The Genome Sequence of Clostridium Tetani, the Causative Agent of Tetanus Disease

Total Page:16

File Type:pdf, Size:1020Kb

The Genome Sequence of Clostridium Tetani, the Causative Agent of Tetanus Disease View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Regensburg Publication Server The genome sequence of Clostridium tetani, the causative agent of tetanus disease Holger Bru¨ ggemann*, Sebastian Ba¨ umer*, Wolfgang Florian Fricke*, Arnim Wiezer*, Heiko Liesegang*, Iwona Decker*, Christina Herzberg†, Rosa Martı´nez-Arias*, Rainer Merkl*, Anke Henne*, and Gerhard Gottschalk*†‡ *Go¨ ttingen Genomics Laboratory and †Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, D-37077 Go¨ ttingen, Germany Edited by Dieter So¨ ll, Yale University, New Haven, CT, and approved December 11, 2002 (received for review September 27, 2002) Tetanus disease is one of the most dramatic and globally prevalent a mammalian host. The presented information may also help to diseases of humans and vertebrate animals, and has been reported unravel the regulatory network governing tetanus toxin forma- for over 24 centuries. The manifestation of the disease, spastic tion, which is still poorly understood (11). paralysis, is caused by the second most poisonous substance known, the tetanus toxin, with a human lethal dose of Ϸ1ng͞kg. Methods Fortunately, this disease is successfully controlled through immu- Sequencing Strategy. Genomic DNA of C. tetani E88, a nonsporu- nization with tetanus toxoid; nevertheless, according to the World lating variant of strain Massachusetts used in vaccine production, Health Organization, an estimated 400,000 cases still occur each was extracted and sheared randomly. Several shotgun libraries year, mainly of neonatal tetanus. The causative agent of tetanus were constructed by using size fractions ranging from 1 to 3 kb. disease is Clostridium tetani, an anaerobic spore-forming bacte- A cosmid library was constructed from TasI partially digested rium, whose natural habitat is soil, dust, and intestinal tracts of genomic DNA cloned in the cosmid vector SuperCos1 (Strat- various animals. Here we report the complete genome sequence of agene). Insert ends of the recombinant plasmids and cosmids toxigenic C. tetani E88, a variant of strain Massachusetts. The were sequenced by using dye-terminator chemistry with Mega- genome consists of a 2,799,250-bp chromosome encoding 2,372 BACE 1000 and ABI Prism 377 DNA automated sequencers ORFs. The tetanus toxin and a collagenase are encoded on a (Amersham Biosciences and Applied Biosystems). Sequences 74,082-bp plasmid, containing 61 ORFs. Additional virulence- were processed with PHRED and assembled into contigs by using related factors could be identified, such as an array of surface- the PHRAP assembling tool (12). Sequence editing was done by layer and adhesion proteins (35 ORFs), some of them unique to C. using GAP4, which is part of the STADEN package software (13). tetani. Comparative genomics with the genomes of Clostridium A coverage of 9.2-fold was obtained after the assembly of 44,500 perfringens, the causative agent of gas gangrene, and Clostridium sequences. To solve problems with misassembled regions caused acetobutylicum, a nonpathogenic solvent producer, revealed a by repetitive sequences and to close remaining sequence gaps, remarkable capacity of C. tetani: The organism can rely on an PCR-based techniques and primer walking on recombinant extensive sodium ion bioenergetics. Additional candidate genes plasmids and cosmids were applied. involved in the establishment and maintenance of a pathogenic lifestyle of C. tetani are presented. ORF Prediction and Annotation. Initial ORF prediction was accom- plished by using the GLIMMER program (www.tigr.org͞software͞ eurotoxigenic clostridia have attracted considerable atten- glimmer͞). The result was verified and improved manually by Ntion during the past decades. The mode of action of the using criteria such as the presence of a ribosome-binding site and strongest toxins known to mankind, the tetanus toxin produced codon usage analysis. Annotation was done first automatically by by Clostridium tetani and the homologous botulinum toxins A–G the ERGO annotation tool (Integrated Genomics, www.inte- produced by various Clostridium botulinum strains, is now well gratedgenomics.com), which was verified and refined by search- understood (1–4). The tetanus toxin (TeTx) blocks the release ing derived protein sequences