POSTHARVEST PHYSIOLOGY of RED GINGER INFLORESCENCE (Alpinia Purpurata Vieill K

Total Page:16

File Type:pdf, Size:1020Kb

POSTHARVEST PHYSIOLOGY of RED GINGER INFLORESCENCE (Alpinia Purpurata Vieill K POSTHARVEST PHYSIOLOGY OF RED GINGER INFLORESCENCE (Alpinia purpurata Vieill K. Schum) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI’I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HORTICULTURE AUGUST 1999 By Theeranuch Chantrachit Dissertation Committee: Robert Pauli, Chairperson Richard Criley Roy Nishimoto Mike Nagao David Webb We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Horticulture. DISSERTATION COMMITTEE ( k ji T .ip ACKNOWLEDGMENTS I would like to express my utmost appreciation to my chairperson, Dr. Robert E. Pauli. I could not have completed my work without his guidance and support. His friendship, understanding, and patience mean more to me than he can possibly know. My deeply thank also go to my other committee members; Dr. Richard A. Criley, Dr. Roy K. Nishimoto, Dr. Mike A. Nagao, and Dr. David D. Webb. Their constructive comments and suggestions have greatly enhanced my education, sharpened my work and made me a better scientist. I will never forget the friendship and support from friends and colleagues in Dr. Pauli’s laboratory; Dr. Nancy J. Chen, Gail Uruu, Theodore Goo, Dr. Ching-Cheng Chen, Dr. Lili Zhou, Dr. Maria Eloisa Q. Reyes (Boots) and her husband, Marcelino U. Reyes (Archie). I sincerely thank them for their helping hands, valuable comments and useful suggestions. The joys that we have shared together will last forever in my memory. I also owe a debt of gratitude to faculty and friends in the Department of Horticulture and Plant Molecular Physiology. Their kindness has helped me get through the difficulty of being away from my family. Finally, from the bottom of my heart, I thank my family and my best friends in Thailand who prove that absence make the heart grow fonder. Because of their encouragement and moral support, I have overcome the most difficult problem in my life. Ill ABSTRACT The postharvest physiology of red ginger inflorescence, including the impact of heat treatment to extend inflorescence vase life, was determined. More than 90% of the inflorescences showed inflorescence wilting or bract browning symptoms or both during senescence. Ethylene and the total count microorganisms in the stem segments and the vase solution had no effect on the development of senescence symptoms. I hypothesized that water balance of the cut stem was associated with inflorescence wilting, whereas sugar content was associated with bract browning symptom. While a relationship between inflorescence wilting and water balance was not confirmed, a positive relationship was established between sugar content and inflorescence vase life as the higher the sugar content in cut stem, the longer the inflorescence vase life. Immersion of the inflorescences in hot water at 40°C for 15 min is recommended as a preconditioning treatment to prevent heat damage to red ginger from the hot water treatment at 50°C for 12 min for insect disinfestation. This combination treatment extends vase life. Extension of inflorescence vase life by the hot water treatment varied with season of harvest and flower variety. Exposure time shorter than 12 min at 50°C was recommended in winter, as the inflorescences had lower thermotolerance than in the summer. Hot water treated inflorescences exhibited a lower rate of respiration than untreated inflorescence, while ethylene production as a result of the treatment was not significantly detected. Inflorescences treated with hot water maintained a higher sugar IV levels for a longer period than untreated inflorescences, and this could explain the vase life extension. Hot water treatment also suppressed negative geotropism in the red ginger inflorescences during horizontal storage. The negative geotropic response was delayed for up to 7 days after the hot water treatment. The sugar content (98%) in the red ginger stem was located in symplast, whereas two percent was attributed to apoplast that is heat resistant as the contents were not affected by the hot water treatment. Sugar metabolism in red ginger inflorescence may be heat sensitive. However, the activity of sugar metabolic enzymes: sucrose phosphate synthase, sucrose synthase and invertase, were not directly related to the changes in sugar content after hot water treatment. It is, therefore, suggested that factors other than the activity of these enzymes affect sugar content of the cut stem. TABLE OF CONTENTS Acknowledgments................................................................................... iii Abstract..................................................................................................... iv List of Tables........................................................................................... ix List of Figures........................................................................................... x Chapter 1. Introduction and Literature Reviews................................... 1 1.1. Introduction........................................................................ 1 1.2. Red ginger (Alpiniapurpurata Vieill K. Schum) 6 1.2.1. Summary of botany and cultivation.................. 6 1.2.2. Vascular system................................................. 7 1.2.3. Postharvest handling.......................................... 8 1.3. Postharvest physiology of cut flower senescence 9 1.3.1. Ethylene production and respiration rate 9 1.3.2. Water balance of the cut stems......................... 11 1.3.3. Vascular blockage of cut flowers..................... 