish named A group of scientists from Panama, Colombia, Brazil and Puerto Rico have described two new species of sea catfish in the genus Ariopsis, in a report published in the journal Zootaxa. Based on a specimen from Casaya Island in Panama’s Las Perlas archipelago, they named the first new species, Jimenez’s Sea Catfish, Ariopsis jimenzi for Máximo Jiménez Acosta, a zooarchaeology technician in archaeologist Richard Cooke’s lab at the Smithsonian Tropical Research Institute. Jiménez drew attention to the possible existence of a new species based on his examination of bone characteristics in specimens formerly originally believed to be A. seemanni, or the Colombian shark catfish. His observation that the bones belonged to a new species was immediately confirmed by molecular analysis. The second new species was named the New Granada sea catfish, Ariopsis canteri, for Diego Canter Ríos (1984-2007), a young and talented Colombian ichthyologist who died in a traffic accident near Santa Marta, Colombia along with three other biology undergraduates. He collected the data on the new species and also worked on this group of catfish for part of his bachelor’s thesis in marine biology. The zoologists in the team — Alexandre Marceniuk from Brazil’s Museu Paraense Emílio Goeldi; Arturo Acero of the Universidad Nacional de Colombia, and Ricardo Betancur of the University of Puerto Rico — constructed a family tree showing how the eight different species in the genus Ariopsis are related.
    [Show full text]
  • Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3
    ACTA ICHTHYOLOGICA ET PISCATORIA (2018) 48 (4): 341–362 DOI: 10.3750/AIEP/02451 AN UPDATED CHECKLIST AND CHARACTERISATION OF THE ICHTHYOFAUNA (ELASMOBRANCHII AND ACTINOPTERYGII) OF THE LAGUNA DE TAMIAHUA, VERACRUZ, MEXICO Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 2 Instituto Nacional de Pesca y Acuacultura, SAGARPA, Ciudad de México 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México Raz-Guzmán A., Huidobro L., Padilla V. 2018. An updated checklist and characterisation of the ichthyofauna (Elasmobranchii and Actinopterygii) of the Laguna de Tamiahua, Veracruz, Mexico. Acta Ichthyol. Piscat. 48 (4): 341–362. Background. Laguna de Tamiahua is ecologically and economically important as a nursery area that favours the recruitment of species that sustain traditional fisheries. It has been studied previously, though not throughout its whole area, and considering the variety of habitats that sustain these fisheries, as well as an increase in population growth that impacts the system. The objectives of this study were to present an updated list of fish species, data on special status, new records, commercial importance, dominance, density, ecotic position, and the spatial and temporal distribution of species in the lagoon, together with a comparison of Tamiahua with 14 other Gulf of Mexico lagoons. Materials and methods. Fish were collected in August and December 1996 with a Renfro beam net and an otter trawl from different habitats throughout the lagoon. The species were identified, classified in relation to special status, new records, commercial importance, density, dominance, ecotic position, and spatial distribution patterns.
    [Show full text]
  • Florida, Caribbean, Bahamas by Paul Humann and Ned Deloach
    Changes in the 4th Edition of Reef Fish Identification - Florida, Caribbean, Bahamas by Paul Humann and Ned DeLoach Prepared by Paul Humann for members of Reef Environmental Education Foundation (REEF) This document summarizes the changes, updates, and new species presented in the 4th edition of Reef Fish Identification- Florida, Caribbean, and Bahamas by Paul Humann and Ned DeLoach (1st printing, released June 2014). This document was created as reference for REEF volunteer surveyors. Chapter 1 – no significant changes Chapter 2 - Silvery pg 64-5t – Redfin Needlefish – new species pg 68-9m – Ladyfish – new species pg 72-3m – Harvestfish – new species pg 72-3b – Longspine Porgy – new species pg74-5 – Silver Porgy & Spottail Pinfish – 2 additional pictures of young and more information on distinguishing between the two species pg 84-5b – Bigeye Mojarra – new species pgs 90-1 & 92-3t – Chubs new species – there are now 4 species of chub in the book – Topsail Chub and Brassy Chub are easily distinguishable. Brassy Chub is the updated ID of Yellow Chub. Bermuda Chub and Gray Chub are lumped due to difficulties in underwater ID (Gray Chub, K biggibus, replaced Yellow Chub in this lumping). Chapter 3 – Grunts & Snappers pg 106-7b and 108-9t – Boga and Bonnetmouth are both now in the Grunt Family (Haemulidae), the Bonnetmouth Family, Inermiidae, is no longer valid. Chapter 4 – Damselfish & Hamlets pgs 132-3 & 134-5 – Cocoa Damselfish and Beaugregory, new pictures and tips for distinguishing between the species pg 142m – Yellowtail Reeffish - new picture of older adult brown variation has been added, which looks of strikingly different from the younger adult pg 147-8b – Florida Barred Hamlet – new species (distinctive from regular Barred Hamlet) pg 153-4t – Tan Hamlet – official species has now been described (Hypoplectrus randallorum), differs from previously included “Tan Hypoplectrus sp.”.
