Annelies Cloet-Osselaer

Total Page:16

File Type:pdf, Size:1020Kb

Annelies Cloet-Osselaer Universiteit Gent Faculteit Wetenschappen Vakgroep Fysica & Sterrenkunde Star formation and merger trees in dwarf galaxy simulations Stervorming en versmeltingsbomen in simulaties van dwergsterrenstelsels Annelies Cloet-Osselaer Proefschrift voorgedragen tot het behalen van de graad van Doctor in de Wetenschappen: Sterrenkunde Academiejaar 2014-2015 Promotor: Prof. Dr. Sven De Rijcke Universiteit Gent Faculteit Wetenschappen Vakgroep Fysica & Sterrenkunde Promotor: Prof. Dr. Sven De Rijcke Universiteit Gent Faculteit Wetenschappen Vakgroep Fysica & Sterrenkunde Krijgslaan 281, S9, B-9000 Gent, Belgi¨e Tel.: +32-9-264.47.96 Fax.: +32-9-264.49.89 Dit werk kwam tot stand in het kader van een project van het Bijzonder Onderzoeksfonds van de Universiteit Gent. Figuur voorpagina: De gasverdeling in een simulatie met een versmeltingsboom. De feedback van de sterren blaast bellen in het gas van de modellen. Proefschrift tot het behalen van de graad van Doctor in de Sterrenkunde Academiejaar 2014-2015 Dankwoord Het is vele jaren geleden dat de sterrenkundemicrobe me te pakken kreeg: van de heldere nachten in de Provence en de koude practica op het dak van de S9 naar de warme bureaus op de Sterre, waar computers de vorming van het universum nabootsen. Mijn jeugdig en- thousiasme om 's nachts in de kou naar de sterren te kijken is ondertussen toch al een beetje verwaterd, al heb ik mooie herinneringen aan de waarnemingspractica op het dak waar ik samen met Steven de studenten enthousiast begeleidde. Tijdens mijn studies leerde ik ook dat sterrenkunde meer was dan nachtelijke waarnemingen. Mijn doctoraat liet me dan ook een totaal andere, maar even boeiende zijde van de sterrenkunde zien: het modelleren van de vorming van dwergsterrenselsels en wat we daaruit kunnen leren over de vorming van ons heelal in het algemeen. In de eerste plaats wil ik zeker mijn ouders bedanken om me te steunen in mijn niet zo alledaagse hobby, mijn streven naar onafhankelijkheid door vanaf mijn eerste jaar op kot te mogen gaan en zoveel meer. En hoewel ik volgens de Simon-test van de UGent helemaal niet sociaal ben wil ik ook graag mijn collega's bedanken voor de vele astronomische en niet- astronomische discussies tijdens de koffiepauzes om 9u30. Ik hoop dat jullie de traditie zullen blijven verderzetten zonder dat ik 'koffie’ kom roepen in jullie kantoren of waar jullie nieuwe levens jullie ook naartoe leiden. En dan nog het serieuze werk. Eerst wil ik mijn promotor Sven bedanken, in de eerste plaats om mij de kans te geven dit doctoraat te maken, maar ook om de problemen die ik onderweg tegenkwam te structureren en eenvoudige oplossingen voor te stellen en voor het nalezen van mijn artikels. Verder wil ik iedereen van onze Dwarf Galaxy Group bedanken: Bert, Joeri, Mina, Robbert, Sander en Sven, voor het gezelschap op conferenties, goede idee¨en,toffe groupmeetings, mijn gevecht met computercodes, ... Tot slot wil ik Simon bedanken om er voor mij te zijn wanneer het nodig is, om alle dingen die we samen beleefd hebben, alle toekomstplannen die we gemaakt hebben en voor onze kleine Anna: haar enthousiaste glimlach en schaterlach brengen elke dag het zonnetje in huis. Gent, maart 2015 Annelies Table of Contents Dankwoord i 1 Introduction1 2 Simulations 11 2.1 Simulation code................................. 11 2.2 Initial conditions................................. 13 2.2.1 Dark matter halo............................ 13 2.2.2 Gas halo................................. 14 2.3 Subgrid physics................................. 15 2.3.1 Criteria for Star formation....................... 15 2.3.2 Feedback................................ 16 2.3.3 Cooling................................. 18 2.4 Visualization and analysis............................. 19 3 Star formation parameters and M?-Mhalo relation 21 3.1 Introduction................................... 21 3.2 Simulations................................... 23 3.3 Analysis..................................... 24 3.3.1 The NFW halo............................. 24 3.3.2 Star formation histories......................... 