12 1.3.4. Microorganisms in cut flowers......................... 13 1.3.5. Energy sources of cut flowers........................... 14 1.3.6. Plant growth regulators and flower senescence 19 1.4. Sucrose metabolic enzymes.............................................. 2 0 1.4.1. Sucrose phosphate synthase (SPS).................... 22 1.4.2. Sucrose synthase (SS)........................................ 23 1.4.3. Invertase (AI and NI)......................................... 24 1.5. Hot water application......................................................... 25 1.5.1. Hot water and insect disinfestation................... 25 1.5.2. Effect of hot water on living tissues................. 27 1.5.3. Physiological effect of heat treatment.............. 28 Chapter 2. General Materials and Methods.......................................... 31 2.1. Plant materials and general practice.................................. 31 2.2. Evaluation of vase life........................................................ 32 2.3. Determination of postharvest physiological factors 32 2.3.1. Ethylene production and respiration rate 32 2.3.2. Water balance of the cut stem........................... 33 2.3.3. Stem and vase microorganisms........................ 34 2.3.4. Total sugar, sucrose and reducing sugar 35 2.3.5. Starch level......................................................... 37 2.4. Data analysis...................................................................... 38 VI Chapters. Postharvest Physiology of Red Ginger Senescence 42 3.1. Introduction......................................................................... 42 3.2. Materials and methods....................................................... 43 3.2.1. Senescence symptoms......................................... 43 3.2.2. Vase life and inflorescence characteristics 44 3.2.3. Effect of postharvest handling........................... 45 3 .2.4. Postharvest physiology of red ginger senescence........................................................... 46 3.3. Results and discussion........................................................ 47 3.3.1. Senescence symptoms......................................... 47 3.3.2. Vase life and inflorescence characteristics 48 3.3.3. Effect of postharvest handling........................... 50 3.3.4. Postharvest physiology of red ginger senescence........................................................... 54 3.4. Summary.............................................................................. 65 Chapter 4. Hot water and Red Ginger Vase Life.................................. 84 4.1. Introduction......................................................................... 84 4.2. Materials and methods........................................................ 85 4.2.1. Plant material s..................................................... 85 4.2.2. Hot water treatments........................................... 8 6 4.2.3. Preconditioning treatments................................ 87 4.2.4. Preharvest factors on heat sensitivity............... 87 4.3. Results and discussion........................................................ 8 8 4.3.1 . Observation on heat damage symptoms 8 8 4.3.2. Hot water treatments........................................... 8 8 4.3.3. Threshold for hot water treatments.................... 89 4.3 .4. Preconditioning treatment and intervening period.................................................................. 90 4.3.5. Preharvest factors on heat sensitivity................ 92 4.4. Summary.............................................................................. 94 Vll Chapter 5. Effect of Hot water on Postharvest Physiology and geotropic Response.............................................................. 109 5.1. Introduction......................................................................... 109 5.2. Materials and methods......................................................
Recommended publications
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Original Research Article Effect of Fertilization on Yield and NPK
    1 Original Research Article 2 Effect of fertilization on yield and NPK contents 3 in red ginger 4 65 7 ABSTRACT 8 Aim: The aim of the research was to evaluate the effect of NPK fertilization on red ginger yield and nutrient content of mature plants. Study design: 16 treatments were defined from N, P and K combinations, with three replications in complete random blocks. The experimental unit was one cluster with stems. Place and Duration of Study: The study was conducted from February 2012 to January 2013 on a 10-years-old commercial plantation. The plantation is located at 18° 17’ 43.49’’ NL and 93° 12’ 28.68’’ WL in Comalcalco, Tabasco, Mexico. Methodology: Each 15 days along a year were recorded variables for the cluster, and for commercial stems and flowers. Then one plant per experimental unit was separated into flower, leaf, stem and rhizome to analyze NPK. With the data, an analysis of variance, means comparison (Tukey, P ≤ 0.05), and Pearson correlation were performed. Results: With the doses of 216-00-00 kg NPK ha-1, the plants developed the largest stem (2.17 cm) and flower (6.33 cm) diameters and the highest dry commercial (28.89 g) and total (199.3 g) biomass. The highest fresh weight of the non-commercial biomass (383.2 g) was found in plants fertilized with 322-04-90, but this value was statistically equal to that obtained with the doses 216-00-00 (335.81 g). The NPK content found in red ginger leaf, stem, flower and rhizome satisfied the requirements established for P, but not for N and K.
