Operating Systems Security

Total Page:16

File Type:pdf, Size:1020Kb

Operating Systems Security Operating Systems Security 1 The Boot Sequence • The action of loading an operating system into memory from a powered-off state is known as booting or bootstrapping. • When a computer is turned on, it first executes code stored in a firmware component known as the BIOS (basic input/output system). • On modern systems, the BIOS loads into memory the second-stage boot loader, which handles loading the rest of the operating system into memory and then passes control of execution to the operating system. 2 BIOS Passwords • A malicious user could potentially seize execution of a computer at several points in the boot process. • To prevent an attacker from initiating the first stages of booting, many computers feature a BIOS password that does not allow a second- stage boot loader to be executed without proper authentication. 3 Hibernation • Modern machines have the aBility to go into a powered-off state known as hibernation. • While going into hiBernation, the OS stores the contents of machine’s memory into a hibernation file (such as hiBerfil.sys) on disk so the computer can Be quickly restored later. • But… without additional security precautions, hiBernation exposes a machine to potentially invasive forensic investigation. 1. User closes a laptop computer, putting it into hibernation. 2. Attacker copies the hiberfil.sys file to discover any unencrypted passwords that were stored in memory when the computer 4 was put into hibernation. Event Logging • Keeping track of what processes are running, what other machines have interacted with the system via the Internet, and if the operating system has experienced any unexpected or suspicious behavior can often leave important clues not only for troubleshooting ordinary problems, but also for determining the cause of a security breach. 5 Process Explorer 6 Memory and Filesystem Security • The contents of a computer are encapsulated in its memory and filesystem. • Thus, protection of a computer’s content has to start with the protection of its memory and its filesystem. 7 Password Security • The basic approach to guessing passwords from the password file is to conduct a dictionary attack, where each word in a dictionary is hashed and the resulting value is compared with the hashed passwords stored in the password file. • A dictionary of 500,000 “words” is often enough to discover most passwords. 8 Password Salt • One way to make the dictionary attack more difficult to launch is to use salt. • Associate a random number with each userid. • Rather than comparing the hash of an entered password with a stored hash of a password, the system compares the hash of an entered password and the salt for the associated userid with a stored hash of the password and salt. 9 How Password Salt Works Without salt: 1. User types userid, X, and password, P. Password file: 2. System looks up H, the stored hash of X’s … password. X: H … 3. System tests whether h(P) = H. With salt: 1. User types userid, X, and password, P. Password file: 2. System looks up S and H, where S is the random salt for userid X and H is stored hash … of S and X’s password. X: S, H … 3. System10 tests whether h(S||P) = H. How Salt Increases Search Space Size • Assuming that an attacker cannot find the salt associated with a userid he is trying to compromise, then the search space for a dictionary attack on a salted password is of size 2B*D, where B is the numBer of Bits of the random salt and D is the size of the list of words for the dictionary attack. • For example, if a system uses a 32-Bit salt for each userid and its users pick passwords in a 500,000 word dictionary, then the search space for attacking salted passwords would Be 232 * 500,000 = 2,147,483,648,000,000, which is over 2 quadrillion. • Also, even if an attacker can find a salt password for a userid, he only learns one password. 11 Filesystem Security 12 General Principles • Files and folders are managed • A file handle provides an by the operating system opaque identifier for a • Applications, including shells, file/folder access files through an API • File operations • Access control entry (ACE) – Open file: returns file handle – Allow/deny a certain type of – Read/write/execute file access to a file/folder by – Close file: invalidates file user/group handle • Access control list (ACL) • Hierarchical file organization – Collection of ACEs for a – Tree (Windows) file/folder – DAG (Linux) 13 Discretionary Access Control (DAC) • Users can protect what they own – The owner may grant access to others – The owner may define the type of access (read/write/execute) given to others • DAC is the standard model used in operating systems • Mandatory Access Control (MAC) – Alternative model not covered in this lecture – Multiple levels of security for users and documents – Read down and write up principles 14 Closed vs. Open Policy Closed policy Open Policy – Also called “default secure” • Deny Tom read access to “foo” • Give Tom read access to “foo” • Deny Bob r/w access to “bar” • Give Bob r/w access to “bar • Tom: I would like to read “foo” • Tom: I would like to read “foo” – Access denied – Access allowed • Tom: I would like to read “bar” • Tom: I would like to read “bar” – Access allowed – Access denied 15 Closed Policy with Negative Authorizations and Deny Priority • Give Tom r/w access to “bar” • Deny Tom write access to “bar” • Tom: I would like to read “bar” – Access allowed • Tom: I would like to write “bar” – Access denied • Policy is used by Windows to manage access control to the file system 16 Access Control Entries and Lists • An Access Control List (ACL) for a resource (e.g., a file or folder) is a sorted list of zero or more Access Control Entries (ACEs) • An ACE specifies that a certain set of accesses (e.g., read, execute and write) to the resources is allowed or denied for a user or group • Examples of ACEs for folder “BoB’s CS167 Grades” – Bob; Read; Allow – TAs; Read; Allow – TWD; Read, Write; Allow – Bob; Write; Deny – TAs; Write; Allow 17 Linux vs. Windows • Linux • Windows – Allow-only ACEs – Allow and deny ACEs – Access to file depends on – By default, deny ACEs ACL of file and of all its precede allow ones ancestor folders – Access to file depends only – Start at root of file system on file’s ACL – Traverse path of folders – ACLs of ancestors ignored – Each folder must have when access is requested execute (cd) permission – Permissions set on a folder – Different paths to same file usually propagated to not equivalent descendants (inheritance) – File’s ACL must allow – System keeps track of requested access inherited ACE’s 18 Linux File Access Control • File Access Control for: – Files – Directories – Therefore… • \dev\ : devices • \mnt\ : mounted file systems • What else? Sockets, pipes, symbolic links… 19 Linux File System • Tree of directories (folders) • Each directory has links to zero or more files or directories • Hard link – From a directory to a file – The same file can have hard links from multiple directories, each with its own filename, but all sharing owner, group, and permissions – File deleted when no more hard links to it • Symbolic link (symlink) – From a directory to a target file or directory – Stores path to target, which is traversed for each access – The same file or directory can have multiple symlinks to it – Removal of symlink does not affect target – Removal of target invalidates (but not removes) symlinks to it – Analogue of Windows shortcut or Mac OS alias 20 Unix Permissions • Standard for all UNIXes • Every file is owned by a user and has an associated group • Permissions often displayed in compact 10-character notation • To see permissions, use ls –l • For the first character a - (hyphen) indicates a plain file, d a directory and l a soft link. • The remaining 9 characters are split into 3 components of 3 characters each, to describe the user's, group's and others' privileges respectively. • Within each 3 character triplet, the first indicates read permission, the second is for write permission and the third is for execute permission. • If the r, w or x character is present, the permission is allowed, if the position is occupied by a - (hyphen) the permission is denied 21 Directory Rights • On a directory, the x permission means something different from the ability to execute a file. • Directories can't be executed. Here the x permission means the ability to search through, or traverse a directory to access subdirectories, whether or not you are allowed to read the directory being traversed. Being allowed to write to a directory enables files to be renamed, or deleted within it. 22 Unix Permissions • Standard for all UNIXes • Every file is owned by a user and has an associated group • Permissions often displayed in compact 10-character notation • To see permissions, use ls –l jk@sphere:~/test$ ls –l total 0 -rw-r----- 1 jk ugrad 0 2005-10-13 07:18 file1 -rwxrwxrwx 1 jk ugrad 0 2005-10-13 07:18 file2 23 File Permission Examples 24 Working Graphically with Permissions • Several Linux GUIs exist for displaying and changing permissions • In KDE’s file manager Konqueror, right-click on a file and choose Properties, and click on the Permissions taB: • Changes can be made here (more aBout changes later) 25 Sharing data on a multiuser system • Giving write access on your own directory isn't a safe way to share data. This gives the ability to do anything (accidently or deliberately) to any of the contents of the directory.