26 3.3.3 Density distribution of the ISM..................... 28 3.3.4 Scaling relations............................ 29 3.3.4.1 Half-light radius Re ..................... 29 3.3.4.2 The fundamental plane................... 32 3.3.4.3 Color V − I .......................... 32 3.3.4.4 Metallicity.......................... 34 3.3.4.5 Surface brightness profiles.................. 34 3.3.4.6 The Tully-Fisher relation.................. 35 3.3.4.7 The Faber-Jackson relation................. 35 3.3.4.8 The Mstar-Mhalo relation................... 37 3.4 Discussion and conclusions........................... 37 3.4.1 Cusp to core.............................. 37 3.4.2 Degeneracy............................... 38 3.4.3 The dwarf galaxy dark-matter halo occupancy............. 40 4 Dwarf galaxy merger trees 43 4.1 Introduction................................... 43 iv TABLE OF CONTENTS 4.2 Simulations................................... 45 4.2.1 Initial conditions isolated galaxies and recipes............. 45 4.2.2 Merger trees.............................. 45 4.3 Analysis..................................... 49 4.3.1 Star formation histories......................... 49 4.3.1.1 Isolated galaxies....................... 49 4.3.1.2 Merged galaxies....................... 50 4.3.2 Scaling relations............................ 53 4.3.2.1 Half-light radius Re ..................... 53 4.3.2.2 The V−I and B−V colour.................. 55 4.3.2.3 The metallicity........................ 56 4.3.2.4 The S´ersicparameters.................... 59 4.3.2.5 The Faber-Jackson relation................. 59 4.4 Discussion.................................... 60 4.4.1 The dark matter halo.......................... 60 4.4.2 Stellar specific angular momentum................... 67 4.4.3 Kinematics............................... 69 4.4.3.1 Anisotropy diagram..................... 69 4.4.3.2 Shapes - Triaxiality...................... 72 4.5 Conclusion.................................... 72 5 Recent work 77 5.1 New cooling and heating curves........................ 77 5.2 General NFW haloes (GenNFW)........................ 83 5.3 Color Magnitude Diagram (CMD) and star formation histories........ 87 5.4 Baryonic Tully Fisher relation (BTFR)..................... 94 6 English summary 99 7 Nederlandse samenvatting 103 8 Outlook 107 A Sampling a dark matter halo 129 A.1 The NFW halo.................................. 131 A.2 The general NFW halo.............................. 134 B Determination of the inital conditions of a merger simulation 139 B.1 Elliptical trajectory............................... 141 B.2 Hyperbolic trajectory.............................. 143 1 Introduction How the Universe has become as we observe it today has been a question that kept people wondering forever. Now, the most accepted theory describing the evolution of our Universe is the ΛCDM model, often referred to as 'the standard cosmological model'. According to this theory our Universe consists of matter, both luminous and dark, and dark energy. Different experiments have tried to observe the cosmic microwave background (CMB) from which the contribution of each component can be determined, for example WMAP (Bennett et al., 2013) and Planck (Planck Collaboration et al., 2014). They have determined that we are very likely living in a spatially infinite and geometrically flat universe, meaning that the mean energy density is equal to the critical density of the universe. After 9 years of observations by the WMAP satellite, Hinshaw et al.(2013) reported the following composition of our Universe: 4.6% baryons: be it in the form of gas, dust or stars, are the most accessible form of matter, emitting radiation over the whole electromagnetic spectrum. 24% cold dark matter: only interacts gravitationally and is much more difficult to 'ob- serve'. The 'cold' dark matter (CDM) has velocities which are non-relativistic. 