    [Show full text]
  • Metazoan Parasite Community of Blue Sea Catfish, Sciades Guatemalensis (Ariidae), from Tres Palos Lagoon, Guerrero, Mexico
    Parasitol Res DOI 10.1007/s00436-009-1488-8 ORIGINAL PAPER Metazoan parasite community of blue sea catfish, Sciades guatemalensis (Ariidae), from Tres Palos Lagoon, Guerrero, Mexico Juan Violante-González & Ma. Leopoldina Aguirre-Macedo & Agustín Rojas-Herrera & Salvador Gil Guerrero Received: 19 May 2008 /Accepted: 11 May 2009 # Springer-Verlag 2009 Abstract The seasonal dynamic of the metazoan parasite the Gulf of California to Panama (Castro-Aguirre et al. community of the blue sea catfish (Sciades guatemalensis) 1999). Due to constant local demand, it is a major fishery from Tres Palos Lagoon, Guerrero, Mexico, was studied at catch in the coastal lagoons of Guerrero state, Mexico. the component community and infracommunity levels. A Considered to be a carnivorous secondary consumer, it is a total of 382 fish were collected during the regional dry and characteristic estuarine species of the Guerrero coastal rainy seasons (a total of seven seasons) between April 2000 lagoon system (Yáñez-Arancibia 1978). The species’ and September 2007. Nine helminths were collected: Neo- parasite fauna from two coastal lagoons has been reported tetraonchus sp., Pseudoacanthostomum panamense, Austro- previously (Violante-González and Aguirre-Macedo 2007; diplostomum compactum, Clinostomum complanatum, Violante-González et al. 2007), but no studies have focused Metadena sp., Pseudoleptorhynchoides lamothei, Neoechi- on the stability of its parasite community over time in terms norhynchus cf. golvani, Hysterothylacium perezi,andCon- of species composition and abundance. tracaecum sp. The infection dynamics of some dominant The majority of research in Mexico on temporal helminths was influenced by environmental changes gener- variation in tropical parasite communities has involved ated by the dry/rainy season cycle.
    [Show full text]
  • Insight Into Shark Magnetic Field Perception from Empirical
    www.nature.com/scientificreports OPEN Insight into shark magnetic feld perception from empirical observations Received: 13 February 2017 James M. Anderson 1,2, Tamrynn M. Clegg1, Luisa V. M. V. Q. Véras3 & Kim N. Holland1,4 Accepted: 24 August 2017 Elasmobranch fshes are among a broad range of taxa believed to gain positional information and Published: xx xx xxxx navigate using the earth’s magnetic feld, yet in sharks, much remains uncertain regarding the sensory receptors and pathways involved, or the exact nature of perceived stimuli. Captive sandbar sharks, Carcharhinus plumbeus were conditioned to respond to presentation of a magnetic stimulus by seeking out a target in anticipation of reward (food). Sharks in the study demonstrated strong responses to magnetic stimuli, making signifcantly more approaches to the target (p = < 0.01) during stimulus activation (S+) than before or after activation (S−). Sharks exposed to reversible magnetosensory impairment were less capable of discriminating changes to the local magnetic feld, with no diference seen in approaches to the target under the S+ and S− conditions (p = 0.375). We provide quantifed detection and discrimination thresholds of magnetic stimuli presented, and quantify associated transient electrical artefacts. We show that the likelihood of such artefacts serving as the stimulus for observed behavioural responses was low. These impairment experiments support hypotheses that magnetic feld perception in sharks is not solely performed via the electrosensory system, and that putative magnetoreceptor structures may be located in the naso-olfactory capsules of sharks. Many animals from several taxa are able to perceive the earth’s magnetic feld and discriminate changes in that feld1.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • An Annotated Checklist of the Chondrichthyan Fishes Inhabiting the Northern Gulf of Mexico Part 1: Batoidea
