263 — 13 November 2014 Editor: Bo Reipurth ([email protected]) List of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies of Photoevaporating Protoplanetary Discs from the VLT To
Photoevaporating protoplanetary discs from the VLT to the E-ELT era Yiannis Tsamis [email protected] J. R. Walsh, W. J. Henney, N. Flores-Fajardo, J. M. Vilchez, D. Pequignot, A. Mesa-Delgado 1. Introduction and rationale LV2 (Orion) Proplyds are evaporating protoplanetary disks around young stars in H II regions (e.g. McCaughrean & O'Dell 1996; Mann & Williams 2010). The archetypal proplyds were identified within Orion, associated with low-mass star formation reminiscent of the protosolar nebula. They are clustered near the hot massive stars of the Trapezium. Massive stellar associations, such as Orion, are thought to represent the closest analogues to the birth environment of our solar system (Adams 2010). Proplyds are thus important to both planetary science and astrophysics. The E-ELT should revolutionize their study. The elemental content and chemistry of proplyds are virtually unknown, but studies of their composition may help to elucidate (a) the origin of the Metallicity – Giant Planet Frequency correlation (Petigura & Marcy 2011), (ii) mechanisms of disk dispersal, (iii) grain-growth and planetesimal formation in externally irradiated disks. Until very recently there have been no observational studies devoted to the elemental composition of Orion-like disks to provide constraints on planet formation theory. Our programme (Tsamis et al. 2011; Tsamis & Walsh 2011; Tsamis et al. 2013) is yielding the first inventory of proplyd He, C, N, O, Ne, S, Cl, Ar, Fe abundances: these are accessible via the analysis of their forbidden and permitted emission lines in far-UV to near-IR spectra. Here studies of Orion proplyds LV 2 and HST 10 are presented, based on VLT FLAMES optical integral field spectroscopy (Fig. -
Photoevaporation of Protoplanetary Disks by UV Photons from Nearby Massive Stars : Observations of Proplyds and Modeling Jason Champion
Photoevaporation of protoplanetary disks by UV photons from nearby massive stars : observations of proplyds and modeling Jason Champion To cite this version: Jason Champion. Photoevaporation of protoplanetary disks by UV photons from nearby massive stars : observations of proplyds and modeling. Solar and Stellar Astrophysics [astro-ph.SR]. Université Paul Sabatier - Toulouse III, 2017. English. NNT : 2017TOU30392. tel-02307075 HAL Id: tel-02307075 https://tel.archives-ouvertes.fr/tel-02307075 Submitted on 7 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THTHESEESE`` En vue de l’obtention du DOCTORAT DE L’UNIVERSITE´ DE TOULOUSE D´elivr´e par : l’Universit´eToulouse 3 Paul Sabatier (UT3 Paul Sabatier) Pr´esent´ee et soutenue le 25/09/2017 par : Jason CHAMPION Photoevaporation des disques protoplanétaires par les photons UV d’étoiles massives proches : observation de proplyds et modélisation JURY Maryvonne GERIN Directeur de Recherche Pr´esident du Jury Yann ALIBERT Maître de Conférence Rapporteur Emilie HABART Charg´ede Recherche Examinateur Karine DEMYK Directeur de Recherche Examinateur Emmanuel CAUX Directeur de Recherche Examinateur Olivier BERNE Charg´ede Recherche Directeur de Thèse Ecole´ doctorale et sp´ecialit´e : SDU2E : Astrophysique, Sciences de l’Espace, Plan´etologie Unit´e de Recherche : Institut de Recherche en Astrophysique et Plan´etologie (UMR 5277) Directeur de Th`ese : Olivier BERNE Rapporteurs : Maryvonne GERIN et Yann ALIBERT ii Remerciements Enfin, nous pouvons commencer. -
The Birth of Stars and Planets