71% dark energy: is responsible for the accelerating expansion of the universe. It is quan- tified in the Einstein field equations by the cosmological constant, Λ. The ΛCDM model is consistent with the creation of space-time at the Big Bang and is able to explain most observed phenomena like the existence and fluctuations of the cosmic microwave background, the large scale structure of galaxy clusters, the distribution of the elements and the expansion of the Universe. Structure formation in the Universe started in the small adiabatic overdensities visible in the cosmic microwave background. They functioned as seeds for gravitational instabilities in which dark matter clumped together. After recombination, baryons fall into dark matter perturbations and these overdensities can then grow and when 2 Introduction they get dense enough they collapse to form the first proto-galaxies. Galaxies like we observe them today are created 'hierarchically' by subsequent merging of these smaller components and by smooth accretion of dark matter to larger structures that are able to support star formation. Our interest in dwarf galaxies partially lies in the hierarchical bottom-up structure formation of the Universe since the large structures were constructed in the early Universe by the merging of similar haloes from which the present day dwarfs originated. In addition, large surveys have shown that dwarf galaxies are the most common type of galaxies in the Universe and they are well represented in our Local Group. Recently, the number of observations of dwarf galaxies has increased and improved
Recommended publications
  • II Publications, Presentations
    II Publications, Presentations 1. Refereed Publications Izumi, K., Kotake, K., Nakamura, K., Nishida, E., Obuchi, Y., Ohishi, N., Okada, N., Suzuki, R., Takahashi, R., Torii, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Y., Ueda, A., Yamazaki, T.: 2010, DECIGO and DECIGO Search for Gravitational-wave Inspiral Signals Associated with pathfinder, Class. Quantum Grav., 27, 084010. Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Aoki, K.: 2010, Broad Balmer-Line Absorption in SDSS Science Run, ApJ, 715, 1453-1461. J172341.10+555340.5, PASJ, 62, 1333. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, All- Aoki, K., Oyabu, S., Dunn, J. P., Arav, N., Edmonds, D., Korista sky search for gravitational-wave bursts in the first joint LIGO- K. T., Matsuhara, H., Toba, Y.: 2011, Outflow in Overlooked GEO-Virgo run, Phys. Rev. D, 81, 102001. Luminous Quasar: Subaru Observations of AKARI J1757+5907, Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, PASJ, 63, S457. Search for gravitational waves from compact binary coalescence Aoki, W., Beers, T. C., Honda, S., Carollo, D.: 2010, Extreme in LIGO and Virgo data from S5 and VSR1, Phys. Rev. D, 82, Enhancements of r-process Elements in the Cool Metal-poor 102001. Main-sequence Star SDSS J2357-0052, ApJ, 723, L201-L206. Abadie, J., et al. including Hayama, K., Kawamura, S.: 2010, Arai, A., et al. including Yamashita, T., Okita, K., Yanagisawa, TOPICAL REVIEW: Predictions for the rates of compact K.: 2010, Optical and Near-Infrared Photometry of Nova V2362 binary coalescences observable by ground-based gravitational- Cyg: Rebrightening Event and Dust Formation, PASJ, 62, wave detectors, Class.
    [Show full text]
  • Arxiv:2103.07476V1 [Astro-Ph.GA] 12 Mar 2021
    FERMILAB-PUB-21-075-AE-LDRD Draft version September 3, 2021 Typeset using LATEX twocolumn style in AASTeX63 The DECam Local Volume Exploration Survey: Overview and First Data Release A. Drlica-Wagner ,1, 2, 3 J. L. Carlin ,4 D. L. Nidever ,5, 6 P. S. Ferguson ,7, 8 N. Kuropatkin ,1 M. Adamow´ ,9, 10 W. Cerny ,2, 3 Y. Choi ,11 J. H. Esteves,12 C. E. Mart´ınez-Vazquez´ ,13 S. Mau ,14, 15 A. E. Miller,16, 17 B. Mutlu-Pakdil ,2, 3 E. H. Neilsen ,1 K. A. G. Olsen ,6 A. B. Pace ,18 A. H. Riley ,7, 8 J. D. Sakowska ,19 D. J. Sand ,20 L. Santana-Silva ,21 E. J. Tollerud ,11 D. L. Tucker ,1 A. K. Vivas ,13 E. Zaborowski,2 A. Zenteno ,13 T. M. C. Abbott ,13 S. Allam ,1 K. Bechtol ,22, 23 C. P. M. Bell ,16 E. F. Bell ,24 P. Bilaji,2, 3 C. R. Bom ,25 J. A. Carballo-Bello ,26 D. Crnojevic´ ,27 M.-R. L. Cioni ,16 A. Diaz-Ocampo,28 T. J. L. de Boer ,29 D. Erkal ,19 R. A. Gruendl ,30, 31 D. Hernandez-Lang,32, 13, 33 A. K. Hughes,20 D. J. James ,34 L. C. Johnson ,35 T. S. Li ,36, 37, 38 Y.-Y. Mao ,39, 38 D. Mart´ınez-Delgado ,40 P. Massana,19, 41 M. McNanna ,22 R. Morgan ,22 E. O. Nadler ,14, 15 N. E. D. Noel¨ ,19 A. Palmese ,1, 2 A. H. G. Peter ,42 E. S.
