File Manager Manual

Total Page:16

File Type:pdf, Size:1020Kb

File Manager Manual FileManager Operations Guide for Unisys MCP Systems Release 9.069W November 2017 Copyright This document is protected by Federal Copyright Law. It may not be reproduced, transcribed, copied, or duplicated by any means to or from any media, magnetic or otherwise without the express written permission of DYNAMIC SOLUTIONS INTERNATIONAL, INC. It is believed that the information contained in this manual is accurate and reliable, and much care has been taken in its preparation. However, no responsibility, financial or otherwise, can be accepted for any consequence arising out of the use of this material. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE PROGRAM SPECIFICATION. Correspondence regarding this document should be addressed to: Dynamic Solutions International, Inc. Product Development Group 373 Inverness Parkway Suite 110, Englewood, Colorado 80112 (800)641-5215 or (303)754-2000 Technical Support Hot-Line (800)332-9020 E-Mail: [email protected] ii November 2017 Contents ................................................................................................................................ OVERVIEW .......................................................................................................... 1 FILEMANAGER CONSIDERATIONS................................................................... 3 FileManager File Tracking ................................................................................................ 3 File Recovery ..................................................................................................................... 3 FileManager File Selection ............................................................................................... 3 INSTALLING FILEMANAGER ............................................................................. 5 Starting FileManager for the First Time........................................................................... 6 MARC Installation .............................................................................................................. 7 Graphical User Interface Installation ............................................................................... 7 Upgrading FileManager Software .................................................................................... 7 ACCESSING FILEMANAGER .............................................................................. 9 TMREMOTESPO Interface ................................................................................................ 9 MARC Command Interface ............................................................................................... 9 Graphical User Interface ................................................................................................. 10 FILEMANAGER CONFIGURATION ................................................................... 12 Convention Configuration .............................................................................................. 14 Database Configuration .................................................................................................. 16 E-Mail Configuration ....................................................................................................... 18 Report Configuration ...................................................................................................... 20 Set Configuration............................................................................................................. 22 Backup Configuration ..................................................................................................... 24 FILEMANAGER SECURITY ............................................................................... 25 November 2017 iii FILEMANAGER OPERATIONS ......................................................................... 30 DATABASE CLOSE Command ....................................................................................... 30 DATABASE OPEN Command ......................................................................................... 31 DATABASE BACKUP Command .................................................................................... 32 DATABASE REORGANIZE Command............................................................................ 34 DATABASE RESTORE Command .................................................................................. 35 DATABASE RECOVER Command .................................................................................. 36 DATABASE Command .................................................................................................... 37 BACKUP Command ......................................................................................................... 38 RESTORE Command ....................................................................................................... 41 TL (Transfer Log) Command .......................................................................................... 43 LOAD Command .............................................................................................................. 44 QUIT Command ............................................................................................................... 46 EMAIL Command ............................................................................................................. 47 WAIT Command ............................................................................................................... 49 FILEMANAGER REPORTS ............................................................................... 51 OLDEST Command ......................................................................................................... 51 NEWEST Command ......................................................................................................... 52 ALL Command ................................................................................................................. 53 LAST Command ............................................................................................................... 54 REPORT and LIST Commands ....................................................................................... 55 ALL Files Report .............................................................................................................. 59 File Activity Report .......................................................................................................... 61 File Exceptions Report .................................................................................................... 62 Maintenance Report ........................................................................................................ 63 iv November 2017 Log Report ........................................................................................................................ 64 Reorganize Report ........................................................................................................... 67 Summary Report .............................................................................................................. 68 Audit Report ..................................................................................................................... 69 Ad Hoc Reports ................................................................................................................ 70 STATUS Command .......................................................................................................... 73 FIND Command ................................................................................................................ 74 VERSION Command ........................................................................................................ 76 FILE DATABASE MAINTENANCE .................................................................... 77 DELETE Command .......................................................................................................... 78 MODIFY Command .......................................................................................................... 80 FILEMANAGER MACROS ................................................................................. 83 BATCH MODE EXECUTION .............................................................................. 90 DIAGNOSTIC COMMANDS ............................................................................... 97 LOG Command ................................................................................................................ 97 DEBUG Command ........................................................................................................... 97 TRACE Command .......................................................................................................... 102 RESCUE Command ....................................................................................................... 102 ABORT Command ......................................................................................................... 103 COMMON SYNTAX ELEMENTS ..................................................................... 105 FILEMANAGER DATABASE FIELDS .............................................................. 110 PROGRAMMATIC INTERFACES .................................................................... 115 GLOSSARY ...................................................................................................... 117 INDEX ..............................................................................................................