against the public GenBank͞ of neurotransmitters from presynaptic membranes of inhibitory European Molecular Biology Laboratory databases by using the neurons of the spinal cord and the brainstem of mammals; it BLAST program (14). catalyzes the proteolytic cleavage of the synaptic vesicle protein synaptobrevin (5). This leads to continuous muscle contractions, Comparative Genomics. For comparative analysis, each ORF of which are primarily observed in jaw and neck muscles (lockjaw). C. tetani was searched against all ORFs of Clostridium perfringens Since the introduction of a potent vaccine during World War II, and Clostridium acetobutylicum by using the BLAST program (14). cases of tetanus disease have been only sporadic in industrial Significant homology was defined as Ͼ30% amino acid identity countries. However, the disease, and in particular neonatal over Ͼ60% of both the C. tetani protein sequence and the tetanus (NT), is still an important cause of death due to homologous sequence of C. perfringens or C. acetobutylicum, insufficient immunization (4, 6). NT is the second leading cause respectively. of death from vaccine-preventable diseases among children worldwide. It is considered endemic to 90 developing countries, Results and Discussion with an estimated 248,000 deaths occurring in 1997 (World General Features of the C. tetani Genome. The chromosome of Health Organization; www.who.int͞vaccines-diseases͞diseases͞ C. tetani contains 2,799,250 bp with a GϩC content of 28.6%. NeonatalTetanus.shtml). The 74,082-bp plasmid pE88 exhibits a remarkably low GϩC So far, genetic information on C. tetani is mainly restricted to content of 24.5%. The replication origin of the chromosome was the nucleotide sequences of the tetanus toxin TeTx and of its direct transcriptional activator TetR, both of which are encoded on a plasmid, designated pCL1 in the strain Massachusetts This paper was submitted directly (Track II) to the PNAS office. (7–10). The identification and analysis of all genes in the genome Abbreviation: SLP, surface-layer protein. of C. tetani will contribute to our understanding of the lifestyle Data deposition: The sequence reported in this paper has been deposited in the GenBank switch from a harmless soil bacterium to a potentially devastat- database [accession nos. AE015927 (chromosome) and AF528097 (pE88)]. ing neurosystem-damaging organism after entering and infecting ‡To whom correspondence should be addressed. E-mail: [email protected]. 1316–1321 ͉ PNAS ͉ February 4, 2003 ͉ vol. 100 ͉ no. 3 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0335853100 MICROBIOLOGY Fig. 1. Circular maps of the chromosome and the plasmid pE88 of C. tetani. The coding sequence of the chromosome is shown in blue or green, depending on strand orientation. ORFs of C. tetani that have homologous proteins in C. perfringens (15) but not in C. acetobutylicum (16) are shown in orange. ORFs of C. tetani, which are not present in the two other mentioned clostridial genomes, are shown in pink. The plasmid map shows ORFs color-coded according to their assigned functions. The gene of the tetanus toxin, tetX (CTP60), and the gene encoding a collagenase, colT (CTP33), are highlighted in red. Numbers at the inner ring refer to genes mentioned in the text. Most inner rings of both maps show the GϩC content variation (higher values outward). identified on the basis of GC-skew analysis, the distinctive nonfunctional because of insertions, deletions, and point inflection point in the coding strand and the vicinal presence mutations resulting in frame-shifted or degenerated ORFs. of characteristic replication proteins such as DnaA (Fig. 1; also GϩC variation within the genome is very low; the only regions published as Figs. 5 and 6 in supporting information on the with a significantly higher GϩC content (Ϸ50%) are those PNAS web site, www.pnas.org). Eighty-two percent of the harboring the six rRNA gene clusters and genes encoding 2,368 predicted ORFs on the chromosome are transcribed in ribosomal proteins. This lack of GϩC fluctuation indicates the same direction as DNA replication. A similar figure (83%) that recent events of gene acquisition by lateral gene transfer was calculated from the sequence data of C. perfringens (15). have not taken place, and that the C. tetani genome is more This distinctive codirectionality of replication and transcrip- stable than the genomes of enteropathogens. tion is not seen in the genomes of pathogens