Commelinaceae) from Ethiopia

Total Page:16

File Type:pdf, Size:1020Kb

Commelinaceae) from Ethiopia ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES FACULITY OF LIFE SCIENCES Chromosome Study of Some Species of Commelina L. and Tradescantia L. (Commelinaceae) From Ethiopia By Samuel Gebrekiristos A Thesis Submitted to the School of Graduate Studies of Addis Ababa University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology (Applied Genetics) March 2012 ADDIS ABABA UNIVERSITY SCHOOL OF GRADUATE STUDIES FACULITY OF LIFE SCIENCES Chromosome Study of Some Species of Commelina L. and Tradescantia L. (Commelinaceae) From Ethiopia By Samuel Gebrekiristos A Thesis Submitted to the School of Graduate Studies of Addis Ababa University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology (Applied Genetics) Table of Contents Pages List of Tables ................................................................................................................................. iv List of Figures ................................................................................................................................. v List of Appendices ........................................................................................................................ vii Abbreviations ................................................................................................................................. ix Acknowledgements ......................................................................................................................... x Abstract .......................................................................................................................................... xi 1. Introduction ................................................................................................................................. 1 2. Literature Review........................................................................................................................ 3 2.1 Taxonomic description of Commelinaceae ........................................................................... 3 2.2 Geographic distribution ......................................................................................................... 4 2.3 Botanical description of the study species ............................................................................ 4 2.3.1 Commelina benghalensis L. ........................................................................................... 4 2.3.2 Commelina africana L. ................................................................................................... 5 2.3.3 Commelina diffusa Burm. f. ........................................................................................... 6 2.3.4 Commelina subulata Roth .............................................................................................. 6 2.3.5 Tradescantia zebrina Hort. ex Bosse ............................................................................. 7 2.3.6 Tradescantia fluminensis Vell. ....................................................................................... 7 2.4 Uses of the study plant .......................................................................................................... 8 2.4.1 Folk medicine ................................................................................................................. 8 2.4.2 Modern medicine (pharmaceuticals) .............................................................................. 9 2.4.3 Ornamental and other values .......................................................................................... 9 2.4.4 Food and fodder ............................................................................................................ 10 2.5 Cytogenetics of Commelinaceae ......................................................................................... 10 2.5.1 Commelina .................................................................................................................... 11 2.5.2 Tradescantia ................................................................................................................. 13 2.6 Implication of cytological study in karyosystematics ......................................................... 14 2.7. Karyotype ........................................................................................................................... 15 i 2.8. Constituents of karyotype................................................................................................... 15 2.8.1 Chromosome number ................................................................................................... 17 2.8.2 Centromere ................................................................................................................... 19 2.8.3 Secondary constriction ................................................................................................. 20 2.8.4 Telomere ....................................................................................................................... 21 2.8.5 Chromosome size ......................................................................................................... 21 2.8.6 Heterochromatin ........................................................................................................... 22 2.9. Chromosome staining ......................................................................................................... 23 2.9.1 Silver staining ............................................................................................................... 24 2.9.2 Giemsa staining ............................................................................................................ 25 2.10. Genome size ..................................................................................................................... 25 2.11. Mechanisms of chromosomal polymorphism .................................................................. 26 2.11.1 Inversion ..................................................................................................................... 26 2.11.2 Deletion, duplication and translocation ...................................................................... 27 2.11.3 Robertsonian fusion and centric fission ...................................................................... 28 2.12 Karyotype evolution .......................................................................................................... 29 3. Objectives of the Study ............................................................................................................. 30 3.1 General objectives ............................................................................................................... 30 3.2 Specific objectives............................................................................................................... 30 4. Materials and Methods .............................................................................................................. 31 4.1 Plant material....................................................................................................................... 31 4.2 Cytogenetic analysis ............................................................................................................ 34 4.2.1 Somatic chromosome preparation ................................................................................ 34 4.2.2 Silver staining ............................................................................................................... 36 4.2.3 Karyotype analysis ....................................................................................................... 37 5. Results ....................................................................................................................................... 39 5.1 Commelina africana ............................................................................................................ 43 5.1.1 C. africana from Addis Ababa ..................................................................................... 43 ii 5.1.2 C. africana from Sebeta................................................................................................ 45 5.2 Commelina benghalensis .................................................................................................... 47 5.3 Karyotype description of Commelina diffusa...................................................................... 49 5.3.1 C. diffusa from Entoto .................................................................................................. 49 5.3.2 C. diffusa from Ginchi .................................................................................................. 51 5.3.3 C. diffusa from Jimma .................................................................................................. 52 5.4 Commelina subulata ............................................................................................................ 54 5.5 Tradescantia fluminensis (green) ........................................................................................ 56 5.6 Tradescantia fluminensis (Variegated) ............................................................................... 58 5.7 Tradescantia zebrina ........................................................................................................... 58 6. Discussion ................................................................................................................................
