Laboratory Science JAMES V

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory Science JAMES V Laboratory Science JAMES V. J ESTER, PHD, SECTION EDITOR The Corneal Epithelial Stem Cell Niche MARY ANN STEPP, PHD1 AND JAMES D. ZIESKE, PHD2 ABSTRACT In recent years, it has become generally accepted thelium. Stem cells are most simply defined as cells that that the corneal epithelial stem cells are localized in the basal have the capacity to self-renew as well as the ability to gener- cell layer of the limbal epithelium. However, a number of ques- ate differentiated cells.2-6 When adult stem cells are consid- tions remain regarding the number, markers, generation, and ered, a further criterion is added requiring that the cells maintenance of the corneal epithelial stem cells. One of the must self-renew throughout the life span of the animal. key questions concerns what makes up the microenvironment Stem cell research has recently become one of the most or niche that is responsible for allowing the stem cells to re- active areas in biology research; however, to date, no mo- main and function throughout the life of the tissue. This review lecular markers have been recognized that definitively iden- will consider the unique aspects of the limbus and compare tify stem cells. Therefore, stem cells are usually defined by these to what is known about other stem cell niches. a group of common characteristics.2-6 First, stem cells are KEY WORDS corneal epithelium, limbal epithelium, the ultimate precursors for all other cells in a tissue or stem cell, niche, transient amplifying cell, α9 integrin, even in the entire organism. Second, stem cells maintain α-enolase, microenvironment their own population. They are capable of asymmetric cell division, giving rise to one daughter cell that remains a stem cell and a second daughter cell that will go on to I. INTRODUCTION: differentiate. Third, stem cells make up only a small per- WHAT IS A STEM CELL? centage of the total cells in the tissue, ranging from as low lthough it had been speculated for a number of as 0.01% of the cells in bone marrow to 2-4% of the cells years that corneal epithelial cells are repopulated in the small intestine. Fourth, stem cells are relatively un- A by centripetal migration of cells from the limbus differentiated. Fifth, stem cells divide infrequently in vivo, or conjunctiva, it was not until 1986 that Schermer et al1 Sixth, stem cells have progeny that can rapidly replicate in proposed that stem cells localized in the limbus were re- vitro when placed into cell culture. Many recent defini- sponsible for generating and maintaining the corneal epi- tions of stem cells also require that the cells must be multipotent, i.e., they can differentiate into more than one cell type. These definitions state that cells that give rise to Accepted for publication November 2004 only one cell type are termed progenitor cells. According to From the 1Department of Anatomy and Cell Biology, George Washington this strict definition, corneal epithelial stem cells, which University Medical Center, Washington, DC, USA, and 2Schepens Eye Re- search Institute and Department of Ophthalmology, Harvard Medical School, have been reported to give rise only to corneal epithelial Boston, MA, USA cells, would be termed progenitor cells. However, we will Supported by NIH/NEI Grant No. R01 EY13559-03 to MAS and R01 use the less restrictive definition in this review and refer to EY05665 to JDZ. the corneal epithelial precursor cells as stem cells. The authors have no proprietary interest in any concept or product dis- A second classification of cells to be defined are the cussed in this article. progeny of non-stem daughter cells that result from the Single copy reprint requests to Mary Ann Stepp, PhD (address below). asymmetric cell division of a stem cell. These cells are more Corresponding authors: Mary Ann Stepp, PhD, Department of Anatomy committed to differentiation than the stem cell and also and Cell Biology, George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037; Tel: 202-994-0557; Fax 202-994-8885; have a more limited ability to proliferate. They have a range E-mail: [email protected]; and, James D. Zieske, PhD, Schepens Eye Re- of proliferative capacities. The cell that is the immediate search Institute, 20 Staniford Street, Boston, MA 02114; Tel: 617-912-0282; progeny of stem cell division can undergo more rounds of Fax 617-912-0107; E-mail: [email protected] proliferation than the cell that arises after several cell divi- Abbreviations are printed in boldface where they first appear with their sions. Regardless, the primary purpose of these cells is to definitions and are listed in Table 1. increase the number of cells resulting from each stem cell division ultimately resulting in a tissue. These cells have ©2005 Ethis Communications, Inc. The Ocular Surface ISSN: 1542- 0124. Stepp MA, Zieske JD. The corneal epithelial stem cell niche. been traditionally referred