such as Vibrio cholerae or Yersinia pestis or in archaeal genomes such as The Tetanus Toxin-Encoding Plasmid pE88. It was known that the Methanosarcina mazei (17–19). Only a few mobile elements 74-kb C. tetani plasmid pE88 harbors the genes for the tetanus could be identified in the genome of C. tetani: 16 transposase toxin (tetX) and its direct transcriptional regulator TetR (7–10). genes are present, which can be classified in four different We have now identified 61 ORFs, 28 of which show similarities insertion sequence families. Most of these genes seem to be to known proteins with assigned functions (Fig. 1). Interestingly, Bru¨ ggemann et al. PNAS ͉ February 4, 2003 ͉ vol. 100 ͉ no. 3 ͉ 1317 The origin of pE88 remains unclear. Over 50% of all ORFs on pE88 are unique to C. tetani. A mobile element, present in two copies, shows strongest similarity to a transposase of B. cereus (60% identity over 355 amino acids). The putative replication protein of pE88 is duplicated (CTP1 and CTP45). It shows homology only to a protein (40% identity over 438 amino acids) encoded on the plasmid of the alkaliphilic Bacillus strain KSM- KP43 and to the replication protein (39% identity over 418 amino acids) on pIP404, the bacteriocin- and UviA-encoding 10-kb plasmid of C. perfringens CPN50 (25). Virulence Factors on the Chromosome. In addition to pE88, the C.
Recommended publications
  • Hawaii State Department of Health Tetanus Factsheet
    TETANUS ABOUT THIS DISEASE Tetanus is an infection caused by a bacterium called Clostridium tetani. Spores of tetanus bacteria are everywhere in the environment, including soil, dust, and manure. These spores develop into bacteria when they enter the body through breaks in the skin, usually through injuries from contaminated objects. Clostridium tetani produce a toxin (poison) that causes painful muscle contractions. Tetanus is often called “lockjaw” because the first sign is most commonly spasms of the jaw muscles. Tetanus can lead to serious health problems, including being unable to open the mouth and having trouble swallowing and breathing, possibly leading to death (10% to 20% of cases). Tetanus is uncommon in the United States, with an average of 30 reported cases each year. Nearly all cases of tetanus in the U.S. are among people who have never received a tetanus vaccine, or adults who don’t stay up to date on their 10-year booster shots. SIGNS AND SYMPTOMS Symptoms of tetanus include: • Jaw cramping • Sudden, involuntary muscle tightening (muscle spasms) – often in the stomach • Painful muscle stiffness all over the body • Trouble swallowing • Jerking or staring (seizures) • Headache • Fever and sweating • Changes in blood pressure and a fast heart rate. Serious health problems that can happen because of tetanus include: • Laryngospasm (uncontrolled/involuntary tightening of the vocal cords) • Fractures (broken bones) • Hospital-acquired infections (Infections caught by a patient during a hospital stay) • Pulmonary embolism (blockage of the main artery of the lung or one of its branches by a blood clot that has travelled from elsewhere in the body through the bloodstream) • Aspiration pneumonia (lung infection that develops by breathing in foreign materials) • Breathing difficulty, possibly leading to death (1 to 2 in 10 cases are fatal) TRANSMISSION Tetanus is different from other vaccine-preventable diseases because it does not spread from person to person.
    [Show full text]
  • Sporulation Evolution and Specialization in Bacillus
    bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Research article From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile Paula Ramos-Silva1*, Mónica Serrano2, Adriano O. Henriques2 1Instituto Gulbenkian de Ciência, Oeiras, Portugal 2Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal *Corresponding author: Present address: Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands Phone: 0031 717519283 Email: [email protected] (Paula Ramos-Silva) Running title: Sporulation from root to tips Keywords: sporulation, bacterial genome evolution, horizontal gene transfer, taxon- specific genes, Bacillus subtilis, Clostridioides difficile 1 bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of a highly resistant, dormant spore. Spores allow environmental persistence, dissemination and for pathogens, are infection vehicles. In both the model Bacillus subtilis, an aerobic species, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes.