    [Show full text]
  • Structural Analysis of the Sextans Dwarf Spheroidal Galaxy
    MNRAS 000,1{16 (2015) Preprint 9 October 2018 Compiled using MNRAS LATEX style file v3.0 Structural analysis of the Sextans dwarf spheroidal galaxy T. A. Roderick,1? H. Jerjen,1 G. S. Da Costa,1 A. D. Mackey1 1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present wide-field g and i band stellar photometry of the Sextans dwarf spheroidal galaxy and its surrounding area out to four times its half-light radius (rh = 695 pc), based on images obtained with the Dark Energy Camera at the 4-m Blanco tele- scope at CTIO. We find clear evidence of stellar substructure associated with the galaxy, extending to a distance of 820 (2 kpc) from its centre. We perform a sta- tistical analysis of the over-densities and find three distinct features, as well as an extended halo-like structure, to be significant at the 99:7% confidence level or higher. Unlike the extremely elongated and extended substructures surrounding the Hercules dwarf spheroidal galaxy, the over-densities seen around Sextans are distributed evenly about its centre, and do not appear to form noticeable tidal tails. Fitting a King 0 0 model to the radial distribution of Sextans stars yields a tidal radius rt = 83:2 ± 7:1 (2.08±0.18 kpc), which implies the majority of detected substructure is gravitationally bound to the galaxy. This finding suggests that Sextans is not undergoing significant tidal disruption from the Milky Way, supporting the scenario in which the orbit of Sextans has a low eccentricity.
    [Show full text]
  • Dark Matter Searches Targeting Dwarf Spheroidal Galaxies with the Fermi Large Area Telescope
    Doctoral Thesis in Physics Dark Matter searches targeting Dwarf Spheroidal Galaxies with the Fermi Large Area Telescope Maja Garde Lindholm Oskar Klein Centre for Cosmoparticle Physics and Cosmology, Particle Astrophysics and String Theory Department of Physics Stockholm University SE-106 91 Stockholm Stockholm, Sweden 2015 Cover image: Top left: Optical image of the Carina dwarf galaxy. Credit: ESO/G. Bono & CTIO. Top center: Optical image of the Fornax dwarf galaxy. Credit: ESO/Digitized Sky Survey 2. Top right: Optical image of the Sculptor dwarf galaxy. Credit:ESO/Digitized Sky Survey 2. Bottom images are corresponding count maps from the Fermi Large Area Tele- scope. Figures 1.1a, 1.2, 1.3, and 4.2 used with permission. ISBN 978-91-7649-224-6 (pp. i{xxii, 1{120) pp. i{xxii, 1{120 c Maja Garde Lindholm, 2015 Printed by Publit, Stockholm, Sweden, 2015. Typeset in pdfLATEX Abstract In this thesis I present our recent work on gamma-ray searches for dark matter with the Fermi Large Area Telescope (Fermi-LAT). We have tar- geted dwarf spheroidal galaxies since they are very dark matter dominated systems, and we have developed a novel joint likelihood method to com- bine the observations of a set of targets. In the first iteration of the joint likelihood analysis, 10 dwarf spheroidal galaxies are targeted and 2 years of Fermi-LAT data is analyzed. The re- sulting upper limits on the dark matter annihilation cross-section range 26 3 1 from about 10− cm s− for dark matter masses of 5 GeV to about 5 10 23 cm3 s 1 for dark matter masses of 1 TeV, depending on the × − − annihilation channel.
