Optical Design of an LED Motorcycle Headlamp with Compound Reflectors and a Toric Lens

Total Page:16

File Type:pdf, Size:1020Kb

Optical Design of an LED Motorcycle Headlamp with Compound Reflectors and a Toric Lens E102 Vol. 54, No. 28 / October 1 2015 / Applied Optics Research Article Optical design of an LED motorcycle headlamp with compound reflectors and a toric lens 1 2, 1 1 WEN-SHING SUN, CHUEN-LIN TIEN, *WEI-CHEN LO, AND PU-YI CHU 1Department of Optics and Photonics, National Central University, Chung-Li 32001, Taiwan 2Department of Electrical Engineering, Feng Chia University, Taichung 40724, Taiwan *Corresponding author: [email protected] Received 31 March 2015; revised 16 July 2015; accepted 16 July 2015; posted 28 July 2015 (Doc. ID 236954); published 21 August 2015 An optical design for a new white LED motorcycle headlamp is presented. The motorcycle headlamp designed in this study comprises a white LED module, an elliptical reflector, a parabolic reflector, and a toric lens. The light emitted from the white LED module is located at the first focal point of the elliptical reflector and focuses on the second focal point. The second focal point of the elliptical reflector and the focal point of the parabolic reflector are confocal. We use nonsequential rays to improve the optical efficiency of the compound reflectors. The toric spherical lens allows the device to meet the Economic Commission of Europe, regulation no. 113 (ECE R113). Furthermore, good uniformity is obtained by using aspherical surface optimization of the same toric lens. The reflectivity of the reflector is 95%, and the transmittance of each lens surface is 98%. The average deviation of the high beam is 14.17%, and the optical efficiency is 66.45%. © 2015 Optical Society of America OCIS codes: (080.4228) Nonspherical mirror surfaces; (080.4295) Nonimaging optical systems; (220.2945) Illumination design; (220.4298) Nonimaging optics. http://dx.doi.org/10.1364/AO.54.00E102 1. INTRODUCTION and the other a paraboloid collimating reflector, an off-axis A motorcycle headlamp usually consists of low- and high-beam paraboloid reflector, a baffle, and an imaging lens. The system efficiency of the composite low-beam module reached 58% [8]. lights. Various regulations include certain restrictions for illu- et al. mination requirements. In recent years, with the development Hsieh proposed an LED vehicle projector headlamp sys- of nonimaging optics, some LED headlamp optical design tem, which contained several LED headlamp modules, each of methods based on nonimaging optics have been suggested. which included four components: focused LEDs, asymmetric Herkommer [1] reported on free-form systems as applied to metal-based plates, free-form surfaces, and condenser lenses [9]. imaging and illumination systems. Cvetkovic et al. created a A number of researchers have studied light source modeling to et al. headlamp with one refractive and one reflective free-form sur- simulate various lighting systems. Cassarly measured the face, which produced light with good uniformity and high in- spatial luminance distributions over a range of view angles, tensity [2]. A vehicle headlamp design based on fiber optics and which is an important consideration for lamps in elliptical re- et al. LEDs has also been presented, the intention being to reduce flectors and LEDs [10]. Jenkins rendered the distributive lamp size and heat-dissipation problems. An optical efficiency light for a low-beam headlight design. The challenge here was of 49.4% was obtained for the low beam design [3]. In 2011, to design an efficient lamp package that angularly distributed an LED-based motorcycle headlamp with two horizontal reflec- the flux to meet legal and customer requirements [11]. Zerhau- tors and a light pipe was designed, which had an optical effi- Dreihoefer et al. presented the light source modeling for auto- ciency of about 80% [4]. Chen et al. presented a high-efficiency motive lighting devices and, in the process of calculating and LED headlamp free-form lens design. The free-form lens was simulating automotive lighting devices, used different light separated into low- and high-beam lenses, and the optical effi- source modeling techniques [12]. In this work, we use nonse- ciencies of both lenses were more than 88% [5]. Zhu et al. used quential (NS) rays to improve the optical efficiency of the com- 48 LEDs to build an array with a rectangular beam region pound reflectors. By using a toric lens, we could meet the divided into multiple blocks, each illuminated by an LED. Economic Commission of Europe, regulation no. 113 (ECE In theory, the optical efficiency of the device would exceed R113) and obtain good uniformity. The optical simulation 85% [6]. In 2013, Ge et al. proposed two low-beam systems showed the efficiency of the high beam to be 66.45%, average for an LED-based headlamp architecture, one of which com- deviation 14.17%; the optical efficiency of the low beam was prised an elliptical reflector, a baffle, and a faceted reflector [7], 66.41%, and the average deviation was 13.96%. 