    [Show full text]
  • Red Palm Mite, Raoiella Indica Hirst (Arachnida: Acari: Tenuipalpidae)1 Marjorie A
    EENY-397 Red Palm Mite, Raoiella indica Hirst (Arachnida: Acari: Tenuipalpidae)1 Marjorie A. Hoy, Jorge Peña, and Ru Nguyen2 Introduction Description and Life Cycle The red palm mite, Raoiella indica Hirst, a pest of several Mites in the family Tenuipalpidae are commonly called important ornamental and fruit-producing palm species, “false spider mites” and are all plant feeders. However, has invaded the Western Hemisphere and is in the process only a few species of tenuipalpids in a few genera are of of colonizing islands in the Caribbean, as well as other areas economic importance. The tenuipalpids have stylet-like on the mainland. mouthparts (a stylophore) similar to that of spider mites (Tetranychidae). The mouthparts are long, U-shaped, with Distribution whiplike chelicerae that are used for piercing plant tissues. Tenuipalpids feed by inserting their chelicerae into plant Until recently, the red palm mite was found in India, Egypt, tissue and removing the cell contents. These mites are small Israel, Mauritius, Reunion, Sudan, Iran, Oman, Pakistan, and flat and usually feed on the under surface of leaves. and the United Arab Emirates. However, in 2004, this pest They are slow moving and do not produce silk, as do many was detected in Martinique, Dominica, Guadeloupe, St. tetranychid (spider mite) species. Martin, Saint Lucia, Trinidad, and Tobago in the Caribbean. In November 2006, this pest was found in Puerto Rico. Adults: Females of Raoiella indica average 245 microns (0.01 inches) long and 182 microns (0.007 inches) wide, are In 2007, the red palm mite was discovered in Florida. As of oval and reddish in color.
    [Show full text]
  • A Dissertation Submitted to the Graduate Division of the University of Hawai'i in Partial Fulfillment of the Requirements for the Degree Of
    FLOWERING IN HELICONIA ROSTRATA RUIZ & PA VON A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HORTICULTURE DECEMBER 2000 BY Norberto Maciel Dissertation Committee: Richard A. Criley, Chairperson Kent D. Kobayashi Robert Pauli Willian S. Sakai David Webb IN MEMORIAM Antonio Oliveira De Sousa (My Father) Because pursuing this goal I did not share his last moments 111 ACKNOWLEDGMENTS I would like to express my sincere gratitude to my chairperson. Dr. Richard A. Criley for inviting me come to the University of Hawaii, his guidance, and understanding. I very much appreciate my other committee members Dr. Kent D. Kobayashi, Dr. Robert Pauli, Dr. William S. Sakai, and Dr. David D. Webb for their assistance and suggestions. Thanks to: Dr. Osamu Kawabata for the suggestions in the statistical analysis; Dr. David D. Webb and Dr. Adelheid Kuehnle for the help with equipment and chemicals; and Mr Bob Hirano and the Lyon Arboretum for providing material of Heliconia rostrata used in one of the experiments. My special thanks to Mr Ronald Matsuda and Craig Okasaki of the Magoon facility for the great help. I want to express my gratitude to faculty, staff and colleagues in the Department of Horticulture for sharing with me their skills, help, and friendship. I will never forget the help and kindness of the friends that I meet in Hawaii, especially for the scholarly help from Derrick Agboka, Renee and Adrian Ares, Douglas Gaskill, Michael Melzer, Javier Mendez, Monica Mejia, Teresa Restom and Mario Serracin.