to as transient amplifying cell 2005;3(1):15-26. (TAC).1 TACs are also sometimes termed transit cells4 and transit amplifying cells.3 THE OCULAR SURFACE / JANUARY 2005, VOL. 3, NO. 1 / www.theocularsurface.com 15 THE CORNEAL EPITHELIAL STEM CELL NICHE / Stepp and Zieske OUTLINE Table 1. Abbreviations I. Introduction: What is a stem cell? BMP bone morphogenetic protein II. Evidence for the limbal localization of corneal epithelial stem cells CESC corneal epithelial stem cell III. The adult stem cell niche Dpp Decapentaplegic A. The germinal niche of the fly: Role of cell:cell EGF epidermal growth factor contact via cadherins B. Stem cell niches in non-ocular human tissues ESC epidermal stem cell 1. The epidermal stem cell niche: the bulge FGF fibroblast growth factor 2. The gastrointestinal niche: the crypt base GFAP glial fibrillary acidic protein 3. The germinal niche in the adult brain: the subventricular zone and the subgranular zone GISC gastrointestinal stem cell 4. The hematopoietic stem cell niche: the role of GSC germ line stem cell the osteoblast HSC hematopoietic stem cell C. The limbal stem cell niche: a unique microenvironment supporting quiescent corneal IGF insulin-like growth factor epithelial stem cells ISEMF intestinal subepithelial myofibroblast LSC limbal stem cell II. EVIDENCE FOR THE LIMBAL LOCALIZATION LSCD limbal stem cell deficiency OF CORNEAL EPITHELIAL STEM CELLS mRNA messenger RNA Over the past 20 years, research from many laboratories has led to the conclusion that the corneal epithelial stem cells NSC neuronal stem cell are localized in the limbus.7-12 These cells have been termed SGZ subgranular zone both corneal epithelial stem cells (CESC), based on their func- SVZ subventricular zone tion, and limbal stem cells (LSC), based on their localization. We will use the term CESC in this review. TAC transient amplifying cell The first suggestion that the limbus is the source of CESC TGF transforming growth factor was made in 1971 by Davenger and Evensen,13 who showed that, occasionally, pigmented cells were observed to migrate Tn-C Tenacin-C from the limbus into the central cornea. It should be noted, VEGF vascular endothelial growth factor however, that the term stem cell is never used in their report. Centripetal migration of cells from the limbus to central cor- nea has subsequently been documented in animal models.14,15 Schermer et al,1 who demonstrated that the keratin K3 was an expression pattern similar to that of K3. In contrast, sev- localized in all corneal and limbal epithelial cells except the eral proteins are expressed preferentially in the limbal basal limbal basal cells, presented a second line of evidence that cells. These proteins have been scrutinized for their potential the stem cells are localized in the limbus. Coupled with cell for being CESC markers. Included in this group of potential culture studies, Schermer’s report documented that the limbal markers are: 1) metabolic enzymes—α-enolase,26,27 cyto- basal cells were less differentiated than the other corneal epi- chrome oxidase,28 carbonic anhydrase,29 and glucose trans- thelial cells. This report was the first to speculate that the porter I30; 2) growth factor receptors—epithelial growth fac- CESC were localized in the limbus. A third line of evidence is tor receptor,31 TGF-β receptors I and II,32,33 and TrkA34; 3) that limbal basal cells proliferate less frequently than the rest cytoskeleton components—keratin 1935 and vimentin36; 4) of the corneal epithelium. Lavker and coworkers16 demon- cell cycle components—cyclins D and E,37 and p10738; and strated this property by injecting mice with 3H-thymidine 5) others—α9 integrin,39 melanin,40 p63,41 and ATP-bind- and finding that only limbal basal cells retained the label. ing cassette transporter G2.12,42 Fourth, only limbal basal cells are clonogenic in cell culture Most of the proteins considered as potential markers experiments.17-19 Finally, perhaps the strongest evidence, are expressed in numerous basal cells at the limbus; an studies have shown that transplantation of limbal tissue or example is seen in Figure 1, which shows the co-localiza- even cultured limbal basal cells can result in healing of cor- tion of α-enolase and α9-integrin in the adult rat limbus. neal epithelium.20-22 The distribution of these two proteins is partially overlap- As stated above, one piece of evidence that the CESC are ping with some limbal basal cells that express both pro- localized in the limbus is the lack of expression of the differ- teins and others that express more or less of one or the entiation marker K3 in these cells.1 Subsequent to this find- other. This distribution emphasizes the heterogeneity of ing, other proteins, including K12,23 aldehyde dehydroge- cellular phenotypes present at the limbus and is some- nase class 3,24 and connexin-4325 have been shown to have what at odds with the findings that only a small popula- 16 THE OCULAR SURFACE / JANUARY 2005, VOL.