1559-128X/15/28E102-07$15/0$15.00 © 2015 Optical Society of America Research Article Vol. 54, No. 28 / October 1 2015 / Applied Optics E103 2. DESIGN METHOD A. Requirements for a High Beam The motorcycle headlamp was designed to conform to ECE R113. The illumination requirements for a high beam projected onto a measuring screen 25 m away from the head- lamp are illustrated in Fig. 1. The irradiated area is 4500 mm × 1000 mm. The height of the HV point is equal to the height of the motorcycle headlamp. The illumination in region B should be greater than 3 lux, while that in region A should be greater than 12 lux. Fig. 2. Requirements for low beam light irradiating the measuring B. Requirements for a Low Beam screen. The illumination requirements for a low beam projected on a measuring screen are shown in Fig. 2. Point HV indicates the height between the headlamp and the road. Point 50 V is lo- cated 375 mm below point HV. The illumination in region A should be greater than 1.5 lux, and, to avoid glare, the illumi- nation in region B should be less than 0.7 lux. The illumination at point 50 V should be greater than 3 lux. There should be a clear cut-off line below the H-H plane of 250 mm. C. Candle Power Distribution Curve A candle power distribution curve shows the normalized inten- sity of a light source at each degree of the chip emitting surface as shown in Fig. 3. The normal direction is at 0 deg, and the radial direction is the normalized intensity. The optical effi- ciency can be calculated by analyzing the candle power distri- bution curve. The angular distribution of the light emission of Fig. 3. the white LED is from −90° to 90°. The yellow region is the Optical efficiency is 78.48%, and the light distribution of the white LED is from −60° to 60°. design region having a light distribution from −60° to 60°, so the optical efficiency of the design requirement is more than 78.48%. 3. MOTORCYCLE HEADLAMP DESIGN D. Average Deviation A. Spread Angles of the Light Source Projected onto The average deviation is calculated from the ratio of the stan- the Measuring Screen dard deviation to the average as given by Eq. (1). By computing The distance from the headlamp to the measuring screen the average deviation for the entire measuring screen, we could is 25 m. The size of the measuring screen is 4500 mm × completely determine the uniformity of the light pattern on the 1000 mm. The relationship of the spread angle of the light measuring screen. The smaller the average deviation, the better source on the measuring screen is shown in Fig. 4. The spread the uniformity: angle is 10.28° in the horizontal direction and 2.29° in the qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP 1 N X − X 2 vertical direction, indicating the angles of the light source σ N i1 i ; (1) projected on the measuring screen. Average Deviation X X B. Luminous Flux Calculation X σ N where is the average, is the standard deviation, and is the It is difficult to design the high beam for an irregular illumi- number of sampling points. nation distribution, as shown in Fig. 1. The maximum illumi- nation requirement is 12 lux. In order to simplify the design, consider the high beam illuminating a measuring screen of 4500 mm × 1000 mm to be 12 lux. The total luminous flux is 54 lm. The height is defined by the size of the motorcycle; we set the height of the motorcycle headlamp (HV) to be 750 mm from the road. The design calls for the headlamp to be 25 m from the measuring screen. The height of 1000 mm of projected illumination is 750 mm in the vertical direction over the road and 250 mm below, as shown in Fig. 5. The vertical angle of the high beam is 2.29°, and the minimum distance irradiating the road is 18.76 m. Fig. 1. Illumination requirements for a high beam projected onto a The illumination requirements for the low beam are shown measuring screen in order to meet ECE R113. in Fig. 2. The maximum illumination of the low beam on the E104 Vol. 54, No. 28 / October 1 2015 / Applied Optics Research Article Fig. 7. Picture of the Osram LW-W5SN LED. Fig. 4. Spread angle of the light source projected onto the measur- ing screen. Fig. 5. Lateral view of the high-beam irradiation on the road. Fig. 8. Light distribution curve of Osram LW-W5SN LED. measuring screen is 3 lux in an area 4500 mm × 1000 mm. The total luminous flux needed is 13.5 lm. For the low-beam design, the angle of the high beam is rotated 0.86° downward to lighting would preferably be more than 20 lux.