    [Show full text]
  • Red Palm Mite)
    Crop Protection Compendium Datasheet report for Raoiella indica (red palm mite) Top of page Pictures Picture Title Caption Copyright Adult The red palm mite (Raoiella indica), an invasive species in the Caribbean, may threaten USDA- mite several important palms found in the southern USA. (Original magnified approx. 300x.) ARS Photo by Eric Erbe; Digital colourization by Chris Pooley. Colony Colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Colony Close-up of a colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Top of page Identity Preferred Scientific Name Raoiella indica Hirst (1924) Preferred Common Name red palm mite International Common Names English: coconut red mite; frond crimson mite; leaflet false spider mite; red date palm mite; scarlet mite EPPO code RAOIIN (Raoiella indica) Top of page Taxonomic Tree Domain: Eukaryota Kingdom: Metazoa Phylum: Arthropoda Subphylum: Chelicerata Class: Arachnida Subclass: Acari Superorder: Acariformes Suborder: Prostigmata Family: Tenuipalpidae Genus: Raoiella Species: Raoiella indica / Top of page Notes on Taxonomy and Nomenclature R. indica was first described in the district of Coimbatore (India) by Hirst in 1924 on coconut leaflets [Cocos nucifera]. A comprehensive taxonomic review of the genus and species was carried out by Mesa et al. (2009), which lists all suspected junior synonyms of R. indica, including Raoiella camur (Chaudhri and Akbar), Raoiella empedos (Chaudhri and Akbar), Raoiella obelias (Hasan and Akbar), Raoiella pandanae (Mohanasundaram), Raoiella phoenica (Meyer) and Raoiella rahii (Akbar and Chaudhri). The review also highlighted synonymy with Rarosiella cocosae found on coconut in the Philippines.
    [Show full text]
  • Origin Inspection Programs (Food and Agricultural Code, Section 6404)
    CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE 110.1 PLANT QUARANTINE MANUAL 5 -01-12 Origin Inspection Programs (Food and Agricultural Code, Section 6404) FLORIDA No Approved Nurseries 110.2 CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE 10-07-03 PLANT QUARANTINE MANUAL CUT FLOWERS INSPECTED AT ORIGIN MAY BE RELEASED The release of plant material without inspection is limited to the following types when from an approved nursery. This approval does not preclude inspection and sampling and/or testing at the discretion of the destination California Agricultural Commissioner, and rejection is required as a consequence of inspection and/or test(s). (Section 6404, Food and Agricultural Code). Hawaii Approved Nurseries, Certificate Number, and Commodities Asia Pacific Flowers, Inc., Hilo, Hawaii (HIOI-HO104) Dendrobium spp. (orchids and leis), Oncidium spp. (orchids). Big Island Floral, Pahoa, Hawaii (HIOI-O0026) No Longer A Participant. Floral Resources, Inc., Hilo, Hawaii (HIOI-H0043) Anthurium spp., Cordyline terminalis (red & green varigated ti). Goble’s Flower Farm, Kula, Hawaii (HIOI-M0076) No Longer A Participant. Gordon’s Nursery, Haleiwa, Hawaii (HIOI-00171) Dendrobium spp. (orchids), Oncidium spp. (orchids), Rumohra (Polystichum) adiantiformis (leather leaf fern from California). Green Point Nurseries, Inc., Hilo, Hawaii (HIOI-HOOO7) Anthurim spp., Cordyline terminalis (green, red, varigated ti). Green Valley Tropical, Punaluu, Hawaii (HIOI-O0136) Alpinia purpurata (red, pink ginger), Etlingera elatior (torch ginger), Zingiber spectabile (shampoo ginger), Costas pulverulentus, C. stenophyllus,Calathea crotalifera, Strelitzia reginae, Heliconia caribaea, H. bihai, H. stricta, H. orthotricha, H. bourgeana, H. indica, H. psittacorum, H. aurentiaca, H. latispatha, H. rostrata, H. pendula, H. chartacea, H. collinsiana, Anthurium andraeanum , Dendrobium spp.