    [Show full text]
  • Tetanus: a Case Study
    Tetanus: A Case Study Peter J. Raia, MS, MD J Am Board Fam Pract: first published as on 1 May 2001. Downloaded from Tetanus is a disease caused by the toxin produced raised 5-cm erythematous circumferential lesion by Clostridium tetani. The clostridium tetanus bac- with a centrally granulated 2.5 ϫ 1-cm puncture terium is ubiquitous, and as such, C tetani infection wound just lateral to the mid tibial aspect of his can be acquired through surgery, intravenous drug right leg. His leg was draped in sterile fashion. abuse, the neonate’s umbilicus, bites, burns, body Hydrogen peroxide was applied to the area and, 3 piercing, puncture wounds, and ear infections. In mL of 1% lidocaine was injected around the lesion. short, this organism can enter through any break in The wound was surgically de´brided of all necrotic the integrity of the body. As a result of widespread tissue and debris with a No. 15 scalpel and copi- vaccination, tetanus is relatively rare in the United ously irrigated with normal saline. A wick was in- States. Even so, there were 325 cases of tetanus serted for drainage, and the wound was allowed to reported between 1991 and 1997, or approximately drain and to close by secondary intention. 1 46.4 cases per year. The following case of tetanus The patient was counseled about the diagnosis is one of three reported by the New York State of tetanus with secondary wound infection and the Department of Health in 1999. need for hospital admission. The patient refused admission, so he was advised about all the possible Case Report sequelae of the disease including death.
    [Show full text]
  • Virulence Plasmids of the Pathogenic Clostridia SARAH A
    Virulence Plasmids of the Pathogenic Clostridia SARAH A. REVITT-MILLS, CALLUM J. VIDOR, THOMAS D. WATTS, DENA LYRAS, JULIAN I. ROOD, and VICKI ADAMS Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia ABSTRACT The clostridia cause a spectrum of diseases in extrachromosomally. These toxins have diverse mecha- humans and animals ranging from life-threatening tetanus and nisms of action and include pore-forming cytotoxins, botulism, uterine infections, histotoxic infections and enteric phospholipases, metalloproteases, ADP-ribosyltransferases diseases, including antibiotic-associated diarrhea, and food and large glycosyltransferases. This review focuses on poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins these toxins and the elements that carry the toxin struc- are diverse, ranging from a multitude of pore-forming toxins tural genes. For ease of discussion it has been structured to phospholipases, metalloproteases, ADP-ribosyltransferases on a bacterial species-specific basis. and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage PAENICLOSTRIDIUM (CLOSTRIDIUM) that replicate using a plasmid-like intermediate. Some of these SORDELLII plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to Virulence Properties of P. sordellii be conjugative. The mobile nature of these toxin genes gives Paeniclostridium (formerly Clostridium) sordellii causes a ready explanation of how clostridial toxin genes have been several severe diseases in both humans and animals.