    [Show full text]
  • Arxiv:1912.02186V1 [Astro-Ph.GA] 4 Dec 2019 Early in the Formation of an L∗ Galaxy
    Draft version December 6, 2019 Typeset using LATEX twocolumn style in AASTeX63 Elemental Abundances in M31: The Kinematics and Chemical Evolution of Dwarf Spheroidal Satellite Galaxies∗ Evan N. Kirby,1 Karoline M. Gilbert,2, 3 Ivanna Escala,1, 4 Jennifer Wojno,3 Puragra Guhathakurta,5 Steven R. Majewski,6 and Rachael L. Beaton4, 7, y 1California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91125, USA 2Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA 3Department of Physics & Astronomy, Bloomberg Center for Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 4Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 5Department of Astronomy & Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA 7The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (Accepted 3 December 2019) Submitted to AJ ABSTRACT We present deep spectroscopy from Keck/DEIMOS of Andromeda I, III, V, VII, and X, all of which are dwarf spheroidal satellites of M31. The sample includes 256 spectroscopic members across all five dSphs. We confirm previous measurements of the velocity dispersions and dynamical masses, and we provide upper limits on bulk rotation. Our measurements confirm that M31 satellites obey the same relation between stellar mass and stellar metallicity as Milky Way (MW) satellites and other dwarf galaxies in the Local Group. The metallicity distributions show similar trends with stellar mass as MW satellites, including evidence in massive satellites for external influence, like pre-enrichment or gas accretion.
    [Show full text]
  • Model Comparison of the Dark Matter Profiles
    A&A 558, A35 (2013) Astronomy DOI: 10.1051/0004-6361/201321606 & c ESO 2013 Astrophysics Model comparison of the dark matter profiles of Fornax, Sculptor, Carina and Sextans Maarten A. Breddels and Amina Helmi Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands e-mail: [email protected] Received 28 March 2013 / Accepted 16 August 2013 ABSTRACT Aims. We compare dark matter profile models of four dwarf spheroidal galaxies satellites of the Milky Way using Bayesian evidence. Methods. We use orbit based dynamical models to fit the 2nd and 4th moments of the line of sight velocity distributions of the Fornax, Sculptor, Carina and Sextans dwarf spheroidal galaxies. We compare NFW, Einasto and several cored profiles for their dark halos and present the probability distribution functions of the model parameters. Results. For each galaxy separately we compare the evidence for the various dark matter profiles, and find that it is not possible to distinguish between these specific parametric dark matter density profiles using the current data. Nonetheless, from the combined 2 β/2 evidence, we find that is unlikely that all galaxies are embedded in the same type of cored profiles of the form ρDM ∝ 1/(1 + r ) , where β = 3, 4. For each galaxy, we also obtain an almost model independent, and therefore accurate, constraint on the logarithmic slope of the dark matter density distribution at a radius ∼r−3, i.e. where the logarithmic slope of the stellar density profile is −3. Conclusions. For each galaxy, we find that all best fit models essentially have the same mass distribution over a large range in radius (from just below r−3 to the last measured data point).
    [Show full text]
  • PDF Presentatie Van Frank
    13” Frank Hol / Skyheerlen Elfje en Vixen R150S Newton in de jaren ’80 en begin ’90 vooral zon, maan, planeten en Messiers. H.T.S. – vriendin – baan – huis kopen & verbouwen trouwen – kinderen waarneemstop. Vanaf 2006 weer actief waarnemen. Focus op objecten uit de Local Group of Galaxies • 2008: Celestron C14. • 2015: 13” aluminium reisdobson. • 2017-2018-2019: 13” aluminium bino-dobson. Rocherath – SQM 21.2-21.7 13” M31 NGC206 Globulars Stofbanden Stervormings- gebieden … 13” M31 M32 NGC206 Globulars Stofbanden Stervormings- gebieden … NGC206 13” NGC205 M32 M32 is de kern van een NGC 221 galaxy die grotendeels Andromeda opgelokt is door M31. M32 is dan ook net zo X helder als de kern van M31 (met 100 miljoen sterren). Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. De helderste dwerg (vanuit onze breedte) aan de hemel: magnitude 8.1. M110 “Een elliptisch stelsel is NGC 205 dood-saai.” Andromeda Neen, kijk eens hoe mooi het stelsel aan de rand in de X donkere achtergrond verdwijnt. Een watje in de lucht! Telescoop: ≈ 5.0° x 4.0° verrekijker Locatie: (bijna) overal. Een grotere telescoop laat de randen mooi verdwijnen in de omgeving. 30’ x 25’ Burnham’s NGC185 and NGC147 “These two miniature elliptical galaxies appear to be distant Celestial companians of the Great Andromeda Galaxy M31. They are Handbook some 7 degrees north of it in the sky, and are approximately the same distance from us, about 2.2 milion light years.” Start van een lange zoektocht (die nog niet voorbij is). 13” NGC147 Twee elliptische stelsels. & NGC147 is een stuk moeilijker dan NGC185.