    Zootaxa 4803 (2): 281–315 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4803.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:325DB7EF-94F7-4726-BC18-7B074D3CB886 An annotated checklist of the chondrichthyan fishes inhabiting the northern Gulf of Mexico Part 1: Batoidea CHRISTIAN M. JONES1,*, WILLIAM B. DRIGGERS III1,4, KRISTIN M. HANNAN2, ERIC R. HOFFMAYER1,5, LISA M. JONES1,6 & SANDRA J. RAREDON3 1National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Mississippi, U.S.A. 2Riverside Technologies Inc., Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, Missis- sippi, U.S.A. [email protected]; https://orcid.org/0000-0002-2687-3331 3Smithsonian Institution, Division of Fishes, Museum Support Center, 4210 Silver Hill Road, Suitland, Maryland, U.S.A. [email protected]; https://orcid.org/0000-0002-8295-6000 4 [email protected]; https://orcid.org/0000-0001-8577-968X 5 [email protected]; https://orcid.org/0000-0001-5297-9546 6 [email protected]; https://orcid.org/0000-0003-2228-7156 *Corresponding author. [email protected]; https://orcid.org/0000-0001-5093-1127 Abstract Herein we consolidate the information available concerning the biodiversity of batoid fishes in the northern Gulf of Mexico, including nearly 70 years of survey data collected by the National Marine Fisheries Service, Mississippi Laboratories and their predecessors. We document 41 species proposed to occur in the northern Gulf of Mexico.
    [Show full text]
  • Spp List.Xlsx
    Common name Scientific name ANGIOSPERMS Seagrass Halodule wrightii Manatee grass Syringodium filiforme Turtle grass Thalassia testudinium ALGAE PHAEOPHYTA Y Branched algae Dictyota sp Encrusting fan leaf algae Lobophora variegata White scroll algae Padina jamaicensis Sargassum Sargassum fluitans White vein sargassum Sargassum histrix Saucer leaf algae Turbinaria tricostata CHLOROPHYTA Green mermaid's wine glass Acetabularia calyculus Cactus tree algae Caulerpa cupressoides Green grape algae Caulerpa racemosa Green bubble algae Dictyosphaeria cavernosa Large leaf watercress algae Halimeda discoidea Small-leaf hanging vine Halimeda goreaui Three finger leaf algae Halimeda incrassata Watercress algae Halimeda opuntia Stalked lettuce leaf algae Halimeda tuna Bristle ball brush Penicillus dumetosus Flat top bristle brush Penicillus pyriformes Pinecone algae Rhipocephalus phoenix Mermaid's fans Udotea sp Elongated sea pearls Valonia macrophysa Sea pearl Ventricaria ventricosa RHODOPHYTA Spiny algae Acanthophora spicifera No common name Ceramium nitens Crustose coralline algae Corallina sp. Tubular thicket algae Galaxaura sp No common name Laurencia obtusa INVERTEBRATES PORIFERA Scattered pore rope sponge Aplysina fulva Branching vase sponge Callyspongia vaginalis Red boring sponge Cliona delitrix Brown variable sponge Cliona varians Loggerhead sponge Spheciospongia vesparium Fire sponge Tedania ignis Giant barrel sponge Xestospongia muta CNIDARIA Class Scyphozoa Sea wasp Carybdea alata Upsidedown jelly Cassiopeia frondosa Class Hydrozoa Branching
    [Show full text]
  • Fishes of the Lemon Bay Estuary and a Comparison of Fish Community Structure to Nearby Estuaries Along Florida’S Gulf Coast
    Biological Sciences Fishes of the Lemon Bay estuary and a comparison of fish community structure to nearby estuaries along Florida’s Gulf coast Charles F. Idelberger(1), Philip W. Stevens(2), and Eric Weather(2) (1)Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Charlotte Harbor Field Laboratory, 585 Prineville Street, Port Charlotte, Florida 33954 (2)Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 100 Eighth Avenue Southeast, Saint Petersburg, Florida 33701 Abstract Lemon Bay is a narrow, shallow estuary in southwest Florida. Although its fish fauna has been studied intermittently since the 1880s, no detailed inventory has been available. We sampled fish and selected macroinvertebrates in the bay and lower portions of its tributaries from June 2009 through April 2010 using seines and trawls. One hundred three fish and six invertebrate taxa were collected. Pinfish Lagodon rhomboides, spot Leiostomus xanthurus, bay anchovy Anchoa mitchilli, mojarras Eucinostomus spp., silver perch Bairdiella chrysoura, and scaled sardine Harengula jaguana were among the most abundant species. To place our information into a broader ecological context, we compared the Lemon Bay fish assemblages with those of nearby estuaries. Multivariate analyses revealed that fish assemblages of Lemon and Sarasota bays differed from those of lower Charlotte Harbor and lower Tampa Bay at similarities of 68–75%, depending on collection gear. These differences were attributed to greater abundances of small-bodied fishes in Lemon and Sarasota bays than in the other much larger estuaries. Factors such as water circulation patterns, length of shoreline relative to area of open water, and proximity of Gulf passes to juvenile habitat may differ sufficiently between the small and large estuaries to affect fish assemblages.