Recommended publications
  • NTFS • Windows Reinstallation – Bypass ACL • Administrators Privilege – Bypass Ownership
    Windows Encrypting File System Motivation • Laptops are very integrated in enterprises… • Stolen/lost computers loaded with confidential/business data • Data Privacy Issues • Offline Access – Bypass NTFS • Windows reinstallation – Bypass ACL • Administrators privilege – Bypass Ownership www.winitor.com 01 March 2010 Windows Encrypting File System Mechanism • Principle • A random - unique - symmetric key encrypts the data • An asymmetric key encrypts the symmetric key used to encrypt the data • Combination of two algorithms • Use their strengths • Minimize their weaknesses • Results • Increased performance • Increased security Asymetric Symetric Data www.winitor.com 01 March 2010 Windows Encrypting File System Characteristics • Confortable • Applying encryption is just a matter of assigning a file attribute www.winitor.com 01 March 2010 Windows Encrypting File System Characteristics • Transparent • Integrated into the operating system • Transparent to (valid) users/applications Application Win32 Crypto Engine NTFS EFS &.[ßl}d.,*.c§4 $5%2=h#<.. www.winitor.com 01 March 2010 Windows Encrypting File System Characteristics • Flexible • Supported at different scopes • File, Directory, Drive (Vista?) • Files can be shared between any number of users • Files can be stored anywhere • local, remote, WebDav • Files can be offline • Secure • Encryption and Decryption occur in kernel mode • Keys are never paged • Usage of standardized cryptography services www.winitor.com 01 March 2010 Windows Encrypting File System Availibility • At the GUI, the availibility
    [Show full text]
  • Serverless Network File Systems
    Serverless Network File Systems Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli, and Randolph Y. Wang Computer Science Division University of California at Berkeley Abstract In this paper, we propose a new paradigm for network file system design, serverless network file systems. While traditional network file systems rely on a central server machine, a serverless system utilizes workstations cooperating as peers to provide all file system services. Any machine in the system can store, cache, or control any block of data. Our approach uses this location independence, in combination with fast local area networks, to provide better performance and scalability than traditional file systems. Further, because any machine in the system can assume the responsibilities of a failed component, our serverless design also provides high availability via redundant data storage. To demonstrate our approach, we have implemented a prototype serverless network file system called xFS. Preliminary performance measurements suggest that our architecture achieves its goal of scalability. For instance, in a 32-node xFS system with 32 active clients, each client receives nearly as much read or write throughput as it would see if it were the only active client. 1. Introduction A serverless network file system distributes storage, cache, and control over cooperating workstations. This approach contrasts with traditional file systems such as Netware [Majo94], NFS [Sand85], Andrew [Howa88], and Sprite [Nels88] where a central server machine stores all data and satisfies all client cache misses. Such a central server is both a performance and reliability bottleneck. A serverless system, on the other hand, distributes control processing and data storage to achieve scalable high performance, migrates the responsibilities of failed components to the remaining machines to provide high availability, and scales gracefully to simplify system management.