Recommended publications
  • Energy Feedback Freeform Lenses for Uniform Illumination of Extended Light Source Leds
    Energy feedback freeform lenses for uniform illumination of extended light source LEDs 1 1 2 1 1,* ZONGTAO LI, SHUDONG YU, LIWEI LIN , YONG TANG, XINRUI DING, WEI 1 1 YUAN, BINHAI YU 1 Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, South China University of Technology, Guangzhou 510640, China 2 Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States *Corresponding author: [email protected] Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX Using freeform lenses to construct uniform illumination systems is important in light-emitting diode (LED) devices. In this paper, the energy feedback design is used for freeform lens (EFFL) constructions by solving a set of partial differential equations that describe the mapping relationships between the source and the illumination pattern. The simulation results show that the method can overcome the illumination deviation caused by the extended light source (ELS) problem. Furthermore, a uniformity of 95.6% is obtained for chip-on-board (COB) compact LED devices. As such, prototype LEDs manufactured with the proposed freeform lenses demonstrate significant improvements in luminous efficiency and emission uniformity. © 2016 Optical Society of America OCIS codes: (220.4298) Nonimaging optics; (220.2945) Illumination design; (230.3670) Light-emitting diodes. sources (PLSs). For LED applications, the brightness of these LEDs is 1. Introduction not sufficient. Although a module with multiple sources makes it possible to obtain sufficient luminous flux, Kuo found that such a Solid-state lighting devices, especially light-emitting diodes (LEDs), solution would lead to the “multi-shadow” phenomenon, which causes have gained attention recently as a result of their outstanding features the eyes to feel tired [9].
    [Show full text]
  • Mirrors Or Lenses) Can Produce an Image of the Object by 4.2 Mirrors Redirecting the Light
    Object-Image • A physical object is usually observed by reflected light that diverges from the object. • An optical system (mirrors or lenses) can produce an image of the object by 4.2 Mirrors redirecting the light. • Images – Real Image • Image formation by mirrors – Virtual Image • Plane mirror • Curved mirrors. Real Image Virtual Image Optical System ing diverging erg converging diverging diverging div Object Object real Image Optical System virtual Image Light appears to come from the virtual image but does not Light passes through the real image pass through the virtual image Film at the position of the real image is exposed. Film at the position of the virtual image is not exposed. Each point on the image can be determined Image formed by a plane mirror. by tracing 2 rays from the object. B p q B’ Object Image The virtual image is formed directly behind the object image mirror. Light does not A pass through A’ the image mirror A virtual image is formed by a plane mirror at a distance q behind the mirror. q = -p 1 A mirror reverses front and back Parabolic Mirrors Optic Axis object mirror image mirror The mirror image is different from the object. The z direction is reversed in the mirror image. Parallel rays reflected by a parabolic mirror are focused at a point, called the Focal Point located on the optic axis. Your right hand is the mirror image of your left hand. Parabolic Reflector Spherical mirrors • Spherical mirrors can be used to form images • Spherical mirrors are much easier to fabricate than parabolic mirrors • A spherical mirror is an approximation of a parabolic mirror for small curvatures.