    [Show full text]
  • Paleogene Origin of Planktivory in the Batoidea
    Paleogene Origin Of Planktivory In The Batoidea CHARLIE J. UNDERWOOD, 1+ MATTHEW A. KOLMANN, 2 and DAVID J. WARD 3 1Department of Earth and Planetary Sciences, Birkbeck, University of London, UK, [email protected]; 2 Department of Ecology and Evolutionary Biology, University of Toronto, Canada, [email protected]; 3Department of Earth Sciences, Natural History Museum, London, UK, [email protected] +Corresponding author RH: UNDERWOOD ET AL.—ORIGIN OF PLANKTIVOROUS BATOIDS 1 ABSTRACT—The planktivorous mobulid rays are a sister group to, and descended from, rhinopterid and myliobatid rays which possess a dentition showing adaptations consistent with a specialized durophageous diet. Within the Paleocene and Eocene there are several taxa which display dentitions apparently transitional between these extreme trophic modality, in particular the genus Burnhamia. The holotype of Burnhamia daviesi was studied through X-ray computed tomography (CT) scanning. Digital renderings of this incomplete but articulated jaw and dentition revealed previously unrecognized characters regarding the jaw cartilages and teeth. In addition, the genus Sulcidens gen. nov. is erected for articulated dentitions from the Paleocene previously assigned to Myliobatis. Phylogenetic analyses confirm Burnhamia as a sister taxon to the mobulids, and the Mobulidae as a sister group to Rhinoptera. Shared dental characters between Burnhamia and Sulcidens likely represent independent origins of planktivory within the rhinopterid – myliobatid clade. The transition from highly-specialized durophagous feeding morphologies to the morphology of planktivores is perplexing, but was facilitated by a pelagic swimming mode in these rays and we propose through subsequent transition from either meiofauna-feeding or pelagic fish-feeding to pelagic planktivory.
    [Show full text]
  • SAC-07-06B(Ii) an INVENTORY of SOURCES of DATA in CENTRAL AMERICA on SHARK FISHERIES OPERATING in the EASTERN PACIFIC OCEAN METADATA REPORT
    INTER-AMERICAN TROPICAL TUNA COMMISSION SCIENTIFIC ADVISORY COMMITTEE SEVENTH MEETING La Jolla, California (USA) 09-13 May 2016 DOCUMENT SAC-07-06b(ii) AN INVENTORY OF SOURCES OF DATA IN CENTRAL AMERICA ON SHARK FISHERIES OPERATING IN THE EASTERN PACIFIC OCEAN METADATA REPORT Compiled by Salvador Siu and Alexandre Aires-da-Silva CONTENTS Executive summary ..................................................................................................................................... 1 1. Introduction ........................................................................................................................................ 2 1.1. Shark fisheries in Central America .................................................................................................. 2 1.2. The shark-fishing fleets ................................................................................................................... 4 1.3. Sharks and the IATTC ...................................................................................................................... 5 1.4. Objectives of study.......................................................................................................................... 6 2. Identification and description of data sources - Metadata ................................................................. 6 2.1. Belize ............................................................................................................................................... 6 2.2. Costa Rica .......................................................................................................................................
    [Show full text]