    [Show full text]
  • Active @ UNDELETE Users Guide | TOC | 2
    Active @ UNDELETE Users Guide | TOC | 2 Contents Legal Statement..................................................................................................4 Active@ UNDELETE Overview............................................................................. 5 Getting Started with Active@ UNDELETE........................................................... 6 Active@ UNDELETE Views And Windows......................................................................................6 Recovery Explorer View.................................................................................................... 7 Logical Drive Scan Result View.......................................................................................... 7 Physical Device Scan View................................................................................................ 8 Search Results View........................................................................................................10 Application Log...............................................................................................................11 Welcome View................................................................................................................11 Using Active@ UNDELETE Overview................................................................. 13 Recover deleted Files and Folders.............................................................................................. 14 Scan a Volume (Logical Drive) for deleted files..................................................................15
    [Show full text]
  • NASD) Storage Architecture, Prototype Implementations of [Patterson88]
    Proceedings of the 8th Conference on Architectural Support for Programming Languages and Operating Systems, 1998. A Cost-Effective, High-Bandwidth Storage Architecture Garth A. Gibson*, David F. Nagle†, Khalil Amiri†, Jeff Butler†, Fay W. Chang*, Howard Gobioff*, Charles Hardin†, Erik Riedel†, David Rochberg*, Jim Zelenka* School of Computer Science* Department of Electrical and Computer Engineering† Carnegie Mellon University, Pittsburgh, PA 15213 [email protected] ABSTRACT width, that is, linearly increasing application bandwidth with increasing numbers of storage devices and client processors, This paper describes the Network-Attached Secure Disk the data must be striped over many disks and network links (NASD) storage architecture, prototype implementations of [Patterson88]. With 1998 technology, most office, engineer- NASD drives, array management for our architecture, and ing, and data processing shops have sufficient numbers of three filesystems built on our prototype. NASD provides scal- disks and scalable switched networking, but they access stor- able storage bandwidth without the cost of servers used age through storage controller and distributed fileserver primarily for transferring data from peripheral networks bottlenecks. These bottlenecks arise because a single (e.g. SCSI) to client networks (e.g. ethernet). Increasing “server” computer receives data from the storage (periph- eral) network and forwards it to the client (local area) dataset sizes, new attachment technologies, the convergence network while adding
    [Show full text]
  • Your Performance Task Summary Explanation
    Lab Report: 11.2.5 Manage Files Your Performance Your Score: 0 of 3 (0%) Pass Status: Not Passed Elapsed Time: 6 seconds Required Score: 100% Task Summary Actions you were required to perform: In Compress the D:\Graphics folderHide Details Set the Compressed attribute Apply the changes to all folders and files In Hide the D:\Finances folder In Set Read-only on filesHide Details Set read-only on 2017report.xlsx Set read-only on 2018report.xlsx Do not set read-only for the 2019report.xlsx file Explanation In this lab, your task is to complete the following: Compress the D:\Graphics folder and all of its contents. Hide the D:\Finances folder. Make the following files Read-only: D:\Finances\2017report.xlsx D:\Finances\2018report.xlsx Complete this lab as follows: 1. Compress a folder as follows: a. From the taskbar, open File Explorer. b. Maximize the window for easier viewing. c. In the left pane, expand This PC. d. Select Data (D:). e. Right-click Graphics and select Properties. f. On the General tab, select Advanced. g. Select Compress contents to save disk space. h. Click OK. i. Click OK. j. Make sure Apply changes to this folder, subfolders and files is selected. k. Click OK. 2. Hide a folder as follows: a. Right-click Finances and select Properties. b. Select Hidden. c. Click OK. 3. Set files to Read-only as follows: a. Double-click Finances to view its contents. b. Right-click 2017report.xlsx and select Properties. c. Select Read-only. d. Click OK. e.
    [Show full text]
  • File Permissions Do Not Restrict Root
    Filesystem Security 1 General Principles • Files and folders are managed • A file handle provides an by the operating system opaque identifier for a • Applications, including shells, file/folder access files through an API • File operations • Access control entry (ACE) – Open file: returns file handle – Allow/deny a certain type of – Read/write/execute file access to a file/folder by – Close file: invalidates file user/group handle • Access control list (ACL) • Hierarchical file organization – Collection of ACEs for a – Tree (Windows) file/folder – DAG (Linux) 2 Discretionary Access Control (DAC) • Users can protect what they own – The owner may grant access to others – The owner may define the type of access (read/write/execute) given to others • DAC is the standard model used in operating systems • Mandatory Access Control (MAC) – Alternative model not covered in this lecture – Multiple levels of security for users and documents – Read down and write up principles 3 Closed vs. Open Policy Closed policy Open Policy – Also called “default secure” • Deny Tom read access to “foo” • Give Tom read access to “foo” • Deny Bob r/w access to “bar” • Give Bob r/w access to “bar • Tom: I would like to read “foo” • Tom: I would like to read “foo” – Access denied – Access allowed • Tom: I would like to read “bar” • Tom: I would like to read “bar” – Access allowed – Access denied 4 Closed Policy with Negative Authorizations and Deny Priority • Give Tom r/w access to “bar” • Deny Tom write access to “bar” • Tom: I would like to read “bar” – Access