    [Show full text]
  • Roland Winston
    Science of Nonimaging Optics: The Thermodynamic Connection Roland Winston Schools of Natural Science and Engineering, University of California Merced Director, California Advanced Solar Technologies Institute (UC Solar) [email protected] http://ucsolar.org SinBerBEST) annual meeting for 2013. Singapore Keynote Lecture 1:30 – 2:00 January 9, 2013 Solar Energy 2 Applications 3 The Stefan Boltzmann law s T4 is on page 1 of an optics book--- Something interesting is going on ! What is the best efficiency possible? When we pose this question, we are stepping outside the bounds of a particular subject. Questions of this kind are more properly the province of thermodynamics which imposes limits on the possible, like energy conservation and the impossible, like transferring heat from a cold body to a warm body without doing work. And that is why the fusion of the science of light (optics) with the science of heat (thermodynamics), is where much of the excitement is today. During a seminar I gave some ten years ago at the Raman Institute in Bangalore, the distinguished astrophysicist Venkatraman Radhakrishnan famously asked “how come geometrical optics knows the second law of thermodynamics?” This provocative question from C. V. Raman’s son serves to frame our discussion. Nonimaging Optics 5 During a seminar at the Raman Institute (Bangalore) in 2000, Prof. V. Radhakrishnan asked me: How does geometrical optics know the second law of thermodynamics? A few observations suffice to establish the connection. As is well-known, the solar spectrum fits a black body at 5670 K (almost 10,000 degrees Fahrenheit) Now a black body absorbs radiation at all wavelengths, and it follows from thermodynamics that its spectrum (the Planck spectrum1) is uniquely specified by temperature.
    [Show full text]
  • High Collection Nonimaging Optics
    High Collection Nonimaging Optics W. T. WELFORD Optics Section Department of Physics Imperial College of Science, Technology and Medicine University of London London, England R. WINSTON Enrico Fermi Institute and Department of Physics University of Chicago Chicago, Illinois ® ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers San Diego New York Berkeley Boston London Sydney Tokyo Toronto Contents Preface xi Chapter 1 Concentrators and Their Uses 1.1 Concentrating Collectors 1 1.2 Definition of the Concentration Ratio; the Theoretical Maximum 3 1.3 Uses of Concentrators 6 Chapter 2 Some Basic Ideas in Geometrical Optics 2.1 The Concepts of Geometrical Optics 9 2.2 Formulation of the Ray-Tracing Procedure 10 2.3 Elementary Properties of Image-Forming Optical Systems 14 2.4 Aberrations in Image-Forming Optical Systems 16 2.5 The Effect of Aberrations in an Image-Forming System on the Concentration Ratio 18 2.6 The Optical Path Length and Fermat's Principle 20 2.7 The Generalized Etendue or Lagrange Invariant and the Phase Space Concept 22 2.8 The Skew Invariant 28 2.9 Different Versions of the Concentration Ratio 28 Chapter 3 Some Designs of Image-Forming Concentrators 3.1 Introduction 31 3.2 Some General Properties of Ideal Image-Forming Concentrators 31 V/ Contents 3.3 Can an Ideal Image-Forming Concentrator Be Designed? 39 3.4 Media with Continuously Varying Refractive Index 44 3.5 Another System of Spherical Symmetry 46 3.6 Image-Forming Mirror Systems 48 3.7 Conclusions on Image-Forming Concentrators 50 Chapter 4 Nonimaging
    [Show full text]
  • RX and RXI® for Optical Wireless Communications
    Ultra compact optics for optical wireless communications Juan C. Miñano, Pablo Benítez, Rubén Mohedano, José L. Alvarez, Maikel Hernández, Juan C. González*, Kazutoshi Hirohashi**, Satoru Toguchi** IES, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain *Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain **HITS (High Speed Infrared Transmission Systems) Laboratories, Inc., 2-16-16 Chuourinkan, Yamato, 242-0007 Japan ABSTRACT Advanced optical design methods [J.C. Miñano, J.C. González, “New method of design of nonimaging concentrators”, Appl. Opt. 31, 1992, pp.3051-3060] using the keys of nonimaging optics lead to some ultra compact designs which combine the concentrating (or collimating) capabilities of conventional long focal length systems with a high collection efficiency [J.C. Miñano, J.C. González, P. Benítez, “A high gain, compact, nonimaging concentrator: the RXI”, Appl. Opt. 34, 1995, pp. 7850-7856 ][ J.C. Miñano, P. Benítez, J.C. González, “RX: a nonimaging concentrator”, Appl. Opt. 34, 1995, pp. 2226- 2235]. One of those designs is the so-called RXI. Its aspect ratio (thickness/aperture diameter) is less than 1/3. Used as a receiver, i.e. placing a photodiode at the proper position, it gets an irradiance concentration of the 95% of the theoretical thermodynamic limit (this means for example, a concentration of 1600 times with an acceptance angle of ±2.14 degrees). When used as an emitter (replacing the aforementioned photodiode by an LED, for instance), similar intensity gains may be obtained within an angle cone almost as wide as the 95% of the thermodynamic limit. In a real device these irradiance (and intensity) gains are reduced by the optical efficiency.