    [Show full text]
  • The Variable Star Population in the Sextans Dwarf Spheroidal Galaxy
    TheThe variablevariable starstar populationpopulation inin thethe SextansSextans dwarfdwarf spheroidalspheroidal galaxygalaxy Kathy Vivas Cerro Tololo Interamerican Observatory La Serena, Chile In collaboration with Javier Alonso-García (U. of Antofagasta, Chile) Mario Mateo (U. of Michigan, USA) Alistair Walker (CTIO, Chile) David Nidever (NOAO, USA) DECam Community Science Workshop 2018 1 The Role of Variable Stars ● Tracers of different stellar populations ● Standard candles → Distance Scale Variable stars in the Carina dwarf spheroidal galaxy (Vivas & Mateo 2013) DECam Community Science Workshop 2018 2 Properties of the Satellites of the Milky Way Drlica-Wagner et al., 2015 The new discoveries are likely to be ultra-faint dwarf galaxies. Gallart et al. 2015 Classical dwarfs display a variety of SFRs DECam Community Science Workshop 2018 3 CMDs of Satellite Dwarfs Brown et al 2014 On the other hand, ultra-faint dwarfs seem Monelli et al 2003 to be consistent with only and old Galaxies like Carina show obvious population signs of multiple bursts of star formation DECam Community Science Workshop 2018 4 Leo T: a UFD with extended star formation Clementini et al (2012) DECam Community Science Workshop 2018 5 Helium-Burning Pulsating Stars 3.0 Anomalous Cepheids 2.0 0.7 RR Lyrae Stars Variable stars and theoretical isochrones in Leo I (Fiorentino et al 2012) DECam Community Science Workshop 2018 6 Dwarf Cepheid Stars (collective name for δ Scuti or SX Phe) Intermediate age population TO Old Population TO Coppola et al 2015, Vivas & Mateo 2013 DECam Community Science Workshop 2018 7 Dwarf Cepheids as distance indicators Need to study more systems! Cohen et al (2012) P-L relationship (independent of metallicity) → standard candles DECam Community Science Workshop 2018 8 Dwarf Cepheids in other galaxies 85 dwarf cepheids in Fornax A few thousand in (Poretti et al.
    [Show full text]
  • Draft181 182Chapter 10
    Chapter 10 Formation and evolution of the Local Group 480 Myr <t< 13.7 Gyr; 10 >z> 0; 30 K > T > 2.725 K The fact that the [G]alactic system is a member of a group is a very fortunate accident. Edwin Hubble, The Realm of the Nebulae Summary: The Local Group (LG) is the group of galaxies gravitationally associ- ated with the Galaxy and M 31. Galaxies within the LG have overcome the general expansion of the universe. There are approximately 75 galaxies in the LG within a 12 diameter of ∼3 Mpc having a total mass of 2-5 × 10 M⊙. A strong morphology- density relation exists in which gas-poor dwarf spheroidals (dSphs) are preferentially found closer to the Galaxy/M 31 than gas-rich dwarf irregulars (dIrrs). This is often promoted as evidence of environmental processes due to the massive Galaxy and M 31 driving the evolutionary change between dwarf galaxy types. High Veloc- ity Clouds (HVCs) are likely to be either remnant gas left over from the formation of the Galaxy, or associated with other galaxies that have been tidally disturbed by the Galaxy. Our Galaxy halo is about 12 Gyr old. A thin disk with ongoing star formation and older thick disk built by z ≥ 2 minor mergers exist. The Galaxy and M 31 will merge in 5.9 Gyr and ultimately resemble an elliptical galaxy. The LG has −1 vLG = 627 ± 22 km s with respect to the CMB. About 44% of the LG motion is due to the infall into the region of the Great Attractor, and the remaining amount of motion is due to more distant overdensities between 130 and 180 h−1 Mpc, primarily the Shapley supercluster.