    [Show full text]
  • Data File Manager
    Data File Manager Welcome to Data File Manager! Thank you for using the data file manager. Highlights of the data file manager are as follows: Intuitive operability Buttons on the tool menu, drag & drop, and context menu with a right click are supported to use each function. Tree view for data in SD memory card Files and folders in SD memory card are shown in a tree structure and target files can easily be found. Operations for files and folders Files and folders can be added, renamed or deleted. PLC maintenance Viewing the PLC status, such as Run/Stop state or error status, downloading/uploading user programs, or upgrading the system software of the PLC are supported. MICRO/I maintenance Viewing the target information, such as system software version or external memory device information, or downloading/uploading project is supported. Notes - Data File Manager There are the following notes when you use Data File Manager: Supported hardware Data File Manager supports the following hardware: FC4A series MICROSmart FC5A series MICROSmart Pentra FC6A series MICROSmart FT1A series SmartAXIS expect FT1A Touch HG3G/4G series MICRO/I HG2G-5F series MICRO/I HG2G-5T series MICRO/I HG1G series MICRO/I SD card access (SmartAXIS Pro & Lite) SD card inserted on SmartAXIS series can be accessed while the PLC is stopped only. Downloading or uploading the user program (PLC) You can download or upload the user programs using ZLD files, which can be created or read with WindLDR. Downloading or uploading the project (MICRO/I) You can download or upload the project using ZNV files, which can be created or read with WindO/I-NV4.
    [Show full text]
  • Z/OS Distributed File Service Zseries File System Implementation Z/OS V1R13
    Front cover z/OS Distributed File Service zSeries File System Implementation z/OS V1R13 Defining and installing a zSeries file system Performing backup and recovery, sysplex sharing Migrating from HFS to zFS Paul Rogers Robert Hering ibm.com/redbooks International Technical Support Organization z/OS Distributed File Service zSeries File System Implementation z/OS V1R13 October 2012 SG24-6580-05 Note: Before using this information and the product it supports, read the information in “Notices” on page xiii. Sixth Edition (October 2012) This edition applies to version 1 release 13 modification 0 of IBM z/OS (product number 5694-A01) and to all subsequent releases and modifications until otherwise indicated in new editions. © Copyright International Business Machines Corporation 2010, 2012. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . xiii Trademarks . xiv Preface . .xv The team who wrote this book . .xv Now you can become a published author, too! . xvi Comments welcome. xvi Stay connected to IBM Redbooks . xvi Chapter 1. zFS file systems . 1 1.1 zSeries File System introduction. 2 1.2 Application programming interfaces . 2 1.3 zFS physical file system . 3 1.4 zFS colony address space . 4 1.5 zFS supports z/OS UNIX ACLs. 4 1.6 zFS file system aggregates. 5 1.6.1 Compatibility mode aggregates. 5 1.6.2 Multifile system aggregates. 6 1.7 Metadata cache. 7 1.8 zFS file system clones . 7 1.8.1 Backup file system . 8 1.9 zFS log files.
    [Show full text]
  • Introduction to PC Operating Systems
    Introduction to PC Operating Systems Operating System Concepts 8th Edition Written by: Abraham Silberschatz, Peter Baer Galvin and Greg Gagne John Wiley & Sons, Inc. ISBN: 978-0-470-12872-5 Chapter 2 Operating-System Structure The design of a new operating system is a major task. It is important that the goals of the system be well defined before the design begins. These goals for the basis for choices among various algorithms and strategies. What can be focused on in designing an operating system • Services that the system provides • The interface that it makes available to users and programmers • Its components and their interconnections Operating-System Services The operating system provides: • An environment for the execution of programs • Certain services to programs and to the users of those programs. Note: (services can differ from one operating system to another) A view of operating system services user and other system programs GUI batch command line user interfaces system calls program I/O file Resource communication accounting execution operations systems allocation error protection detection services and security operating system hardware Operating-System Services Almost all operating systems have a user interface. Types of user interfaces: 1. Command Line Interface (CLI) – method where user enter text commands 2. Batch Interface – commands and directives that controls those commands are within a file and the files are executed 3. Graphical User Interface – works in a windows system using a pointing device to direct I/O, using menus and icons and a keyboard to enter text. Operating-System Services Services Program Execution – the system must be able to load a program into memory and run that program.
