Algae in Aquatic Ecosystems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aquatic Ecosystems
February 19, 2014 Nantahala and Pisgah NFs Assessment Aquatic Ecosystems The overall richness of North Carolina’s aquatic fauna is directly related to the geomorphology of the state, which defines the major drainage divisions and the diversity of habitats found within. There are seventeen major river basins in North Carolina. Five western basins are part of the Interior Basin (IB) and drain to the Mississippi River and the Gulf of Mexico (Hiwassee, Little Tennessee, French Broad, Watauga, and New). Parts of these five river basins are within the Nantahala and Pisgah National Forests (NFs). Twelve central and eastern basins are part of the Atlantic Slope (AS) and flow to the Atlantic Ocean. Of these twelve central and eastern basins, parts of the Savannah, Broad, Catawba, and Yadkin-Pee Dee basins are within the Nantahala and Pisgah NFs. As described later in this report, the Nantahala and Pisgah NFs, for the most part, support higher elevation coldwater streams, and relatively little cool- and warmwater resources. To gain perspective on the importance of aquatic ecosystems on the Nantahala and Pisgah NFs, it is first necessary to understand their value at regional and national scales. The southeastern United States has the highest aquatic species diversity in the entire United States (Burr and Mayden 1992; Williams et al. 1993; Taylor et al. 1996; Warren et al. 2000,), with southeastern fishes comprising 62% of the United States fauna, and nearly 50% of the North American fish fauna (Burr and Mayden 1992). Freshwater mollusk diversity in the southeast is ‘globally unparalleled’, representing 91% of all United States mussel species (Neves et al. -
Aquatic Ecology ______INTRODUCTION
Aquatic Ecology ________________________________________________________________ INTRODUCTION Aquatic Ecology Field Station Aquatics or aquatic ecology is the study of animals and plants in freshwater environments. In addition to the many common aquatic species in this Western New York region, a student of aquatics learns about watersheds, wetlands and the hydrologic cycle. Essential to understanding and appreciating the field of aquatics is a basic knowledge of the physical and chemical properties of water. Water is arguably the most valuable substance on the planet, and is the common name applied to the liquid state of the hydrogen oxygen compound H2O. It covers 70% of the surface of the Earth forming swamps, lakes, rivers, and oceans. Pure water has a blue tint, which may be detected only in layers of considerable depth. It has no taste or odor. Water molecules are strongly attracted to one another through their two hydrogen atoms. At the surface, this attraction produces a tight film over the water (surface tension). A number of organisms live both on the upper and lower sides of this film. 1 Density of water is greatest at 39.2° Fahrenheit (4° Celsius). It becomes less as water warms and, more important, as it cools to freezing at 32° Fahrenheit (0° Celsius), and becomes ice. Ice is a poor heat conductor. Therefore, ice sheets on ponds, lakes and rivers trap heat in the water below. For this reason, only very shallow water bodies never freeze solid. Water is the only substance that occurs at ordinary temperatures in all three states of matter: solid, liquid, and gas. In its solid state, water is ice, and can be found as glaciers, snow, hail, and frost and ice crystals in clouds. -
The Origin of Alternation of Generations in Land Plants
Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular -
Cephaleuros Species, the Plant-Parasitic Green Algae