    [Show full text]
  • The Gram Positive Bacilli of Medical Importance Chapter 19
    The Gram Positive Bacilli of Medical Importance Chapter 19 MCB 2010 Palm Beach State College Professor Tcherina Duncombe Medically Important Gram-Positive Bacilli 3 General Groups • Endospore-formers: Bacillus, Clostridium • Non-endospore- formers: Listeria • Irregular shaped and staining properties: Corynebacterium, Proprionibacterium, Mycobacterium, Actinomyces 3 General Characteristics Genus Bacillus • Gram-positive/endospore-forming, motile rods • Mostly saprobic • Aerobic/catalase positive • Versatile in degrading complex macromolecules • Source of antibiotics • Primary habitat:soil • 2 species of medical importance: – Bacillus anthracis right – Bacillus cereus left 4 Bacillus anthracis • Large, block-shaped rods • Central spores: develop under all conditions except in the living body • Virulence factors – polypeptide capsule/exotoxins • 3 types of anthrax: – cutaneous – spores enter through skin, black sore- eschar; least dangerous – pulmonary –inhalation of spores – gastrointestinal – ingested spores Treatment: penicillin, tetracycline Vaccines (phage 5 sensitive) 5 Bacillus cereus • Common airborne /dustborne; usual methods of disinfection/ antisepsis: ineffective • Grows in foods, spores survive cooking/ reheating • Ingestion of toxin-containing food causes nausea, vomiting, abdominal cramps, diarrhea; 24 hour duration • No treatment • Increasingly reported in immunosuppressed article 6 Genus Clostridium • Gram-positive, spore-forming rods • Obligate Anaerobes • Catalase negative • Oval or spherical spores • Synthesize organic
    [Show full text]
  • Chapter 19 the Gram­Positive Bacilli of Medical Importance
    Foundations in Microbiology Fifth Edition Talaro Chapter 19 The Gram­Positive Bacilli of Medical Importance Chapter 19 2 3 4 Bacillus • gram­positive, endospore­forming, motile rods • mostly saprobic • aerobic & catalase positive • versatile in degrading complex macromolecules • source of antibiotics • primary habitat is soil • 2 species of medical importance – Bacillus anthracis – Bacillus cereus 5 Bacillus anthracis • large, block shaped rods • central spores that develop under all conditions except in the living body • virulence factors – capsule & exotoxins • 3 types of anthrax – Cutaneous – spores enter through skin, black sore­ eschar; least dangerous – Pulmonary –inhalation of spores – Gastrointestinal – ingested spores • treated with penicillin or tetracycline • vaccine – toxoid 6X over 1.5 years; annual boosters 6 7 Bacillus cereus • common airborne & dustborne • grows in foods, spores survive cooking & reheating • ingestion of toxin­containing food causes nausea, vomiting, abdominal cramps & diarrhea; 24 hour duration • no treatment • spores abundant in the environment 8 9 Clostridium • gram­positive, spore­forming rods • anaerobic & catalase negative • 120 species • oval or spherical spores produced only under anaerobic conditions • synthesize organic acids & alcohols & exotoxins • cause wound & tissue infections & food intoxications 10 Clostridium perfringens • causes gas gangrene in damaged or dead tissues • 2 nd most common cause of food poisoning, worldwide • virulence factors – toxins – alpha toxin – causes RBC rupture,
    [Show full text]
  • Regulation of Toxin Synthesis in Clostridium Botulinum and Clostridium Tetani Chloé Connan, Cécile Denève, Christelle Mazuet, Michel Popoff
    Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani Chloé Connan, Cécile Denève, Christelle Mazuet, Michel Popoff To cite this version: Chloé Connan, Cécile Denève, Christelle Mazuet, Michel Popoff. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon, Elsevier, 2013, 75 (3), pp.90 - 100. 10.1016/j.toxicon.2013.06.001. pasteur-01792396 HAL Id: pasteur-01792396 https://hal-pasteur.archives-ouvertes.fr/pasteur-01792396 Submitted on 1 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License 1 REGULATION OF TOXIN SYNTHESIS IN CLOSTRIDIUM BOTULINUM AND CLOSTRIDIUM TETANI Chloé CONNAN, Cécile DENÈVE, Christelle MAZUET, Michel R. POPOFF* Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, Paris, France Key words: Clostridium botulinum, Clsotridfium tetani, botulinum neurotoxin, tetanus toxin, regulation Corresponding author Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 rue du Dr Roux, 75724 Paris cedex15, France [email protected] 2 ABSTRACT Botulinum and tetanus neurotoxins are structurally and functionally related proteins that are potent inhibitors of neuroexocytosis. Botulinum neurotoxin (BoNT) associates with non-toxic proteins (ANTPs) to form complexes of various sizes, whereas tetanus toxin (TeNT) does not form any complex.