Recommended publications
  • LITERATURE REVIEW Genus Loerzingia Airy
    NAT. lliST. BULL. SIAM SOC. 31 (2): 163-176, 1983 . LITERATURE REVIEW AIRY SHAW, H.K. 1981 : The Euphorbiaceae of Sumatra. • Kew Bull. 36 (2): 239-374, with 12 figures and one map. Sumatra is, on the whole, even less well collected than New Guinea. The flora appears to contain a few endemic species of this family, but only one endemic genus Loerzingia Airy Shaw. An artificial key to 59 genera is given. Each genus is provided with a key to species and short diagnostic accounts. The family Stilaginaceae with the only genus Antidesma of 17 species and Pandaceae (Galearia and Microdesmis) are appended with the same treatment as for Euphorbiaceae. Three new Euphorbiaceae species have been described : Claoxylon tenuiflorum A. Shaw; Drypetes ochrodashya A. Shaw; and Glochidion leucocaspum A. Shaw. BASS, P.R., G BESINK, W.A. VAN H EEL and J. M ULLER 1979 : The affinities of Plagiopteron suaveslens Griff ~ (Plagiopteraceae). Grana 18: 69-89, with 7 figures. The monotypic genus Plagiopteron has affinities with Elaeocarpaceae and Violaceae on its characters of flower, pollen and gross morphology. This interesting taxon was first collected by Griffith in 1843 from Mergui and described by him in 1844. The second collection was made by Maxwell in 1974 from Saraburi and the third collection by Beusekom & Smitinand in 1975 from Chanthaburi, Thailand. BANDO, T., s. WATANABE & T. NAKANO. 1981 : Desmids from soil of paddy fields collected in Java and Sumatra. Tukar-Menukar 1 : 7-23, with 4 figures. The desmid flora known from nine soil samples of paddyfields collected in Java and Sumatra, includes 77 species and 8 varieties belonging to 16 genera.
    [Show full text]
  • The Plant Press
    Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 17 - No. 1 January-March 2014 Botany Profile Research Scientist Spills the Beans By Gary A. Krupnick magine starting a new job by going population genetics to phylogenetics and rial of Psoraleeae and soybean (Glycine away on a three-month field excur- systematics. max). In 2007, Egan became a postdoc- sion to the remote forests of China, n 2001 she began her graduate years toral research associate in Doyle’s lab, I studying the phylogenetic systematics Japan, and Thailand after only two weeks at Brigham Young University, initially on the job, before having a chance to set- working on a doctoral thesis in cancer of subtribe Glycininae (Leguminosae). tle into your new office and unpack your I Egan’s research has determined that research. Her preliminary studies utilized boxes. Continue imagining that while phylogenetics as a means of bioprospect- tribe Psoraleeae is nested within subtribe you are away on your Asian expedition, ing, looking at the chemopreventive ability Glycininae, and is a potential progenitor you find out that your employer, the U.S. and phenolic content of the mint family, genome of the polyploid soybean. federal government, has shut down for 16 Lamiaceae. Unsatisfied with the direc- During her postdoctoral research, days, forcing you into “furlough in place” tion of her thesis, Egan switched to Keith Egan began collaborating with several status (non-duty and non-pay). Such is Crandall’s invertebrate biology laboratory, scientists studying soybean genome evo- the life of Ashley N. Egan, the Depart- with the understanding that Egan would lution.