Plant Disease Aug. 2008 PD-43 Cephaleuros Species, the Plant-Parasitic Green Algae Scot C. Nelson Department of Plant and Environmental Protection Sciences ephaleuros species are filamentous green algae For information on other Cephaleuros species and and parasites of higher plants. In Hawai‘i, at least their diseases in our region, please refer to the technical twoC of horticultural importance are known: Cephaleu- report by Fred Brooks (in References). To see images of ros virescens and Cephaleuros parasiticus. Typically Cephaleuros minimus on noni in American Samoa, visit harmless, generally causing minor diseases character- the Hawai‘i Pest and Disease Image Gallery (www.ctahr. ized by negligible leaf spots, on certain crops in moist hawaii.edu/nelsons/Misc), and click on “noni.” environments these algal diseases can cause economic injury to plant leaves, fruits, and stems. C. virescens is The pathogen the most frequently reported algal pathogen of higher The disease is called algal leaf spot, algal fruit spot, and plants worldwide and has the broadest host range among green scurf; Cephaleuros infections on tea and coffee Cephaleuros species. Frequent rains and warm weather plants have been called “red rust.” These are aerophilic, are favorable conditions for these pathogens. For hosts, filamentous green algae. Although aerophilic and ter- poor plant nutrition, poor soil drainage, and stagnant air restrial, they require a film of water to complete their are predisposing factors to infection by the algae. life cycles. The genus Cephaleuros is a member of the Symptoms and crop damage can vary greatly depend- Trentepohliales and a unique order, Chlorophyta, which ing on the combination of Cephaleuros species, hosts and contains the photosynthetic organisms known as green environments. -
Photosynthesis... Using Algae Wrapped in Jelly Balls
Student Sheet 23 www.saps.org.uk Photosynthesis... using algae wrapped in jelly balls Algae can be considered as one-celled plants, and they usually live in water. You are going to use algae to look at the rate of photosynthesis. The algae are tiny and are difficult to work with directly in the water so the first part of the practical involves ‘immobilising’ the algae. This effectively traps large numbers of algal cells in ‘jelly like’ balls so that we can keep them in one place and not lose them. We use sodium alginate to help make the jelly. Sodium alginate is not harmful to the algae. When these algae are ‘wrapped up’ in the jelly balls they are excellent to use in experiments on photosynthesis. These algal balls are: • cheap to grow and easy to make – you will be able to make hundreds in a very short time • easy to get a standard quantity of plant material because each of the balls is approximately the same volume • easy to keep alive for several weeks so you can keep them for future experiments 1. First you need to obtain a 2. Now you have millions of algal 3. Finally we’re going to make the concentrated suspension of algae. cells in a small volume of liquid. balls… Do this by removing some of the It’s time to mix them into your liquid medium in which they are ‘jelly’. Pour the green mixture through growing in one of two ways. an open-ended syringe into a 2% Pour about 2.5cm3 of jelly (sodium solution of calcium chloride. -
CYANOBACTERIA (BLUE-GREEN ALGAE) BLOOMS When in Doubt, It’S Best to Keep Out!
Cyanobacteria Blooms FAQs CYANOBACTERIA (BLUE-GREEN ALGAE) BLOOMS When in doubt, it’s best to keep out! What are cyanobacteria? Cyanobacteria, also called blue-green algae, are microscopic organisms found naturally in all types of water. These single-celled organisms live in fresh, brackish (combined salt and fresh water), and marine water. These organisms use sunlight to make their own food. In warm, nutrient-rich (high in phosphorus and nitrogen) environments, cyanobacteria can multiply quickly, creating blooms that spread across the water’s surface. The blooms might become visible. How are cyanobacteria blooms formed? Cyanobacteria blooms form when cyanobacteria, which are normally found in the water, start to multiply very quickly. Blooms can form in warm, slow-moving waters that are rich in nutrients from sources such as fertilizer runoff or septic tank overflows. Cyanobacteria blooms need nutrients to survive. The blooms can form at any time, but most often form in late summer or early fall. What does a cyanobacteria bloom look like? You might or might not be able to see cyanobacteria blooms. They sometimes stay below the water’s surface, they sometimes float to the surface. Some cyanobacteria blooms can look like foam, scum, or mats, particularly when the wind blows them toward a shoreline. The blooms can be blue, bright green, brown, or red. Blooms sometimes look like paint floating on the water’s surface. As cyanobacteria in a bloom die, the water may smell bad, similar to rotting plants. Why are some cyanbacteria blooms harmful? Cyanobacteria blooms that harm people, animals, or the environment are called cyanobacteria harmful algal blooms. -