Unit 6: The Birth of Stars and Planets This material was developed by the Friends of the Dominion Astrophysical Observatory with the assistance of a Natural Science and Engineering Research Council PromoScience grant and the NRC. It is a part of a larger project to present grade-appropriate material that matches 2020 curriculum requirements to help students understand planets, with a focus on exoplanets. This material is aimed at BC Grade 6 students. French versions are available. Instructions for teachers ● For questions and to give feedback contact: Calvin Schmidt [email protected], ● All units build towards the Big Idea in the curriculum showing our solar system in the context of the Milky Way and the Universe, and provide background for understanding exoplanets. ● Look for Ideas for extending this section, Resources, and Review and discussion questions at the end of each topic in this Unit. These should give more background on each subject and spark further classroom ideas. We would be happy to help you expand on each topic and develop your own ideas for your students. Contact us at the [email protected]. Instructions for students ● If there are parts of this unit that you find confusing, please contact us at [email protected] for help. ● We recommend you do a few sections at a time. We have provided links to learn more about each topic. ● You don’t have to do the sections in order, but we recommend that. Do sections you find interesting first and come back and do more at another time. ● It is helpful to try the activities rather than just read them. -
ALMA Observations of Irradiated Protoplanetary Disks
ALMAALMA ObservationsObservations ofof IrradiatedIrradiated ProtoplanetaryProtoplanetary DisksDisks John Bally 1 Henry Throop 2 1,2 Center for Astrophysics and Space Astronomy 1Department of Astrophysical and Planetary Sciences University of Colorado, Boulder 2Southwest Research Institute (SWRI), Boulder YSOs near massive stars: UV photo-ablation of disks irradiated jets d253-535 in M43 OutlineOutline • Most stars and planets form in clusters / OB associations: (Lada & Lada 03) - UV: External (OB stars) + Self-irradiation => Disk photo-ablation => mass loss: EUV, FUV Review Orion’s proplyds => Metal depletion in wind / enrichment of disk => UV-triggered planetesimal formation = Jets => active accretion => disks - Carina - The Bolocam 1.1 mm survey of the Galactic plane • What will ALMA Contribute?: [5 to 50 mas resolution!] - Surveys of HII regions & clusters (Orion, Carina, …) - Best done as community-led Legacy surveys => Clusters of sources: disk radii, masses, I-front radii => Resolve ionized flows, disks features, protoplanets f-f, recombination lines, entrained hot dust => Neutral flow composition, velocity, structure CI, CO, dust, photo-chemistry products => Disk B (Zeeman & dust), composition, structure, gaps the organic forest ALMAALMA && irradiatedirradiated disksdisks 10 µµµJy sensitivity & 10 mas resolution 3 mm 1.3 mm 850 µµµm 450 µµµm 350 µµµm Band 3 6 7 9 10 Resolution 0.04” 0.019” 0.013” 0.007” 0.005” (B = 14 km) AU AU AU AU AU Sco-Cen 6 3 2 1 0.7 (150 pc) Orion 17 8 6 3 2 (430 pc) Carina 90 42 29 15 11 (2,200) The Orion/Eridanus -
Spectroscopic Analysis of Tremendous--Outburst--Nova
Astronomy & Astrophysics manuscript no. schmidto April 5, 2018 (DOI: will be inserted by hand later) Spectroscopic analysis of tremendous–outburst–nova candidates ⋆ L. Schmidtobreick1, C. Tappert2, A. Bianchini3, and R. E. Mennickent4 1 European Southern Observatory, Casilla 19001, Santiago 19, Chile. 2 Departamento de Astronom´ıa y Astrof´ısica, Pontificia Universidad Cat´olica, Casilla 306, Santiago 22, Chile 3 Dipartimento di Astronomia, Universit`adi Padova, Vicolo dell’Osservatorio 2, I-35122, Padova, Italy 4 Grupo de Astronom´ıa, Universidad de Concepci´on, Casilla 160–C, Concepci´on, Chile Received xxx xxx, xxx; accepted xxx xxx, xxx Abstract. In the course of a long-term project investigating classical novae with large outburst amplitudes, we have performed optical spectroscopy of several old–nova candidates. We here present the spectra of the candidates V630 Sgr, XX Tau, CQ Vel, V842 Cen, and V529 Ori, that hitherto lacked such classification. While the first four show typical spectra for cataclysmic variables, and can thus be identified as such, V529 Ori is probably misclassified. Of special interest are the two systems XX Tau and V842 Cen, which show all signs for being low mass transfer systems. As such they can be used to judge the evolution scenarios for novae. In particular, given the rather young age of their outburst, it appears more likely that these systems are not on their way into hibernation, (i.e., cutting off mass transfer for a longer period of time), but are simply settling down towards their original configuration of comparatively low, but steady, mass transfer, such as for dwarf novae. -