    [Show full text]
  • Plant Science Today (2019) 6(2): 218-231 218
    Plant Science Today (2019) 6(2): 218-231 218 https://doi.org/10.14719/pst.2019.6.2.527 ISSN: 2348-1900 Plant Science Today http://www.plantsciencetoday.online Research Article Seedling Morphology of some selected members of Commelinaceae and its bearing in taxonomic studies Animesh Bose1* & Nandadulal Paria2 1 Department of Botany, Vidyasagar College, 39 Sankar Ghosh Lane, Kolkata 700006, West Bengal, India 2 Taxonomy & Biosystematics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India Article history Abstract Received: 13 March 2019 Seedling morphology of eight species from four genera of the family Commelinaceae viz. Accepted: 09 April 2019 Commelina appendiculata C.B. Clarke, C. benghalensis L., C. caroliniana Walter, C. paludosa Published: 16 May 2019 Blume, Cyanotis axillaris (L.) D. Don ex Sweet, C. cristata (L.) D. Don, Murdannia nudiflora (L.) Brenan and Tradescantia spathacea Sw. are investigated using both light and scanning electron microscopy. The seedling morphological features explored include germination pattern, seed shape, surface and hilum, root system, cotyledon type, cotyledonary hyperphyll (apocole), cotyledonary hypophyll (cotyledonary sheath), hypocotyl, first leaf and subsequent leaves. All taxa studied had hypogeal and remote tubular cotyledons. However, differences in cotyledon structure (apocole, cotyledonary sheath), seed, hypocotyl, internodes, first leaf and subsequent leaves were observed. Variations of those characters were used to prepare an identification key for the investigated taxa. Commelina spp. and Murdannia nudiflora of the tribe Commelineae were found to differ from Cyanotis spp. and Tradescantia spathacea of tribe Tradescantieae in the petiolate first leaf with papillate margins on upper surface with 6- celled stomata and the glabrous epicotyl.
    [Show full text]
  • Hans Walter Lack & Thomas Raus Hildemar Scholz
    Fl. Medit. 22: 233-244 doi: 10.7320/FlMedit22.233 Version of Record published online on 28 December 2012 Hans Walter Lack & Thomas Raus Hildemar Scholz (1928 – 2012) Hildemar Scholz, aged 84, passed away on 5 June 2012 as a consequence of a bad fall he had suffered at home a few weeks earlier. He was a world authority on grasses, the adventive flora of Europe, and rust fungi from central Europe. From 1964 until his retire- ment in 1993 he was a member of staff of the Botanic Garden and Botanical Museum Berlin-Dahlem, rising from scientific collaborator to one of the directors at this institution. Hildemar was a born plant-collector active all over Europe, in North and West Africa with a special interest in grasses and the rust fungi parasitizing them. Born on 27 May 1928 in Berlin into a family of protestant clergymen Hildemar Scholz remained both in language and manners very much a Berliner, in the true and best sense of the word, and never ever considered leaving his home town, even during the many diffi- cult years this city encountered in the last century. Having belatedly finished his school training because of the Second World War in 1947, he tried to get enrolled at Berlin University, subsequently renamed Humboldt University, in the Soviet sector of the city, but was rejected – probably because his father was a clergyman. Hildemar had more success at the newly founded Free University in the American sector of Berlin, where he got admit- ted in 1949 and chose biology as his subject.
    [Show full text]
  • COMMELINACEAE 鸭跖草科 Ya Zhi Cao Ke Hong Deyuan (洪德元)1; Robert A
    Flora of China 24: 19–39. 2000. COMMELINACEAE 鸭跖草科 ya zhi cao ke Hong Deyuan (洪德元)1; Robert A. DeFilipps2 Herbs annual or perennial, sometimes woody at base. Stems with prominent nodes and internodes. Leaves alternate, distichous or spirally arranged, sessile or petiolate; leaf sheath prominent, open or closed; leaf blade simple, entire. Inflorescence usually of cin- cinni in panicles or solitary, sometimes shortened into heads, sometimes sessile with flowers fascicled, sometimes axillary and pene- trating enveloping leaf sheath, rarely flowers solitary and terminal or axillary. Flowers bisexual, rarely unisexual, actinomorphic or zygomorphic. Sepals 3, free or connate only at base, often boat-shaped or carinate, sometimes galeate at apex. Petals (2 or)3, free, sometimes connate and tubular at middle and free at 2 ends (Cyanotis), sometimes clawed. Stamens 6, free, all or only 2 or 3 fertile; filaments glabrous or torulose villous; anthers parallel or slightly divergent, longitudinally dehiscent, rarely dehiscent by apical pores; staminodes 1–3; antherodes 4-lobed and butterflylike, 3-sect, 2-lobed and dumbbell-shaped, or entire. Ovary 3-loculed, or reduced to 2-loculed; ovules 1 to several per locule, orthotropous. Fruit a loculicidal, 2- or 3-valved capsule, rarely baccate and indehiscent. Seeds few, large; endosperm copious; hilum orbicular or linear. About 40 genera and 650 species: mainly in tropical regions, fewer species in subtropical and temperate regions; 15 genera (two introduced) and 59 species (12 endemic, three introduced) in China. Hong Deyuan. 1997. Commelinaceae. In: Wu Kuo-fang, ed., Fl. Reipubl. Popularis Sin. 13(3): 69–133. 1a. Inflorescence penetrating leaf sheath, sessile, capitate; fertile stamens 6.