    [Show full text]
  • Clostridial Diseases of Cattle and Sheep Frank Malone
    Clostridial Diseases of Cattle and Sheep Frank Malone Disease Surveillance and Investigation Branch, Veterinary Sciences Division, Department of Agriculture and Rural Development, 43 Beltany Road, Coneywarren, Omagh, Co. Tyrone BT78 5NF, Northern Ireland (Text of a paper presented at the annual meeting of the Association of Veterinary Surgeons Practising in Northern Ireland, Enniskillen, October 2004) Introduction include C. chauvoei, the major cause The Clostridium species affecting of blackleg, and C. novyi type B, which cattle and sheep are large, Gram- causes black disease. positive, rod-shaped, spore-bearing bacteria. Many clostridia are Clostridia which produce enterotoxins saprophytes, which normally grow in C. perfringens species cause soil, water and decomposing plant and enterotoxaemia and enteropathy. animal material. Other species, such Examples include C. perfringens type as C. perfringens, are normal D, which causes pulpy kidney disease inhabitants of the intestines and, after and C. perfringens type B, which the death of the animal, rapidly invade causes lamb dysentery. the blood and tissues playing a major role in decomposing the carcass. There has been an increase in recent These post-mortem invaders must be years in submissions to DARD’s distinguished at post-mortem Veterinary Sciences Division (VSD) of examination from those organisms carcases affected by clostridial causing primary clostridial infections. diseases (Figure 1). Diseases Caused by Pathogenic Neurotrophic Clostridia Clostridia C. tetani Quinn and others (2000) divided the Tetanus occurs sporadically in cattle pathogenic clostridia affecting cattle and sheep of all ages. Tetanus and sheep into the following groups: endospores are present in the neurotrophic clostridia, histotoxic environment and may enter surgical clostridia and clostridia which produce wounds, such as after castration or enterotoxins (Table 1).
    [Show full text]
  • (Antibiogram) 2003
    Antimicrobial Susceptibilities † 8 § of Selected Pathogens, 2003 † † 6 2 § § § § † 5 † † 3 7 4 * 1 serotypes ‡ 2 spp. Sampling Methodology ‡ † all isolates tested Typhimurium * Streptococcus Streptococcus ~1 isolate tested per week at MDH Streptococcus spp. ‡ ~10% sample of statewide isolates received at MDH § isolates from a normally sterile site Salmonella Haemophilus influenzae Shigella Neisseria gonorrhoeae Group A Other (non-typhoidal) Campylobacter Salmonella Neisseria meningitidis pneumoniae Streptococcus Mycobacterium tuberculosis Group B Number of Isolates Tested 60 119 39 10 145 29 169 289 567 52 172 12345678901234567890123456789012123456789012345678901234% Susceptible 12345678901234567890123456789012123456789012345678901234 amoxicillin 123456789012345678901234567890121234567890123456789012396 4 12345678901234567890123456789012123456789012345678901234 12345678901234567890123456789012123456789012345678901234 ampicillin 123456789012345678901234567890121234567890123456789012370 87 0 100 100 63 4 12345678901234567890123456789012123456789012345678901234 penicillin 123456789012345678901234567890121234567890123456789012393 100 100 86 4 12345678901234567890123456789012123456789012345678901234 12345678901234567890123456789012123456789012345678901234 cefuroxime sodium 1234567890123456789012345678901212345678901234567890123100 88 98 4 12345678901234567890123456789012123456789012345678901234 cefotaxime 1234567890123456789012345678901212345678901234567890123100 100 91 100 4 12345678901234567890123456789012123456789012345678901234 12345678901234567890123456789012123456789012345678901234
    [Show full text]
  • Enhancement of Staphylococcus Aureus Infections in Mice by Viable Spores of Clostridium Tetani
    Enhancement of Staphylococcus aureus infections in mice by viable spores of Clostridium tetani Item Type text; Thesis-Reproduction (electronic) Authors Drube, Clairmont George, 1928- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 17:54:47 Link to Item http://hdl.handle.net/10150/551975 ENHANCEMENT OF STAPHYLOCOCCUS AUREUS INFECTIONS IN MICE BY VIABLE SPORES OF CLOSTRIDIUM TETANI by Clairmont George Drube A Thesis Submitted to the Faculty of the DEPARTMENT OF MICROBIOLOGY AND MEDICAL TECHNOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE . \ In the Graduate p©liege - THE UNIVERSITY OF ARIZONA 1967 STATEMENT BY AUTHOR This thesis has been submitted. in partial ful= fillment of requirements for an advanced degree at The University of Arizona and is deposited■in the University Library to be made available to borrowers under rules of the Libraryo Brief quotations from'this thesis are allowable without special permissions provided that accurate' acknowledgment of source is mad@0 Requests for permis™ sion for extended quotation from or reproduction of this manuscript in whole or in part may foe granted by the copyright holdere • ... SIGNED: APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: . JLz Lj /3 Wayburn ST%Ferer Dafe Professor o f ' Microbiology and Medical Technology ACKNOWLEDGMENT The writer wishes to express his gratitude and appreciation to Dr„ Wayfourn S 0 Je’ter for cons true five eriticisms generous assistance and encouragement during this study® : .