Recommended publications
  • IT1100 : Introduction to Operating Systems Chapter 15 What Is a Partition? What Is a Partition? Linux Partitions What Is Swap? M
    IT1100 : Introduction to Operating Systems Chapter 15 What is a partition? A partition is just a logical division of your hard drive. This is done to put data in different locations for flexibility, scalability, ease of administration, and a variety of other reasons. One reason might be so you can install Linux and Windows side-by-side. What is a partition? Another reason is to encapsulate your data. Keeping your system files and user files separate can protect one or the otherfrom malware. Since file system corruption is local to a partition, you stand to lose only some of your data if an accident occurs. Upgrading and/or reformatting is easier when your personal files are stored on a separate partition. Limit data growth. Runaway processes or maniacal users can consume so much disk space that the operating system no longer has room on the hard drive for its bookkeeping operations. This will lead to disaster. By segregating space, you ensure that things other than the operating system die when allocated disk space is exhausted. Linux Partitions In Linux, a minimum of 1 partition is required for the / . Mounting is the action of connecting a filesystem/partition to a particular point in the / root filesystem. I.e. When a usb stick is inserted, it is assigned a particular mount point and is available to the filesytem tree. - In windows you might have an A:, or B:, or C:, all of which point to different filesystems. What is Swap? If RAM fills up, by running too many processes or a process with a memory leak, new processes will fail if your system doesn’t have a way to extend system memory.
    [Show full text]
  • Storage Administration Guide Storage Administration Guide SUSE Linux Enterprise Server 12 SP4
    SUSE Linux Enterprise Server 12 SP4 Storage Administration Guide Storage Administration Guide SUSE Linux Enterprise Server 12 SP4 Provides information about how to manage storage devices on a SUSE Linux Enterprise Server. Publication Date: September 24, 2021 SUSE LLC 1800 South Novell Place Provo, UT 84606 USA https://documentation.suse.com Copyright © 2006– 2021 SUSE LLC and contributors. All rights reserved. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”. For SUSE trademarks, see https://www.suse.com/company/legal/ . All other third-party trademarks are the property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its aliates. Asterisks (*) denote third-party trademarks. All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Neither SUSE LLC, its aliates, the authors nor the translators shall be held liable for possible errors or the consequences thereof. Contents About This Guide xii 1 Available Documentation xii 2 Giving Feedback xiv 3 Documentation Conventions xiv 4 Product Life Cycle and Support xvi Support Statement for SUSE Linux Enterprise Server xvii • Technology Previews xviii I FILE SYSTEMS AND MOUNTING 1 1 Overview
    [Show full text]
  • System Calls System Calls
    System calls We will investigate several issues related to system calls. Read chapter 12 of the book Linux system call categories file management process management error handling note that these categories are loosely defined and much is behind included, e.g. communication. Why? 1 System calls File management system call hierarchy you may not see some topics as part of “file management”, e.g., sockets 2 System calls Process management system call hierarchy 3 System calls Error handling hierarchy 4 Error Handling Anything can fail! System calls are no exception Try to read a file that does not exist! Error number: errno every process contains a global variable errno errno is set to 0 when process is created when error occurs errno is set to a specific code associated with the error cause trying to open file that does not exist sets errno to 2 5 Error Handling error constants are defined in errno.h here are the first few of errno.h on OS X 10.6.4 #define EPERM 1 /* Operation not permitted */ #define ENOENT 2 /* No such file or directory */ #define ESRCH 3 /* No such process */ #define EINTR 4 /* Interrupted system call */ #define EIO 5 /* Input/output error */ #define ENXIO 6 /* Device not configured */ #define E2BIG 7 /* Argument list too long */ #define ENOEXEC 8 /* Exec format error */ #define EBADF 9 /* Bad file descriptor */ #define ECHILD 10 /* No child processes */ #define EDEADLK 11 /* Resource deadlock avoided */ 6 Error Handling common mistake for displaying errno from Linux errno man page: 7 Error Handling Description of the perror () system call.