Aquatic Ecosystem Delineation and Description Guidelines AQUATIC ECOSYSTEMS TOOLKIT • MODULE 4 •Aquatic Ecosystem Delineation and Description Guidelines
Aquatic ecosystems toolkit MODULE 4: Aquatic ecosystem delineation and description guidelines AQUATIC ECOSYSTEMS TOOLKIT • MODULE 4 •Aquatic ecosystem delineation and description guidelines Published by Department of Sustainability, Environment, Water, Population and Communities Authors/endorsement Aquatic Ecosystems Task Group Endorsed by the Standing Council on Environment and Water, 2012. © Commonwealth of Australia 2012 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968 (Cwlth), all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to Department of Sustainability, Environment, Water, Population and Communities, Public Affairs, GPO Box 787 Canberra ACT 2601 or email <[email protected]>. Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for Sustainability, Environment, Water, Population and Communities. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the -
Brown Algae and 4) the Oomycetes (Water Molds)
Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level. -
Algae and Lakes Algae Are Primitive, Usually Microscopic, Organisms Found in Every Lake
Algae and Lakes Algae are primitive, usually microscopic, organisms found in every lake. Like green plants, most algae have pigments that allow them to create energy from sunlight through the process of photosynthesis. Algae use this energy and nutrients such as nitrogen and phosphorus to grow and reproduce. Algae form the base of the food web in lakes. Small animals called zooplankton feed on algae. In Drawings from IFAS, Center for Aquatic Plants, turn, zooplankton become food for fish. Algae University of Florida, 1990; and U.S. Soil Conservation Service, Water Quality Indicators Guide: Surface Waters, also produce some of the oxygen found in lake 1989. water and in the atmosphere What types of algae live in my lake? There are thousands of species of freshwater algae living in lakes around the world. Most species of algae in Snohomish County lakes are free-floating, collectively known as phytoplankton. There are also many species of algae that attach to rocks, docks, and aquatic plants, called periphyton. There are three main groups of algae—the green algae (Chlorophyta), the golden brown algae (Chrysophyta) which also includes a large group called diatoms, and A typical microscopic view of algae found in local lakes the blue-green algae (Cyanobacteria)—as well as several smaller groups (euglenoids, cryptomonads, and dinoflagellates). Under the microscope, many algae have beautiful shapes and colors. Algae are important for healthy lakes. Without algae, your lake would likely be devoid of fish and other wildlife. Most algae are inconspicuous and do not cause problems. Unfortunately, a few types of algae can cause water quality problems in lakes. -
Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest
Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest Abboudi, M., Jeffrey, W. H., Ghiglione, J. F., Pujo-Pay, M., Oriol, L., Sempéré, R., . Joux, F. (2008). Effects of photochemical transformations of dissolved organic matter on bacterial metabolism and diversity in three contrasting coastal sites in the northwestern Mediterranean Sea during summer. Microbial Ecology, 55(2), 344-357. Abboudi, M., Surget, S. M., Rontani, J. F., Sempéré, R., & Joux, F. (2008). Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Current Microbiology, 57(5), 412-417. doi: 10.1007/s00284-008-9214-9 Abernathy, J. W., Xu, P., Xu, D. H., Kucuktas, H., Klesius, P., Arias, C., & Liu, Z. (2007). Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis BMC Genomics, 8, 176. Abseck, S., Andrady, A. L., Arnold, F., Björn, L. O., Bomman, J. F., Calamari, D., . Zepp, R. G. (1998). Environmental effects of ozone depletion: 1998 assessment. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 1-108. doi: Doi: 10.1016/s1011-1344(98)00195-x Adachi, K., Kato, K., Wakamatsu, K., Ito, S., Ishimaru, K., Hirata, T., . Kumai, H. (2005). The histological analysis, colorimetric evaluation, and chemical quantification of melanin content in 'suntanned' fish. Pigment Cell Research, 18, 465-468. Adams, M. J., Hossaek, B. R., Knapp, R. A., Corn, P. S., Diamond, S. A., Trenham, P. C., & Fagre, D. B. (2005). Distribution Patterns of Lentic-Breeding Amphibians in Relation to Ultraviolet Radiation Exposure in Western North America. Ecosystems, 8(5), 488-500. Adams, N. -
Evolution of Land Plants P
Chapter 4. The evolutionary classification of land plants The evolutionary classification of land plants Land plants evolved from a group of green algae, possibly as early as 500–600 million years ago. Their closest living relatives in the algal realm are a group of freshwater algae known as stoneworts or Charophyta. According to the fossil record, the charophytes' growth form has changed little since the divergence of lineages, so we know that early land plants evolved from a branched, filamentous alga dwelling in shallow fresh water, perhaps at the edge of seasonally-desiccating pools. The biggest challenge that early land plants had to face ca. 500 million years ago was surviving in dry, non-submerged environments. Algae extract nutrients and light from the water that surrounds them. Those few algae that anchor themselves to the bottom of the waterbody do so to prevent being carried away by currents, but do not extract resources from the underlying substrate. Nutrients such as nitrogen and phosphorus, together with CO2 and sunlight, are all taken by the algae from the surrounding waters. Land plants, in contrast, must extract nutrients from the ground and capture CO2 and sunlight from the atmosphere. The first terrestrial plants were very similar to modern mosses and liverworts, in a group called Bryophytes (from Greek bryos=moss, and phyton=plants; hence “moss-like plants”). They possessed little root-like hairs called rhizoids, which collected nutrients from the ground. Like their algal ancestors, they could not withstand prolonged desiccation and restricted their life cycle to shaded, damp habitats, or, in some cases, evolved the ability to completely dry-out, putting their metabolism on hold and reviving when more water arrived, as in the modern “resurrection plants” (Selaginella). -
Aquatic Ecosystem Part 1 a SHORT NOTE for B.SC ZOOLOGY
2020 Aquatic ecosystem part 1 A SHORT NOTE FOR B.SC ZOOLOGY WRITTEN BY DR.MOTI LAL GUPTA ,H.O.D ,DEPARTMENT OF ZOOLOGY,B.N.COLLEGE,PATNA UNIVERSITY [Type the author name] DEPARTMENT OF ZOOLOGY,B.N COLLEGE, P.U 4/16/2020 Aquatic ecosystem part 1 2 1 Department of zoology,B.N College,P.U Page 2 Aquatic ecosystem part 1 3 Contents 1. Learning Objectives 2. Introduction 3. The Lentic Aquatic System Zonation in Lentic Systems Characteristics of Lentic Ecosystem Lentic Community Communities of the littoral zone Communities of Limnetic Zone Communities of Profundal Zone 4. Lake Ecosystem Thermal Properties of Lake Seasonal Cycle in Temperate Lakes Biological Oxygen Demand Eutrophy and Oligotrophy Langmuir Circulation and the Descent of the Thermocline Types of Lakes 5. State of Freshwater Ecosystems in Present Scenario Causes of Change in the properties of freshwater bodies Climate Change Change in Water Flow Land-Use Change Changing Chemical Inputs Aquatic Invasive Species Harvest Impact of Change on Freshwater Bodies Physical Transformations 6. Summary 2 Department of zoology,B.N College,P.U Page 3 Aquatic ecosystem part 1 4 1. Learning Objectives After the end of this module you will be able to 1. Understand the concept of fresh water ecosystem. 2. Understand the characteristics of the Lentic ecosystems. 3. Know the communities of lentic ecosystems and their ecological adaptations. 4. Know properties of Lake Ecosystems and their types. 5. Understand the major changes that are causing the threats to freshwaters ecosystems. 2. Introduction Freshwater ecology can be interpreted as interrelationship between freshwater organism and their natural environments.