    [Show full text]
  • Clostridium Clostridium Is a Genus of Gram-Positive Bacteria. They Are
    Clostridium Clostridium is a genus of Gram-positive bacteria. They are obligate anaerobes capable of producing endospores.[1][2] Individual cells are rod- shaped, which gives them their name, from the Greek kloster or spindle. These characteristics traditionally defined the genus, however many species originally classified as Clostridium have been reclassified in other genera. Overview Clostridium consists of around 100 species[3] that include common free- living bacteria as well as important pathogens.[4] There are five main species responsible for disease in humans: C. botulinum, an organism that produces botulinum toxin in food/wound and can cause botulism.[5]Honey sometimes contains spores of Clostridium botulinum, which may cause infant botulism in humans one year old and younger. The toxin eventually paralyzes the infant's breathing muscles.[6] Adults and older children can eat honey safely, because Clostridium do not compete well with the other rapidly growing bacteria present in the gastrointestinal tract. This same toxin is known as "Botox" and is used cosmetically to paralyze facial muscles to reduce the signs of aging; it also has numerous therapeutic uses. C. difficile, which can flourish when other bacteria in the gut are killed during antibiotic therapy, leading to pseudomembranous colitis (a cause of antibiotic-associated diarrhea).[7] C. perfringens, formerly called C. welchii, causes a wide range of symptoms, from food poisoning to gas gangrene. Also responsible for enterotoxemia in sheep and goats.[8]C. perfringens also takes the place Dr. Wahidah H. alqahtani of yeast in the making of salt rising bread. The name perfringens means 'breaking through' or 'breaking in pieces'.
    [Show full text]
  • Clostridium Bacteria
    Lec (01) Medical Microbiology Dr. Marwa Kadhim Clostridium Bacteria Introduction: The genus Clostridium includes all anaerobic, gram-positive bacilli and capable of forming endospores. Spores of clostridia are usually wider than the diameter of the rods in which they are formed, giving the bacillus a swollen appearance resembling a spindle. The name Clostridium is derived from the word „Kloster‟ (meaning a spindle). General features of Clostridium: 1. Morphology The clostridia are 1) gram-positive typically large, 2) straight or slightly curved rods, 3-8 × 0.6-1 μm with slightly rounded ends. Gram-positive, pleomorphism forms are common. 3) Most species of clostridia are motile with peritrichous flagella except Cl. perfringens and Cl. tetani type VI which are non-motile. All clostridia are non-capsulated with the exception of Cl. perfringens. All clostridia produce endospores. Spores of clostridia are usually wider than the diameter of the rods in which they are formed. In the various species, the spore is placed centrally, sub-terminally, or terminally. 2. Culture Most species are obligate anaerobes. A few species grow in the presence of trace amounts of air and some actually grow slowly under normal atmospheric conditions. Clostridia grow on enriched media in the presence of reducing agent such as cysteine or thioglycollate (to maintain a low oxidation-reduction potential) Liquid media like cooked meat broth (CMB) or thioglycollate media (containing reducing agent thioglycollate and 0.1% agar) are very useful for growing clostridia. A very useful medium is Robertson‟s cooked (RCM) meat broth. It contains unsaturated fatty acids which take up oxygen.
    [Show full text]