    [Show full text]
  • Serverless Network File Systems
    Serverless Network File Systems Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli, and Randolph Y. Wang Computer Science Division University of California at Berkeley Abstract In this paper, we propose a new paradigm for network file system design, serverless network file systems. While traditional network file systems rely on a central server machine, a serverless system utilizes workstations cooperating as peers to provide all file system services. Any machine in the system can store, cache, or control any block of data. Our approach uses this location independence, in combination with fast local area networks, to provide better performance and scalability than traditional file systems. Further, because any machine in the system can assume the responsibilities of a failed component, our serverless design also provides high availability via redundant data storage. To demonstrate our approach, we have implemented a prototype serverless network file system called xFS. Preliminary performance measurements suggest that our architecture achieves its goal of scalability. For instance, in a 32-node xFS system with 32 active clients, each client receives nearly as much read or write throughput as it would see if it were the only active client. 1. Introduction A serverless network file system distributes storage, cache, and control over cooperating workstations. This approach contrasts with traditional file systems such as Netware [Majo94], NFS [Sand85], Andrew [Howa88], and Sprite [Nels88] where a central server machine stores all data and satisfies all client cache misses. Such a central server is both a performance and reliability bottleneck. A serverless system, on the other hand, distributes control processing and data storage to achieve scalable high performance, migrates the responsibilities of failed components to the remaining machines to provide high availability, and scales gracefully to simplify system management.
    [Show full text]
  • System Calls and I/O
    System Calls and I/O CS 241 January 27, 2012 Copyright ©: University of Illinois CS 241 Staff 1 This lecture Goals Get you familiar with necessary basic system & I/O calls to do programming Things covered in this lecture Basic file system calls I/O calls Signals Note: we will come back later to discuss the above things at the concept level Copyright ©: University of Illinois CS 241 Staff 2 System Calls versus Function Calls? Copyright ©: University of Illinois CS 241 Staff 3 System Calls versus Function Calls Function Call Process fnCall() Caller and callee are in the same Process - Same user - Same “domain of trust” Copyright ©: University of Illinois CS 241 Staff 4 System Calls versus Function Calls Function Call System Call Process Process fnCall() sysCall() OS Caller and callee are in the same Process - Same user - OS is trusted; user is not. - Same “domain of trust” - OS has super-privileges; user does not - Must take measures to prevent abuse Copyright ©: University of Illinois CS 241 Staff 5 System Calls System Calls A request to the operating system to perform some activity System calls are expensive The system needs to perform many things before executing a system call The computer (hardware) saves its state The OS code takes control of the CPU, privileges are updated. The OS examines the call parameters The OS performs the requested function The OS saves its state (and call results) The OS returns control of the CPU to the caller Copyright ©: University of Illinois CS 241 Staff 6 Steps for Making a System Call
    [Show full text]
  • File Formats
    man pages section 4: File Formats Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. Part No: 817–3945–10 September 2004 Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
    [Show full text]
  • NASD) Storage Architecture, Prototype Implementations of [Patterson88]