Worlds Apart - Finding Exoplanets
Worlds Apart - Finding Exoplanets Illustrated Video Credit: NASA, JPL-Caltech, T. Pyle; Acknowledgement: djxatlanta Dr. Billy Teets Vanderbilt University Dyer Observatory Osher Lifelong Learning Institute Thursday, November 5, 2020 Outline • A bit of info and history about planet formation theory. • A discussion of the main exoplanet detection techniques including some of the missions and telescopes that are searching the skies. • A few examples of “notable” results. Evolution of our Thinking of the Solar System • First “accepted models” were geocentric – Ptolemy • Copernicus – heliocentric solar system • By 1800s, heliocentric model widely accepted in scientific community • 1755 – Immanuel Kant hypothesizes clouds of gas and dust • 1796 – Kant and P.-S. LaPlace both put forward the Solar Nebula Disk Theory • Today – if Solar System formed from an interstellar cloud, maybe other clouds formed planets elsewhere in the universe. Retrograde Motion - Mars Image Credits: Tunc Tezel Retrograde Motion as Explained by Ptolemy To explain retrograde, the concept of the epicycle was introduced. A planet would move on the epicycle (the smaller circle) as the epicycle went around the Earth on the deferent (the larger circle). The planet would appear to shift back and forth among the background stars. Evolution of our Thinking of the Solar System • First “accepted models” were geocentric – Ptolemy • Copernicus – heliocentric solar system • By 1800s, heliocentric model widely accepted in scientific community • 1755 – Immanuel Kant hypothesizes clouds of gas and dust • 1796 – Kant and P.-S. LaPlace both put forward the Solar Nebula Disk Theory • Today – if Solar System formed from an interstellar cloud, maybe other clouds formed planets elsewhere in the universe. -
U.S. Naval Observatory Washington, DC 20392-5420 This Report Covers the Period July 2001 Through June Dynamical Astronomy in Order to Meet Future Needs
1 U.S. Naval Observatory Washington, DC 20392-5420 This report covers the period July 2001 through June dynamical astronomy in order to meet future needs. J. 2002. Bangert continued to serve as Department head. I. PERSONNEL A. Civilian Personnel A. Almanacs and Other Publications Marie R. Lukac retired from the Astronomical Appli- cations Department. The Nautical Almanac Office ͑NAO͒, a division of the Scott G. Crane, Lisa Nelson Moreau, Steven E. Peil, and Astronomical Applications Department ͑AA͒, is responsible Alan L. Smith joined the Time Service ͑TS͒ Department. for the printed publications of the Department. S. Howard is Phyllis Cook and Phu Mai departed. Chief of the NAO. The NAO collaborates with Her Majes- Brian Luzum and head James R. Ray left the Earth Ori- ty’s Nautical Almanac Office ͑HMNAO͒ of the United King- entation ͑EO͒ Department. dom to produce The Astronomical Almanac, The Astronomi- Ralph A. Gaume became head of the Astrometry Depart- cal Almanac Online, The Nautical Almanac, The Air ment ͑AD͒ in June 2002. Added to the staff were Trudy Almanac, and Astronomical Phenomena. The two almanac Tillman, Stephanie Potter, and Charles Crawford. In the In- offices meet twice yearly to discuss and agree upon policy, strument Shop, Tie Siemers, formerly a contractor, was hired science, and technical changes to the almanacs, especially to fulltime. Ellis R. Holdenried retired. Also departing were The Astronomical Almanac. Charles Crawford and Brian Pohl. Each almanac edition contains data for 1 year. These pub- William Ketzeback and John Horne left the Flagstaff Sta- lications are now on a well-established production schedule. -
X-Ray Emission from Orion Nebula Cluster Stars with Circumstellar Disks and Jets Joel H