Recommended publications
  • Corneal Cell Therapy: with Ipscs, It Is No More a Far-Sight Koushik Chakrabarty1* , Rohit Shetty2 and Arkasubhra Ghosh1
    Chakrabarty et al. Stem Cell Research & Therapy (2018) 9:287 https://doi.org/10.1186/s13287-018-1036-5 REVIEW Open Access Corneal cell therapy: with iPSCs, it is no more a far-sight Koushik Chakrabarty1* , Rohit Shetty2 and Arkasubhra Ghosh1 Abstract Human-induced pluripotent stem cells (hiPSCs) provide a personalized approach to study conditions and diseases including those of the eye that lack appropriate animal models to facilitate the development of novel therapeutics. Corneal disease is one of the most common causes of blindness. Hence, significant efforts are made to develop novel therapeutic approaches including stem cell-derived strategies to replace the diseased or damaged corneal tissues, thus restoring the vision. The use of adult limbal stem cells in the management of corneal conditions has been clinically successful. However, its limited availability and phenotypic plasticity necessitate the need for alternative stem cell sources to manage corneal conditions. Mesenchymal and embryonic stem cell-based approaches are being explored; nevertheless, their limited differentiation potential and ethical concerns have posed a significant hurdle in its clinical use. hiPSCs have emerged to fill these technical and ethical gaps to render clinical utility. In this review, we discuss and summarize protocols that have been devised so far to direct differentiation of human pluripotent stem cells (hPSCs) to different corneal cell phenotypes. With the summarization, our review intends to facilitate an understanding which would allow developing efficient and robust protocols to obtain specific corneal cell phenotype from hPSCs for corneal disease modeling and for the clinics to treat corneal diseases and injury. Keywords: Cornea, Induced pluripotent stem cells, Differentiation, Disease modeling, Cell replacement therapy Background using viral vectors.
    [Show full text]
  • Selective Expansion of Limbal Epithelial Stem Cells in Culture Using Hypoxia
    1 Selective Expansion of Limbal Epithelial Stem Cells in Culture Using Hypoxia Chris Bath1,2, Sufang Yang2,3, Danson Muttuvelu1, Trine Fink2, Jeppe Emmersen2, Henrik Vorum1, Jesper Hjortdal4 and Vladimir Zachar2 1Department of Ophthalmology, Aalborg University Hospital, 9000 Denmark 2Laboratory for Stem Cell Research, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark 3Animal Reproduction Institute, Guangxi University, China 4Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus, Denmark Abstract Limbal epithelial stem cells (LESCs) maintain the corneal epithelium through- out life and are crucial for both corneal integrity and vision. In this study, LESCs were expanded in either a culture system using 3T3 feeder cells in growth medium supplemented with serum, or in a culture system without feeder cells using commercially available serum-free medium (EpiLife). Cells were maintained at an ambient oxygen concentration of 20% or at various levels of hypoxia (15%, 10%, 5%, and 2%) throughout the period of expansion. The effect of ambient oxygen concentration on growth, cell cycle, colony forming efficiency (CFE), and expression of stem cell markers ABCG2 and p63α and differentiation marker CK3 were determined at different time points. Low oxygen levels were found to maintain a stem cell phenotype with low proliferative rate, high CFE, and high expression of ABCG2 and p63α as well as low expression of CK3. The relation between degree of differentiation and ambient oxygen concentration in the culture system seems to mirror the natural environment of the limbal niche. Hypoxic culture could therefore potentially improve stem cell grafts for cultured limbal epithelial transplantation (CLET). 1 2 Selective Expansion of Limbal Epithelial Stem Cells in Culture Using Hypoxia Keywords: Limbus cornea, Adult stem cells, Regenerative medicine, Cell hypoxia, Primary cell culture.