    [Show full text]
  • Infestation of Raoiella Indica Hirst (Trombidiformes: Tenuipalpidae) on Host Plants of High Socio-Economic Importance for Tropical America
    Infestation of Raoiella indica Hirst (Trombidiformes: Tenuipalpidae) on Host Plants of High Socio-Economic Importance for Tropical America G Otero-Colina, R González-Gómez, L Martínez-Bolaños, L G Otero-Prevost, J A López-Buenfil & R M Escobedo- Graciamedrano Neotropical Entomology ISSN 1519-566X Neotrop Entomol DOI 10.1007/s13744-016-0368-z 1 23 Your article is protected by copyright and all rights are held exclusively by Sociedade Entomológica do Brasil. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Neotrop Entomol DOI 10.1007/s13744-016-0368-z PEST MANAGEMENT Infestation of Raoiella indica Hirst (Trombidiformes: Tenuipalpidae) on Host Plants of High Socio-Economic Importance for Tropical America 1 2 3 4 5 GOTERO-COLINA ,RGONZÁLEZ-GÓMEZ ,LMARTÍNEZ-BOLAÑOS ,LGOTERO-PREVOST ,JALÓPEZ-BUENFIL , 6 RM ESCOBEDO-GRACIAMEDRANO 1Programa de Entomología y Acarología, Colegio de Postgraduados, Texcoco, Estado de Mexico, Mexico 2CONACYT
    [Show full text]
  • Guide to Theecological Systemsof Puerto Rico
    United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299.
    [Show full text]
  • 41 RESUMEN Las Etapas Fenológicas En Las Heliconias Se Presentan De
    FENOLOGÍA DE HELICONIA (Heliconia sp ) EN CONDICIONES AGROECOLÓGICAS DE RAMAL DE ASPUZANA-SAN MARTIN-PERÚ Phenology of heliconia (Heliconia sp ) in agroecological conditions in ramal de Aspuzana-San Martin-Peru Huaranga- Herrera, Gloria Glorinda E.P. Agronomía – UNHEVAL – Huánuco. Perú email: [email protected]. RESUMEN Las etapas fenológicas en las Heliconias se presentan de manera diferente en cada zona de vida. La presente investigación se realizó en la localidad de Ramal de Aspuzana – San Martín Perú; se evaluó los estados de desarrollo de la fase vegetativa y cuantificó el tiempo trascurrido para el inicio de la fase floral de cinco especies: Heliconia wagneriana, Heliconia stricta, Heliconia rostrata, Heliconia bihai y Heliconia ortotricha. De ellas Heliconia wagneriana se comportó como la más precoz con 232,66 días en lo que respecta a la fase vegetativa y siendo la más tardía Heliconia rostrata con 444, días. Así mismo el tiempo transcurrido para el inicio de la fase floral en las cinco especies de Heliconia fue de 424,17 días para Heliconia rostrata; 245,83 para Heliconia stricta; 241,33 para Heliconia bihai; 234,33 para Heliconia ortotricha y 215 días para Heliconia wagneriana. Palabras clave: fenología, fase floral, fase vegetativa, Heliconia, precoz, tardía. ABSTRACT The phenological stages at Heliconias are presented differently in each area of life. This research was conducted in the city of Ramal de Aspuzana - San Martin, Peru ; assessed the developmental stages of the vegetative phase and the elapsed time for the start of the floral stage five species were quantified: Heliconia wagneriana, Heliconia stricta, Heliconia rostrata, Heliconia bihai and Heliconia ortotricha.