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RIT Scholar Works Rochester Institute of Technology RIT Scholar Works Articles 2005 X-Ray Emission from Orion Nebula Cluster Stars with Circumstellar Disks and Jets Joel H. Kastner Rochester Institute of Technology Geoffrey Franz Rochester Institute of Technology Nicolas Grosso Universite Joseph-Fourier John Bally University of Colorado Mark J. McCaughrean Astrophysikalisches Institut Postdam See next page for additional authors Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation Joel H. Kastner et al 2005 ApJS 160 511 https://doi.org/10.1086/432096 This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Authors Joel H. Kastner, Geoffrey Franz, Nicolas Grosso, John Bally, Mark J. McCaughrean, Konstantin Getman, Eric D. Feigelson, and Norbert S. Schulz This article is available at RIT Scholar Works: http://scholarworks.rit.edu/article/862 The Astrophysical Journal Supplement Series, 160:511–529, 2005 October A # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. X-RAY EMISSION FROM ORION NEBULA CLUSTER STARS WITH CIRCUMSTELLAR DISKS AND JETS Joel H. Kastner,1 Geoffrey Franz,1 Nicolas Grosso,2 John Bally,3 Mark J. McCaughrean,4 Konstantin Getman,5 Eric D. Feigelson,5 and Norbert S. Schulz6 Received 2005 February 2; accepted 2005 May 13 ABSTRACT We investigate the X-ray and near-infrared emission properties of a sample of pre–main-sequence (PMS) stellar systems in the Orion Nebula Cluster (ONC) that display evidence for circumstellar disks (‘‘proplyds’’) and optical jets in Hubble Space Telescope (HST ) imaging. -
COMMISSIONS 27 and 42 of the I.A.U. INFORMATION BULLETIN on VARIABLE STARS Nos. 4101{4200 1994 October { 1995 May EDITORS: L. SZ
COMMISSIONS AND OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Nos Octob er May EDITORS L SZABADOS and K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI KONKOLY OBSERVATORY H BUDAPEST PO Box HUNGARY IBVSogyallakonkolyhu URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN 2 CONTENTS 1994 No page E F GUINAN J J MARSHALL F P MALONEY A New Apsidal Motion Determination For DI Herculis ::::::::::::::::::::::::::::::::::::: D TERRELL D H KAISER D B WILLIAMS A Photometric Campaign on OW Geminorum :::::::::::::::::::::::::::::::::::::::::::: B GUROL Photo electric Photometry of OO Aql :::::::::::::::::::::::: LIU QUINGYAO GU SHENGHONG YANG YULAN WANG BI New Photo electric Light Curves of BL Eridani :::::::::::::::::::::::::::::::::: S Yu MELNIKOV V S SHEVCHENKO K N GRANKIN Eclipsing Binary V CygS Former InsaType Variable :::::::::::::::::::: J A BELMONTE E MICHEL M ALVAREZ S Y JIANG Is Praesep e KW Actually a Delta Scuti Star ::::::::::::::::::::::::::::: V L TOTH Ch M WALMSLEY Water Masers in L :::::::::::::: R L HAWKINS K F DOWNEY Times of Minimum Light for Four Eclipsing of Four Binary Systems :::::::::::::::::::::::::::::::::::::::::: B GUROL S SELAN Photo electric Photometry of the ShortPeriod Eclipsing Binary HW Virginis :::::::::::::::::::::::::::::::::::::::::::::: M P SCHEIBLE E F GUINAN The Sp otted Young Sun HD EK Dra ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::: M BOS Photo electric Observations of AB Doradus ::::::::::::::::::::: YULIAN GUO A New VR Cyclic Change of H in Tau :::::::::::::: -
X-Shooter Science Verification Proposal
X-shooter Science Veri¯cation Proposal Deep X-shooter spectroscopy of proplyds in diverse H II regions Investigators Institute EMAIL Y. G. Tsamis IAA-CSIC [email protected] J. R. Walsh ESO [email protected] J. M. V¶³lchez IAA-CSIC [email protected] R. H. Rubin NASA/Ames [email protected] C. R. O'Dell Vanderbilt Univ [email protected] M. van den Ancker ESO [email protected] Abstract: Protoplanetary disks (proplyds) embedded in H II regions are landmark objects in the study of how circumstellar disks and eventually planetary systems form in the vicinity of massive star forming areas. Analysis of their emission line spectra provides a window into their properties. Due to their intrinsically very high densities, bright collisionally-excited line (CEL) diagnostics are biased indicators of the physical conditions in proplyds. On the other hand, the