    [Show full text]
  • Elemental Abundances in the Local Group: Tracing the Formation History of the Great Andromeda Galaxy
    Elemental Abundances in the Local Group: Tracing the Formation History of the Great Andromeda Galaxy Thesis by Ivanna A. Escala In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 Defended 2020 May 29 ii © 2020 Ivanna A. Escala ORCID: 0000-0002-9933-9551 All rights reserved iii Para mi familia, y para mi iv ACKNOWLEDGEMENTS I would like to thank the many people that have provided me with guidance through- out my thesis, and who have helped me reach the point in my life defined by this achievement. It would have been infinitely more challenging without you all, and I am grateful beyond words. First and foremost, I would like to thank my thesis advisor, Evan N. Kirby, for always making his students a priority. He has been an invaluable mentor, teacher, collaborator, and friend. I am especially thankful that Evan had enough trust in my ability as a competent and independent scientist to be supportive of my extended visit to Princeton. I am privileged to have him as an advisor. I would also like to thank my various mentors throughout my undergraduate edu- cation at the University of California, San Diego, to whom I am indebted: Adam J. Burgasser, who granted me my first opportunity to do research in astronomy, and who believed in me when I most needed it; Dušan Kereš, who helped me develop my skills as a nascent researcher with immeasurable patience and kindness; and Alison Coil, who provided me with much appreciated advice and support on the challenges of navigating a career in astronomy.
    [Show full text]
  • The Galaxies of the Local Group Sidney Van Den Bergh Frontmatter More Information
    Cambridge University Press 978-0-521-03743-3 - The Galaxies of the Local Group Sidney van den Bergh Frontmatter More information The Local Group is a small cluster of galaxies of which 35 members are currently known, including the Milky Way. It is believed that at least half of all galaxies in the Universe belong to similar groups. Galaxies of the Local Group can be used as “stepping stones” to determine the distance to more remote galaxies, and thus they help to measure the size and age of the Universe. Studying stars of differing ages in different members of the Local Group allows us to see how galaxies evolve over timescales in excess of 10 billion years. The oldest stars in the Local Group galaxies also provide critical information on the physical conditions of the early Universe. The Local Group thus provides many valuable clues to understanding the rest of the Universe. This authoritative volume provides a comprehensive and up-to-date synthesis of what is currently known about the Local Group of galaxies. It includes a summary of our knowledge of each of the individual member galaxies, as well as those galaxies previously regarded as possible members. After examining each galaxy in detail, the book goes on to examine the mass, stability, and evolution of the Local Group as a whole. The book includes many important previously unpublished results and conclusions. With characteristic clarity, Professor van den Bergh provides in this book a mas- terful summary of all that is known about the galaxies of the Local Group and their evolution, and he expertly places this knowledge in the wider context of ongoing studies of galaxy formation and evolution, the cosmic distance scale, and the condi- tions in the early Universe.
    [Show full text]
  • Ultra-Faint Dwarfs and Dwarf-Spheroidal Galaxies: the Andromeda Satellites
    Mem. S.A.It. Vol. 86, 281 c SAIt 2015 Memorie della Ultra-faint dwarfs and dwarf-spheroidal galaxies: the Andromeda satellites G. Coppola1, F. Cusano2, G. Clementini2, V. Ripepi1, I. Musella1, L. Federici2, M. Marconi1, L. Di Fabrizio3, A. Ferguson4, M. Tosi2, F. Fusi Pecci2, R. Contreras2, M. Dall’Ora1, and A. Garofalo2;5 1 INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli, Italy 2 INAF – Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy 3 INAF – Centro Galileo Galilei & Telescopio Nazionale Galileo, E-38700 S. Cruz de La Palma, Spain 4 SUPA – Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ 5 Dipartimento di Astronomia, Universita` di Bologna, Via Ranzani 1, I-40127 Bologna, Italy Abstract. We present preliminary results on the study of the variable stars and the stellar population of the Andromeda IX (And IX) and the Andromeda X (And X) companions of M31. The study is based on g0 , r0 time series photometry that we obtained as part of our ESO Large Program 186.D-2013 at the Gran Telescopio Canarias (GTC, P.I. G. Clementini). More than twenty RR Lyrae stars were discovered in each galaxy and well sampled and accurate light curves were obtained. The color magnitude diagrams (CMDs) obtained by stacking the 23 pairs of g0 , r0 exposures available for each galaxy are ∼ 2 mag deeper than those presently available in the literature. And IX and And X have prominent red giant branches and clearly visible horizontal branches, although both galaxies are rather contaminated by field stars.
    [Show full text]