    [Show full text]
  • File Server Scaling with Network-Attached Secure Disks
    Appears in Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (Sigmetrics ‘97), Seattle, Washington, June 15-18, 1997. File Server Scaling with Network-Attached Secure Disks Garth A. Gibson†, David F. Nagle*, Khalil Amiri*, Fay W. Chang†, Eugene M. Feinberg*, Howard Gobioff†, Chen Lee†, Berend Ozceri*, Erik Riedel*, David Rochberg†, Jim Zelenka† *Department of Electrical and Computer Engineering †School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3890 [email protected] http://www.cs.cmu.edu/Web/Groups/NASD/ Abstract clients with efficient, scalable, high-bandwidth access to stored data. This paper discusses a powerful approach to fulfilling this By providing direct data transfer between storage and client, net- need. Network-attached storage provides high bandwidth by work-attached storage devices have the potential to improve scal- directly attaching storage to the network, avoiding file server ability for existing distributed file systems (by removing the server store-and-forward operations and allowing data transfers to be as a bottleneck) and bandwidth for new parallel and distributed file striped over storage and switched-network links. systems (through network striping and more efficient data paths). The principal contribution of this paper is to demonstrate the Together, these advantages influence a large enough fraction of the potential of network-attached storage devices for penetrating the storage market to make commodity network-attached storage fea- markets defined by existing distributed file system clients, specifi- sible. Realizing the technology’s full potential requires careful cally the Network File System (NFS) and Andrew File System consideration across a wide range of file system, networking and (AFS) distributed file system protocols.
    [Show full text]
  • The Zebra Striped Network File System
    The Zebra Striped Network File System John H. Hartman John K. Ousterhout Computer Science Division Electrical Engineering and Computer Sciences University of California Berkeley, CA 94720 Abstract speed of its processor, network interface, I/O busses, and disks. It is possible to split a file system among multiple Zebra is a network file system that increases throughput servers but each file must reside on a single server and it is by striping file data across multiple servers. Rather than difficult to balance the loads of the different servers. For striping each file separately, Zebra forms all the new data example, the system directories often lie on a single server, from each client into a single stream, which it then stripes making that server a hot spot. using an approach similar to a log-structured file system. In the future, new styles of computing such as multi- This provides high performance for writes of small files as media and parallel computation are likely to demand much well as for reads and writes of large files. Zebra also writes greater throughput than today’s applications, making the parity information in each stripe in the style of RAID disk limitations of a single server even more severe. For arrays; this increases storage costs slightly but allows the example, a single video playback can consume a substantial fraction of a file server’s bandwidth even when the video is system to continue operation even while a single storage compressed. A cluster of workstations can easily exceed the server is unavailable. A prototype implementation of Zebra, bandwidth of a file server if they all run video applications built in the Sprite operating system, provides 4-5 times the simultaneously, and the problems will become much worse throughput of the standard Sprite file system or NFS for when video resolution increases with the arrival of HDTV.
    [Show full text]
  • Serverless Network File Systems
    Serverless Network File Systems by Michael Donald Dahlin B.S. (Rice University) 1991 M.S. (University of California at Berkeley) 1993 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY Committee in charge: Professor David A. Patterson, Chair Professor Thomas E. Anderson Professor Pamela Matson 1995 The dissertation of Michael Donald Dahlin is approved: Chair Date Date Date University of California at Berkeley 1995 Serverless Network File Systems Copyright © 1995 by Michael Donald Dahlin All rights reserved Abstract Serverless Network File Systems by Michael Donald Dahlin Doctor of Philosophy in Computer Science University of California at Berkeley Professor David A. Patterson, Chair This thesis presents the design of a serverless network file system, a file system that dis- tributes its functionality among cooperating, networked machines to eliminate the central file server bottleneck found in current network file systems. In a serverless system, any machine can cache, store, or control any block of data. This location independence provides better performance and scalability than traditional file system architectures. Further, because any machine in the system can assume the responsibilities of a failed component, the serverless design can also provide higher availability. This dissertation details the design of three serverless subsystems, each of which distrib- utes a specific piece of functionality that a traditional system would implement as part of a central server. I describe and evaluate cooperative caching, a way to coordinate client caches to replace the central server’s cache.
    [Show full text]