much fainter metallic recombination lines (RLs) are excellent probes of clumpy, relatively low temperature plasmas, and can yield a direct unbiased measure of the temperature, density strati¯cation, and metallicity of these sources. We propose to perform deep X-shooter IFU spectroscopy of four well-de¯ned proplyds in NGC 3372, NGC 3603, M8 and M42 with a view to developing robust RL-based diagnostics of their properties. This project will provide template proplyd spectra from the near-UV to the near-IR covering a wide range of novel diagnostics in a variety of galactic H II environments. Scienti¯c Case: Proplyds are variants of young stellar objects and in the early 1990s provided the ¯rst evidence of gaseous dusty disks around YSOs. -
Arxiv:Astro-Ph/0506445V1 20 Jun 2005
THERMAL DUST EMISSION FROM PROPLYDS, UNRESOLVED DISKS, AND SHOCKS IN THE ORION NEBULA1 Nathan Smith2,3, John Bally2, Ralph Y. Shuping4, Mark Morris5, and Marc Kassis6 ABSTRACT We present a new 11.7 µm mosaic image of the inner Orion nebula obtained with T-ReCS on Gemini South. The map covers 2.′7×1.′6 with diffraction-limited spatial resolution of 0′′. 35; it includes the BN/KL region, the Trapezium, and OMC-1 South. Excluding BN/KL, we detect 91 thermal-infrared point sources, with 27 known proplyds and over 30 “naked” stars showing no extended structure in Hubble Space Telescope (HST) images. Within the region we surveyed, ∼80% of known proplyds show detectable thermal-infrared emission, almost 40% of naked stars are detected at 11.7 µm, and the fraction of all visible sources with 11.7 µm excess emission (including both proplyds and stars with unresolved disks) is roughly 50%. These fractions exclude embedded sources. Thermal dust emission from stars exhibiting no extended structure in HST images is surprising, and means that they have retained circumstellar dust disks comparable to the size of our solar system. Proplyds and stars with infrared excess are not distributed randomly in the nebula; instead, they show a clear anti-correlation in their spatial distribution, with proplyds clustered close to θ1C, and other infrared sources found preferentially farther away. We suspect that the clustered proplyds trace the youngest ∼0.5 Myr age group associated with the Trapezium, while the more uniformly-distributed sources trace the older 1–2 Myr population of the Orion Nebula Cluster. -
Gravity's Influence on the Development of the Solar System
GRAVITY’S INFLUENCE ON THE DEVELOPMENT OF THE SOLAR SYSTEM RONALD E. MICKLE Denver, Colorado 80211 ©2000 Ronald E. Mickle ABSTRACT Gravity attracts. That attraction is the essence of a power that governs and affects all matter. And, more interestingly, gravity sets up a tension of mutual attraction resulting in an order that extends to all matter. For five billion years, gravity has exerted its influence on our solar system. Not until the mid-17th century was Isaac Newton able to validate the heliocentric system by mathematically proving gravity’s existence through use of his universal laws of gravity. These laws explained why and how the planets orbit the sun and discounted the age-old theory of an earth- centered system [Kaufman & Freedman, Universe, Fifth Edition]. Even though the universal laws of gravity assist in explaining the interactions within the solar nebula, they don’t encompass the variables involved in the evolution of the solar system. Gravity’s role in the development of the solar system, from the interstellar medium (ISM), to the solar nebula and finally to the current system, can help us understand our universe. There are two slightly opposing theories for the solar system’s development: A terrestrial planet formed in the inner region and the Jovian-size planet in the outer, versus the Jovian-size planet formed in the inner region. The discussion here will focus on a two-planet model of evolution: one terrestrial and one Jovian. 1. EARLY FORMATION It is widely accepted that the solar system formed out of the solar nebula, through the coalescing of grains of dust and gas by gravity and chemical bonding.