    Proceedings of the 8th Conference on Architectural Support for Programming Languages and Operating Systems, 1998. A Cost-Effective, High-Bandwidth Storage Architecture Garth A. Gibson*, David F. Nagle†, Khalil Amiri†, Jeff Butler†, Fay W. Chang*, Howard Gobioff*, Charles Hardin†, Erik Riedel†, David Rochberg*, Jim Zelenka* School of Computer Science* Department of Electrical and Computer Engineering† Carnegie Mellon University, Pittsburgh, PA 15213 [email protected] ABSTRACT width, that is, linearly increasing application bandwidth with increasing numbers of storage devices and client processors, This paper describes the Network-Attached Secure Disk the data must be striped over many disks and network links (NASD) storage architecture, prototype implementations of [Patterson88]. With 1998 technology, most office, engineer- NASD drives, array management for our architecture, and ing, and data processing shops have sufficient numbers of three filesystems built on our prototype. NASD provides scal- disks and scalable switched networking, but they access stor- able storage bandwidth without the cost of servers used age through storage controller and distributed fileserver primarily for transferring data from peripheral networks bottlenecks. These bottlenecks arise because a single (e.g. SCSI) to client networks (e.g. ethernet). Increasing “server” computer receives data from the storage (periph- eral) network and forwards it to the client (local area) dataset sizes, new attachment technologies, the convergence network while adding
    [Show full text]
  • The Power Supply Subsystem
    The Power Supply Subsystem Sebastian Reichel Collabora October 24, 2018 Open First Sebastian Reichel I Embedded Linux engineer at Collabora I Open Source Consultancy I Based in Oldenburg, Germany I Open Source contributor I Debian Developer I HSI and power-supply subsystem maintainer I Cofounder of Oldenburg's Hack(er)/Makerspace Open First The power-supply subsystem I batteries / fuel gauges I chargers I (board level poweroff/reset) I Originally written and maintained by Anton Vorontsov (2007-2014) Created by Blink@design from the Noun Project Created by Jenie Tomboc I Temporarily maintained by Dmitry from the Noun Project Eremin-Solenikov (2014) Open First Userspace Interface root@localhost# ls /sys/class/power_supply/ AC BAT0 BAT1 root@localhost# ls /sys/class/power_supply/BAT0 alarm energy_full_design status capacity energy_now subsystem capacity_level manufacturer technology charge_start_threshold model_name type charge_stop_threshold power uevent cycle_count power_now voltage_min_design ... root@localhost# cat /sys/class/power_supply/BAT0/capacity 65 Open First Userspace Interface root@localhost# udevadm info /sys/class/power_supply/BAT0 E: POWER_SUPPLY_CAPACITY=79 E: POWER_SUPPLY_ENERGY_FULL=15200000 E: POWER_SUPPLY_ENERGY_FULL_DESIGN=23200000 E: POWER_SUPPLY_ENERGY_NOW=12010000 E: POWER_SUPPLY_POWER_NOW=5890000 E: POWER_SUPPLY_STATUS=Discharging E: POWER_SUPPLY_VOLTAGE_MIN_DESIGN=11100000 E: POWER_SUPPLY_VOLTAGE_NOW=11688000 ... Open First Userspace Interface I one power-supply device = one physical device I All values are in uV,
    [Show full text]
  • Software Distributor Administration Guide for HP-UX 11I
    Software Distributor Administration Guide for HP-UX 11i HP Computers Manufacturing Part Number: B2355-90754 June 2002, Edition 3 © Copyright 2002 Hewlett-Packard Company. Legal Notices The information in this document is subject to change without notice. Hewlett-Packard makes no warranty of any kind with regard to this manual, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Hewlett-Packard shall not be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance, or use of this material. Warranty A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local Sales and Service Office. Restricted Rights Legend Use, duplication or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DOD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies. HEWLETT-PACKARD COMPANY 3000 Hanover Street Palo Alto, California 94304 U.S.A. Use of this document and any supporting software media supplied for this pack is restricted to this product only. Additional copies of the programs may be made for security and back-up purposes only. Resale of the programs, in their present form or with alterations, is expressly prohibited. Copyright Notice Copyright 1997-2002 Hewlett-Packard Company. All rights reserved.