    [Show full text]
  • Peningkatan Pertumbuhan Dan Mutu Alpinia Purpurata Melalui Pupuk P Dan K J
    Utami, P.K. et al.: Peningkatan pertumbuhan dan mutu Alpinia purpurata melalui pupuk P dan K J. Hort. 16(4):307-313, 2006 Peningkatan Pertumbuhan dan Mutu Alpinia purpurata melalui Pupuk P dan K Utami, P.K., R. Tedjasarwana, dan D. Herlina Balai Penelitian Tanaman Hias Jl. Raya Ciherang, Sindanglaya, Cianjur 43253 Naskah diterima tanggal 17 Juli 2006 dan disetujui untuk diterbitkan tanggal 11 November 2006 ABSTRAK. Alpinia purpurata merupakan salah satu komoditas tanaman hias tropis yang termasuk baru dari famili Zingiberaceae. Tujuan penelitian ini adalah mengetahui pengaruh pupuk P dan K dalam memacu pertumbuhan vegetatif dan generatif A. purpurata. Penelitian dilaksanakan di rumah sere KP. Segunung, Balai Penelitian Tana- man Hias mulai bulan September 2004 sampai dengan Agustus 2005. Rancangan percobaan menggunakan acak kelompok pola faktorial dengan 2 faktor dan 3 ulangan. Pemupukan P (0, 36, 72) kg P2O5/ha) sebagai faktor pertama dan pemupukan K (0, 60, 120, 180) kg K2O/ha sebagai faktor kedua. Hasil penelitian menunjukkan bahwa tidak ada interaksi antara pemberian pupuk P dan K terhadap pertumbuhan tanaman A. purpurata. Namun pemberian pupuk K (60 kg K2O/ha) meningkatkan produksi bunga/plot tertinggi (27,33 tangkai) pada bulan Februari 2005 demikian pula K 120 kg K2O/ha) nyata meningkatkan diameter bunga mekar tertinggi (3,97 cm). Sedangkan pemberian K nyata meningkatkan panjang daun (25,30 cm) dan diameter bunga mekar (3,97 cm). Katakunci: Alpinia purpurata; Pupuk P; Pupuk K; Pertumbuhan; Kualitas bunga. ABSTRACT. Utami, 3.K., R. Tedjasarwana, and D. Herlina. 2006. Growth and fiower quality improvement of A. purpurata through fertilization application of phosphate and potassium.
    [Show full text]
  • The Ecology of Raoiella Indica (Hirst: Tenuipalpidae) In
    The ecology of Raoiella indica (Hirst) (Acari:Tenuipalpidae) in India and Trinidad The ecology of Raoiella indica (Hirst: Tenuipalpidae) in India and Trinidad: Host plant relations and predator: prey relationships Arabella Bryony K. Taylor (CID: 00459677) PhD Thesis June 2017 Imperial College London Department of Life Sciences CABI Egham, UK 1 The ecology of Raoiella indica (Hirst) (Acari:Tenuipalpidae) in India and Trinidad Copyright declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. I certify that the contents of this thesis are my own work and the works by other authors are appropriately referenced. Some of the work described in chapter 4 of this thesis has been previously published in Taylor et al. (2011). 2 The ecology of Raoiella indica (Hirst) (Acari:Tenuipalpidae) in India and Trinidad Abstract Red Palm Mite, Raoiella indica (Acari:Tenuipalpidae) (RPM), an Old World species first recorded in India (1924), was reported historically on a small number of host species of Arecaceae (palms) throughout Asia and the Middle East. In 2004, the mite invaded the New World resulting in high population densities and apparent new host associations- including Musa spp. (bananas and plantains). Subsequently, RPM has become widely established in the tropical Americas.
    [Show full text]
  • Growth and Flowering of Heliconia Stricta Huber and H
    GROWTH AND FLOWERING OF HELICONIA STRICTA HUBER AND H. ANGUSTA VELL. A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN HORTICULTURE DECEMBER 1986 By Setapong Lekawatana Thesis Committee; Richard A. Criley, Chairman Fred D. Rauch William S. Sakai ii We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and Quality as a thesis for the degree of Master of Science in Horticulture. Ill ABSTRACT Plants of Heliconia stricta Huber 'Dwarf Jamaican' at different growth stages (1, 2, and 3 leaves per pseudostem) were treated with three different night temperature (15°, 20° and 25°C) under 8 hr daylength for U weeks. Pseudostems with 3 initial leaves and grown at 15°C night temperature had higher inflorescence production than plants with 1 or 2 initial leaves and grown at higher night temperature. The inflorescence production peaked at 19 weeks after the start of short daylength. Heliconia stricta 'Dwarf Jamaican' Huber, sympodial units in short (9 hr photoperiod) and long (approximately 16 hr photoperiod) daylengths were examined 1 year after planting from a single rhizome piece. An average of 4. generations were produced. The success and failure of sympodial units, their length and their relative angles were studied. The rhizome branching pattern might be hexagonal system. In the first generation, 4-2.5% of pseudostems grown under shortdaylength flowered while none of pseudostems grown under long daylength flowered. Pseudostem and inflorescence length were significantly longer in LD than in SD and increased with successive generations.
    [Show full text]