    [Show full text]
  • Optics Microstructured Optics SMS Design Methods Plastic Optics
    www.led-professional.com ISSN 1993-890X Review LpR The technology of tomorrow for general lighting applications. Sept/Oct 2008 | Issue 09 Optics Microstructured Optics SMS Design Methods Plastic Optics LED Driver Circuits Display Report Copyright © 2008 Luger Research & LED-professional. All rights reserved. There are over 20 billion light fixtures using incandescent, halogen, Design of LED or fluorescent lamps worldwide. Many of these fixtures are used for directional light applications but are based on lamps that put Optics out light in all directions. The United States Department of Energy (DOE) states that recessed downlights are the most common installed luminaire type in new residential construction. In addition, the DOE reports that downlights using non-reflector lamps are typically only 50% efficient, meaning half the light produced by the lamp is wasted inside the fixture. In contrast, lighting-class LEDs offer efficient, directional light that lasts at least 50,000 hours. Indoor luminaires designed to take advantage of all the benefits of lighting-class LEDs can exceed the efficacy of any incandescent and halogen luminaire. Furthermore, these LEDs match the performance of even the best CFL (compact fluorescent) recessed downlights, while providing a lifetime five to fifty times longer before requiring maintenance. Lastly, this class of LEDs reduces the environmental impact of light (i.e. no mercury, less power-plant pollution, and less landfill waste). Classical LED optics is composed of primary a optics for collimation and a secondary optics, which produces the required irradiance distribution. Efficient elements for primary optics are concentrators, either using total internal reflection or combined refractive/reflective versions.
    [Show full text]
  • On the Burning Mirrors of Archimedes, with Some Propositions Relating to the Concentration of Light Produced by Reectors of Different Forms
    Transactions of the Royal Society of Edinburgh http://journals.cambridge.org/TRE Additional services for Transactions of the Royal Society of Edinburgh: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here IV.—On the Burning Mirrors of Archimedes, with some Propositions relating to the concentration of Light produced by Reectors of different forms John Scott Transactions of the Royal Society of Edinburgh / Volume 25 / Issue 01 / January 1868, pp 123 - 149 DOI: 10.1017/S0080456800028143, Published online: 17 January 2013 Link to this article: http://journals.cambridge.org/abstract_S0080456800028143 How to cite this article: John Scott (1868). IV.—On the Burning Mirrors of Archimedes, with some Propositions relating to the concentration of Light produced by Reectors of different forms. Transactions of the Royal Society of Edinburgh, 25, pp 123-149 doi:10.1017/S0080456800028143 Request Permissions : Click here Downloaded from http://journals.cambridge.org/TRE, IP address: 129.93.16.3 on 13 Apr 2015 ( 123 ) IV.—On the Burning Mirrors of Archimedes, with some Propositions relating to the concentration of Light produced by Reflectors of different forms. By JOHN SCOTT, Esq., Tain. (Plate III.) (Bead 6th January 1868). As the reputed fact of ARCHIMEDES having burned the Roman ships engaged in the siege of Syracuse, by concentrating on them the solar rays, has not only been doubted but disbelieved by some of the most eminent scientific men, I shall briefly give the evidence on both sides. The burning of the ships of MARCELLUS is mentioned by most of the ancient writers who refer to the machines which ARCHIMEDES employed in the defence of his native city, and their statements have been repeated by succeeding authors, without any doubts having been expressed until comparatively recent times.