    [Show full text]
  • Commelina Benghalensis (Tropical Spiderwort)
    Australia/New Zealand Weed Risk Assessment adapted for Florida. Data used for analysis published in: Gordon, D.R., D.A. Onderdonk, A.M. Fox, R.K. Stocker, and C. Gantz. 2008. Predicting Invasive Plants in Florida using the Australian Weed Risk Assessment. Invasive Plant Science and Management 1: 178-195. Commelina benghalensis (tropical spiderwort) Question number Question Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to Florida's USDA climate zones (0-low; 1-intermediate; 2- 2 high) 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) y 1 2.04 Native or naturalized in habitats with periodic inundation y 1 2.05 Does the species have a history of repeated introductions outside its y natural range? 3.01 Naturalized beyond native range y 0 3.02 Garden/amenity/disturbance weed ? 3.03 Weed of agriculture y 0 3.04 Environmental weed n 0 3.05 Congeneric weed y 0 4.01 Produces spines, thorns or burrs n 0 4.02 Allelopathic n 0 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals ? 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens y 1 4.07 Causes allergies or is otherwise toxic to humans n 0 4.08 Creates a fire hazard in natural ecosystems n 0 4.09 Is a shade tolerant plant at some stage of its life cycle y 1 4.1 Grows on infertile soils (oligotrophic, limerock, or excessively draining y soils) 1 4.11 Climbing or smothering growth
    [Show full text]
  • HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S
    HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S. ARMY CORPS OF ENGINEERS, COLD REGIONS RESEARCH AND ENGINEERING LABORATORY (CRREL) - 2013 Ratings Lichvar, R.W. 2016. The National Wetland Plant List: 2016 wetland ratings. User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region. Scientific Name Common Name Hawaii Status South Pacific Agrostis canina FACU Velvet Bent Islands Status Agrostis capillaris UPL Colonial Bent Abelmoschus moschatus FAC Musk Okra Agrostis exarata FACW Spiked Bent Abildgaardia ovata FACW Flat-Spike Sedge Agrostis hyemalis FAC Winter Bent Abrus precatorius FAC UPL Rosary-Pea Agrostis sandwicensis FACU Hawaii Bent Abutilon auritum FACU Asian Agrostis stolonifera FACU Spreading Bent Indian-Mallow Ailanthus altissima FACU Tree-of-Heaven Abutilon indicum FAC FACU Monkeybush Aira caryophyllea FACU Common Acacia confusa FACU Small Philippine Silver-Hair Grass Wattle Albizia lebbeck FACU Woman's-Tongue Acaena exigua OBL Liliwai Aleurites moluccanus FACU Indian-Walnut Acalypha amentacea FACU Alocasia cucullata FACU Chinese Taro Match-Me-If-You-Can Alocasia macrorrhizos FAC Giant Taro Acalypha poiretii UPL Poiret's Alpinia purpurata FACU Red-Ginger Copperleaf Alpinia zerumbet FACU Shellplant Acanthocereus tetragonus UPL Triangle Cactus Alternanthera ficoidea FACU Sanguinaria Achillea millefolium UPL Common Yarrow Alternanthera sessilis FAC FACW Sessile Joyweed Achyranthes
    [Show full text]
  • Commelina Benghalensis L. (Commelinaceae)
    Pooja A Kansagara et al /J. Pharm. Sci. & Res. Vol. 11(4), 2019, 1165-1171 A Complete Review on Medicinally Active Herbal Weed: Commelina benghalensis L. (Commelinaceae) Pooja A Kansagara*1, Devang J Pandya2 Department of Pharmacognosy1, Akshar-preet Institute of Pharmacy, Gujrat Technological University, Jamnagar, Gujrat, India. Department of Pharmacognosy2, School of Pharmacy, RK University, Rajkot, Gujrat, India. Abstract: Herbal & natural products of folk medicine have been used for centuries in every culture throughout the world. There is no doubt that plants are a reservoir of potentially useful chemical compounds which serves as drugs, which provided a newer leads and clues for modern design by synthesis. Commelina benghalensis, also known as Benghal dayflower which is a perennial medicinal plant inhabitant to tropical Asia and Africa. Commelina benghalensis is used as folkloric remedy to treat and prevent various diseases like burns, sore throats, headache, leprosy, fever, snake bite and jaundice. It shows Pharmacological activities like laxative, anti-inflammatory, anti-microbial, Anti-cancer, sedative, Analgesic, Hepatoprotective, Anti-depressant, Anti-viral, Antioxidant, Antidiarrheal, Demulcent, Emollient, Diuretic and Febrifuge. Overall, many investigation have been done on pharmacological active phytoconstituents of this plant. Still, many Pharmacological activity of this medicinal weed still need to be carrying out. This review article provides brief review & pharmacological activities of Commelina benghalensis. Key Words:
    [Show full text]
  • Data Standards Version 2.8 July 5
    Euro+Med Data Standards Version 2.8. July 5th, 2002 EURO+MED PLANTBASE PREPARATION OF THE INITIAL CHECKLIST: DATA STANDARDS VERSION 2.8 JULY 5TH, 2002 This document replaces Version 2.7, dated May 16th, 2002 Compiled for the Euro+Med PlantBase Editorial Committee by: Euro+Med PlantBase Secretariat, Centre for Plant Diversity and Systematics, School of Plant Sciences, The University of Reading, Whiteknights, Reading RG6 6AS United Kingdom Tel: +44 (0)118 9318160 Fax: +44 (0)118 975 3676 E-mail: [email protected] 1 Euro+Med Data Standards Version 2.8. July 5th, 2002 Modifications made in Version 2.0 (24/11/00) 1. Section 2.4 as been corrected to note that geography should be added for hybrids as well as species and subspecies. 2. Section 3 (Standard Floras) has been modified to reflect the presently accepted list. This may be subject to further modification as the project proceeds. 3. Section 4 (Family Blocks) – genera have been listed where this clarifies the circumscription of blocks. 4. Section 5 (Accented Characters) – now included in the document with examples. 5. Section 6 (Geographical Standard) – Macedonia (Mc) is now listed as Former Yugoslav Republic of Macedonia. Modification made in Version 2.1 (10/01/01) Page 26: Liliaceae in Block 21 has been corrected to Lilaeaceae. Modifications made in Version 2.2 (4/5/01) Geographical Standards. Changes made as discussed at Palermo General meeting (Executive Committee): Treatment of Belgium and Luxembourg as separate areas Shetland not Zetland Moldova not Moldavia Czech Republic
    [Show full text]
  • Impatiens Siangensis (Balsaminaceae), a New Species from Arunachal Pradesh, India
    Phytotaxa 192 (2): 117–120 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Correspondence ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.192.2.5 Impatiens siangensis (Balsaminaceae), a new species from Arunachal Pradesh, India RAJIB GOGOI* & SOURAVJYOTI BORAH Botanical Survey of India, Arunachal Pradesh Regional Centre, Senki View, Itanagar-791111, India.*E. mail: [email protected] Abstract Impatiens siangensis Gogoi, a new species, is described and illustrated from Arunachal Pradesh, India. The new species dif- fers from I. marianae Hooker by the absence of white blotches on the upper leaf surface, flowers only partially purple, bracts ovate, glabrous, lateral sepals glabrous, dorsal petal glabrous, navicular, lower sepal with straight purple streaks and spur almost straight. The new species differs from I. porrecta Wallich in having stems, leaves, and floral parts glabrous, stems branched, flowers partially purple, lower sepal navicular with straight purple streaks and spur almost straight. Key words: Balsaminaceae, new taxa, taxonomy, Siang valley Introduction Impatiens Linnaeus (1753: 937) is the largest genus in the Balsaminaceae, with more than 900 species distributed worldwide except in Latin America (Chen et al. 2008). Most of the species occur in Africa and Asia. The centre of origin has been suspected in south China (Yuan et al. 2004, Janssenset al. 2007, Chen et al. 2008, Mabberley 2008), although Bhaskar (2012) noted that the most primitive species of Impatiens, with lowest chromosome numbers and the largest sized chromosomes, are recorded from the Western Ghats and thus argued that the centre of origin lies in the Western Ghats, South India.