    [Show full text]
  • Ext4 File System and Crash Consistency
    1 Ext4 file system and crash consistency Changwoo Min 2 Summary of last lectures • Tools: building, exploring, and debugging Linux kernel • Core kernel infrastructure • Process management & scheduling • Interrupt & interrupt handler • Kernel synchronization • Memory management • Virtual file system • Page cache and page fault 3 Today: ext4 file system and crash consistency • File system in Linux kernel • Design considerations of a file system • History of file system • On-disk structure of Ext4 • File operations • Crash consistency 4 File system in Linux kernel User space application (ex: cp) User-space Syscalls: open, read, write, etc. Kernel-space VFS: Virtual File System Filesystems ext4 FAT32 JFFS2 Block layer Hardware Embedded Hard disk USB drive flash 5 What is a file system fundamentally? int main(int argc, char *argv[]) { int fd; char buffer[4096]; struct stat_buf; DIR *dir; struct dirent *entry; /* 1. Path name -> inode mapping */ fd = open("/home/lkp/hello.c" , O_RDONLY); /* 2. File offset -> disk block address mapping */ pread(fd, buffer, sizeof(buffer), 0); /* 3. File meta data operation */ fstat(fd, &stat_buf); printf("file size = %d\n", stat_buf.st_size); /* 4. Directory operation */ dir = opendir("/home"); entry = readdir(dir); printf("dir = %s\n", entry->d_name); return 0; } 6 Why do we care EXT4 file system? • Most widely-deployed file system • Default file system of major Linux distributions • File system used in Google data center • Default file system of Android kernel • Follows the traditional file system design 7 History of file system design 8 UFS (Unix File System) • The original UNIX file system • Design by Dennis Ritche and Ken Thompson (1974) • The first Linux file system (ext) and Minix FS has a similar layout 9 UFS (Unix File System) • Performance problem of UFS (and the first Linux file system) • Especially, long seek time between an inode and data block 10 FFS (Fast File System) • The file system of BSD UNIX • Designed by Marshall Kirk McKusick, et al.
    [Show full text]
  • File Manager Manual
    FileManager Operations Guide for Unisys MCP Systems Release 9.069W November 2017 Copyright This document is protected by Federal Copyright Law. It may not be reproduced, transcribed, copied, or duplicated by any means to or from any media, magnetic or otherwise without the express written permission of DYNAMIC SOLUTIONS INTERNATIONAL, INC. It is believed that the information contained in this manual is accurate and reliable, and much care has been taken in its preparation. However, no responsibility, financial or otherwise, can be accepted for any consequence arising out of the use of this material. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE PROGRAM SPECIFICATION. Correspondence regarding this document should be addressed to: Dynamic Solutions International, Inc. Product Development Group 373 Inverness Parkway Suite 110, Englewood, Colorado 80112 (800)641-5215 or (303)754-2000 Technical Support Hot-Line (800)332-9020 E-Mail: [email protected] ii November 2017 Contents ................................................................................................................................ OVERVIEW .......................................................................................................... 1 FILEMANAGER CONSIDERATIONS................................................................... 3 FileManager File Tracking ................................................................................................ 3 File Recovery ....................................................................................................................
    [Show full text]
  • File Handling in Python
    hapter C File Handling in 2 Python There are many ways of trying to understand programs. People often rely too much on one way, which is called "debugging" and consists of running a partly- understood program to see if it does what you expected. Another way, which ML advocates, is to install some means of understanding in the very programs themselves. — Robin Milner In this Chapter » Introduction to Files » Types of Files » Opening and Closing a 2.1 INTRODUCTION TO FILES Text File We have so far created programs in Python that » Writing to a Text File accept the input, manipulate it and display the » Reading from a Text File output. But that output is available only during » Setting Offsets in a File execution of the program and input is to be entered through the keyboard. This is because the » Creating and Traversing a variables used in a program have a lifetime that Text File lasts till the time the program is under execution. » The Pickle Module What if we want to store the data that were input as well as the generated output permanently so that we can reuse it later? Usually, organisations would want to permanently store information about employees, inventory, sales, etc. to avoid repetitive tasks of entering the same data. Hence, data are stored permanently on secondary storage devices for reusability. We store Python programs written in script mode with a .py extension. Each program is stored on the secondary device as a file. Likewise, the data entered, and the output can be stored permanently into a file.
    [Show full text]