    [Show full text]
  • Caliper Application Summary Report 20: LED PAR38 Lamps
    Application Summary Report 20: LED PAR38 Lamps November 2012 Addendum September 2013 Prepared for: Solid-State Lighting Program Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Pacific Northwest National Laboratory 1 Preface The U.S. Department of Energy (DOE) CALiPER program has been purchasing and testing general illumination solid-state lighting (SSL) products since 2006. CALiPER relies on standardized photometric testing (following the 1 Illuminating Engineering Society of North America [IES] approved method LM-79-08 ) conducted by accredited, 2 independent laboratories. Results from CALiPER testing are available to the public via detailed reports for each product or through summary reports, which assemble data from several product tests and provide comparative 3 analyses. It is not possible for CALiPER to test every SSL product on the market, especially given the rapidly growing variety of products and changing performance characteristics. Starting in 2012, each CALiPER summary report focuses on a single product type or application. Products are selected with the intent of capturing the current state of the market—a cross section ranging from expected low to high performing products with the bulk characterizing the average of the range. The selection does not represent a statistical sample of all available 4 products. To provide further context, CALiPER test results may be compared to data from LED Lighting Facts, 5 ™ ENERGY STAR® performance criteria, technical requirements for the DesignLights Consortium (DLC) Qualified 6 Products List (QPL), or other established benchmarks. CALiPER also tries to purchase conventional (i.e., non- SSL) products for comparison, but because the primary focus is SSL, the program can only test a limited number.
    [Show full text]
  • A Review of Nonimaging Solar Concentrators for Stationary and Passive Tracking Applications ⁎ Srikanth Madala , Robert F
    Renewable and Sustainable Energy Reviews (xxxx) xxxx–xxxx Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: www.elsevier.com/locate/rser A review of nonimaging solar concentrators for stationary and passive tracking applications ⁎ Srikanth Madala , Robert F. Boehm Center for Energy Research, Department of Mechanical Engineering, University of Nevada, Las Vegas 89154-4027, United States ARTICLE INFO ABSTRACT Keywords: The solar energy research community has realized the redundancy of image-forming while collecting/ Solar concentrators concentrating solar energy with the discovery of the nonimaging type radiation collection mechanism in Nonimaging optics 1965. Since then, various nonimaging concentration mechanisms have proven their superior collection CPC efficiency over their imaging counter-parts. The feasibility of using nonimaging concentrators successfully for Compound parabolic concentrator stationary applications has rekindled interest in them. The economic benefits are appealing owing to the V-trough elimination of tracking costs (installation, operation & maintenance and auxiliary energy). This paper is an Polygonal trough Concentration ratio exhaustive review of the available nonimaging concentrating mechanisms with stationary applications in mind. Non-tracking solar concentrators This paper also explores the idea of coupling nonimaging concentrators with passive solar tracking mechanism. Stationary solar concentrators CHC CEC Compound hyperbolic concentrators Compound elliptical concentrators Nonimaging Fresnel lenses Dielectric compound parabolic concentrators DCPC Trumpet-shaped concentrators 1. Introduction traditional imaging techniques of concentration fall short of the thermodynamic limit of maximum attainable concentration at least Amongst the total solar electric power worldwide today (as per by a factor of four due to severe off-axis aberration and coma causing 2015 data) [1], solar photovoltaics (PV) contribute about 227 GW, and image blurring and broadening.
    [Show full text]
  • The Cassegrain Antenna
    The Cassegrain Antenna Principle of a Cassegrain telescope: a convex secondary reflector is located at a concave primary reflector. Figure 1: Principle of a Cassegrain telescope Sieur Guillaume Cassegrain was a French sculptor who invented a form of reflecting telescope. A Cassegrain telescope consists of primary and secondary reflecting mirrors. In a traditional reflecting telescope, light is reflected from the primary mirror up to the eye-piece and out the side the telescope body. In a Cassegrain telescope, there is a hole in the primary mirror. Light enters through the aperture to the primary mirror and is reflected back up to the secondary mirror. The viewer then peers through the hole in the primary reflecting mirror to see the image. A Cassegray antenna used in a fire-control radar. Figure 2: A Cassegray antenna used in a fire-control radar. In telecommunication and radar use, a Cassegrain antenna is an antenna in which the feed radiator is mounted at or near the surface of a concave main reflector and is aimed at a convex subreflector. Both reflectors have a common focal point. Energy from the feed unit (a feed horn mostly) illuminates the secondary reflector, which reflects it back to the main reflector, which then forms the desired forward beam. Advantages Disadvantage: The subreflectors of a Cassegrain type antenna are fixed by bars. These bars The feed radiator is more easily and the secondary reflector constitute supported and the antenna is an obstruction for the rays coming geometrically compact from the primary reflector in the most effective direction. It provides minimum losses as the receiver can be mounted directly near the horn.