    [Show full text]
  • Biodiversity Assessment for Georgia
    Biodiversity Assessment for Georgia Task Order under the Biodiversity & Sustainable Forestry IQC (BIOFOR) USAID C ONTRACT NUMBER: LAG-I-00-99-00014-00 SUBMITTED TO: USAID WASHINGTON E&E BUREAU, ENVIRONMENT & NATURAL RESOURCES DIVISION SUBMITTED BY: CHEMONICS INTERNATIONAL INC. WASHINGTON, D.C. FEBRUARY 2000 TABLE OF CONTENTS SECTION I INTRODUCTION I-1 SECTION II STATUS OF BIODIVERSITY II-1 A. Overview II-1 B. Main Landscape Zones II-2 C. Species Diversity II-4 SECTION III STATUS OF BIODIVERSITY CONSERVATION III-1 A. Protected Areas III-1 B. Conservation Outside Protected Areas III-2 SECTION IV STRATEGIC AND POLICY FRAMEWORK IV-1 A. Policy Framework IV-1 B. Legislative Framework IV-1 C. Institutional Framework IV-4 D. Internationally Supported Projects IV-7 SECTION V SUMMARY OF FINDINGS V-1 SECTION VI RECOMMENDATIONS FOR IMPROVED BIODIVERSITY CONSERVATION VI-1 SECTION VII USAID/GEORGIA VII-1 A. Impact of the Program VII-1 B. Recommendations for USAID/Georgia VII-2 ANNEX A SECTIONS 117 AND 119 OF THE FOREIGN ASSISTANCE ACT A-1 ANNEX B SCOPE OF WORK B-1 ANNEX C LIST OF PERSONS CONTACTED C-1 ANNEX D LISTS OF RARE AND ENDANGERED SPECIES OF GEORGIA D-1 ANNEX E MAP OF LANDSCAPE ZONES (BIOMES) OF GEORGIA E-1 ANNEX F MAP OF PROTECTED AREAS OF GEORGIA F-1 ANNEX G PROTECTED AREAS IN GEORGIA G-1 ANNEX H GEORGIA PROTECTED AREAS DEVELOPMENT PROJECT DESIGN SUMMARY H-1 ANNEX I AGROBIODIVERSITY CONSERVATION IN GEORGIA (FROM GEF PDF GRANT PROPOSAL) I-1 SECTION I Introduction This biodiversity assessment for the Republic of Georgia has three interlinked objectives: · Summarizes the status of biodiversity and its conservation in Georgia; analyzes threats, identifies opportunities, and makes recommendations for the improved conservation of biodiversity.
    [Show full text]
  • Phytogeography of African Commelinaceae
    Bothalia 14, 3 & 4: 553-557 (1983) Phytogeography of African Commelinaceae R. B. FADEN* ABSTRACT Africa (including Madagascar) has nearly twice as many species of Commelinaceae as any other continent (approximately 270 species, or about 40% of the total in the family). Of the 17 genera which are native, seven (Anthericopsis, Coleotrype, Palisota, Polyspatha, Pseudoparis, Stanfieldiella and Triceratella) are endemic, the highest percentage generic endemism of any continent. Within Africa gcneric diversity is slightly higher in western than in eastern tropical floras. Species richness, however, is greatest in eastern Africa, mainly due to a high diversity of species of Commelina and Aneilema. Africa shares more genera with Asia (nine) than with any other continent. Only one African genus, Buforrestia, is neither endemic nor shared with Asia. Its western African/northeastern South American distribution is unique in the family. Besides Buforrestia, only five other genera of Commelinaceae (out of a total of 50 in the family), occur in both the Old and New Worlds. These genera. Aneilema, Commelina, Floscopa, Murdannia and Pollia are all very widespread in the Old World, occurring in Australia and Asia in addition to Africa (both continental and Madagascar). Madagascar is relatively poor in species (31). but these include the endemic Madagascan genus Pseudoparis, the sole African species of Rhopalephora, and the largest number of species of the Afro-Malagasy endemic genus Coleotrype. The high rate of generic endemism of Commelinaceae in Africa probably indicates that Africa was one of the ancient centres of diversity for the family. The high species diversity is more likely due to relatively recent radiations by genera pre-adapted to survival in non-forest habitats.
    [Show full text]