    [Show full text]
  • A Brief Overview of Non-Imaging Optics
    2132-40 Winter College on Optics and Energy 8 - 19 February 2010 Overview of non-imaging optics V. Lakshminarayanan University of Waterloo Waterloo CANADA A Brief Overview of Non- Imaging Optics V. Lakshminarayanan University of Waterloo Waterloo, Canada What is Non-Imaging Optics? • Is the branch of optics which deals with transfer of light between a source and an object. • Techniques do not form an optimized (non-aberrated) image of source. • Optimized for radiative transfer from source to target Some examples • Optical light guides, non-imaging reflectors, nonimaging lenses, etc. • Practical examples: auto headlamps, LCD backlights, illuminated instrument panel displays, fiber optics illumination devices, projection display systems, concentration of sunlight for solar power, illumination by solar pipes, etc. Two major components of a non- imaging optics system •1. Concentration – maximize the amount of energy that “falls” on a target –ie., as in solar power •2. Illumination – control the distribution of light, i.e.,it is evenly spread of some areas and completely blocked in other areas - i.e., automobile lamps • Variables: Total radiant flux, angular distribution of optical radiation, spatial distribution of optical radiation • Collection efficiency An Optimized non-imaging optics example • THE flux at the surface of the Sun, 6.3 kW cm-2, falls off with the square of distance to a value of 137 mW cm-2 above the Earth's atmosphere, or typically 80–100 mW cm-2 at the ground. In principle, the second law of thermodynamics permits an optical device to concentrate the solar flux to obtain temperatures at the Earth's surface not exceeding the Sun's surface temperature.
    [Show full text]
  • Optical Design of a Solar Parabolic Thermal Concentrator Based On
    Optical Design of a Solar Parabolic Thermal Concentrator Based on Trapezoidal Reflective Petals Saša Pavlović*, Darko Vasiljević+, Velimir Stefanović* *Faculty of Mechanical Engineering University of Nis, Thermal Engineering Department *Aleksandra Medvedeva 14, 18000 Niš, Serbia, [email protected], [email protected] +Institute of Physics, Photonics Center Pregravica 118 , 11080 Belgrade, Serbia [email protected] Abstract— In this paper detailed optical of the solar parabolic tracing software for evaluation of the optical performance of a dish concentrator is presented. The system has diameter D = static 3-D Elliptical Hyperboloid Concentrator (EHC). 2800 mm and focal length f = 1400mm. The parabolic dish of the Optimization of the concentrator profile and geometry is solar system consists from 12 curvilinear trapezoidal reflective carried out to improve the overall performance of system. petals. The total flux on receiver and the distribution of Kashika and Reddy [8] used satellite dish of 2.405 m in irradiance for absorbed flux on center and periphery receiver are given. The goal of this paper is to present optical design of a diameter with aluminium frame as a reflector to reduce the low-tech solar concentrator that can be used as a potentially low- weight of the structure and cost of the solar system. In their cost tool for laboratory-scale research on the medium- solar system the average temperature of water vapor was temperature thermal processes, cooling, industrial processes, 3000C, when the absorber was placed at the focal point. Cost polygeneration systems etc. of their system was US$ 950. El Ouederni et al. [9] was testing parabolic concentrator of 2.2 m in diameter with Keywords— Solar parabolic dish concentrator, Optical analysis, reflecting coefficient 0.85.
    [Show full text]