    [Show full text]
  • Induced Pluripotent Stem Cells As a Potential Therapeutic Source for Corneal Epithelial Stem Cells
    iPSCs for corneal diseases ·Review· Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells Jie Zhu1, Mark Slevin2,3, Bao-Qiang Guo2,3, Shou-Rong Zhu4 1Queen Mary School, Medical College of Nanchang Citation: Zhu J, Slevin M, Guo BQ, Zhu SR. Induced pluripotent University, Nanchang 330006, Jiangxi Province, China stem cells as a potential therapeutic source for corneal epithelial stem 2School of Healthcare Science, Faculty of Science and cells. Int J Ophthalmol 2018;11(12):2004-2010 Engineering, Manchester Metropolitan University, Chester Street, Manchester M15GD, United Kingdom INTRODUCTION 3Research Institute of Brain Vascular Disease, Weifang Medical luripotent stem cells are primitive cells that are able University, Weifang 261000, Shandong Province, China P to be self-renewing, proliferating indefinitely in their 4Department of Ophthalmology, Affiliated Hospital of Weifang undifferentiated state, and differentiate into different cell [1-2] Medical University, Weifang 261000, Shandong Province, types . They can efficiently differentiate into specific cell China types under defined conditions. Therefore, stem cells have Correspondence to: Bao-Qiang Guo. Research Institute of been regarded as unlimited source of cell transplantation. Brain Vascular Disease, Weifang Medical University, Weifang Over the last decade, stem or progenitor cells transplantation 261000, Shandong Province, China. [email protected]; as a means of replacing tissue have evolved rapidly. There are Shou-Rong Zhu. Department of Ophthalmology, Affiliated distinct kinds of stem cells according to their differentiation Hospital of Weifang Medical University, Weifang 261000, potential. It has already been found that embryonic stem cells Shandong Province, China. [email protected]. (ESCs) and mesenchymal stem cells (MSCs) can directly Received: 2018-08-21 Accepted: 2018-10-12 differentiate into specialized cells, which attracted considerable interest.
    [Show full text]
  • Simple Limbal Epithelial Transplantation Method in the Treatment of Unilateral Limbal Stem Cell Deficiency Due to Chemical Burn
    DOI: 10.14744/eer.2021.32032 Eur Eye Res 2021;1(1):31–36 ORIGINAL ARTICLE Simple limbal epithelial transplantation method in the treatment of unilateral limbal stem cell deficiency due to chemical burn Dilay Ozek, Emine Esra Karaca, Ozlem Evren Kemer Department of Opthalmology, Ankara City Hospital, Ankara, Turkey Abstract Purpose: The objectives of the study were to evaluate the success of the simple limbal epithelial transplantation (SLET) method in the treatment of unilateral limbal stem cell deficiency (LSCD) due to chemical burn. Methods: Seventeen patients with unilateral LSCD due to chemical burn were included in this retrospective study. Mean age of patients was 50.3±20.8 (28–75) years. Mean duration of follow was 18.9±6.9 (12–24) months. In the recipient eye follow- ing peritomy, pannus tissue was cleared and covered with amniotic membrane with fibrin glue. Limbal stem cell received from the fellow eye was implanted cornea surface 2–3 mm inside limbus with fibrin glue on the amniotic membrane and placed contact lens. In control examination of all patients who completed minimum 12 months postoperatively, regression in corneal vascularization, duration of epithelial healing, visual acuity, need for keratoplasty, and complications (dropping of contact lenses, separation of amniotic membrane, and graft failure) were evaluated. Results: Corneal epithelization was completed between 4 and 6 weeks in all patients. Total and partial separations in the amniotic membrane occurred in two patients. Marked regression in corneal vascularization and increase in visual acuity was observed in all patients. Five patients (29.4%) underwent keratoplasty in the follow-up period.
    [Show full text]
  • Current Perspectives on Tissue Engineering for the Management of Limbal Stem Cell Deficiency
    Open Access Journal of Stem Cells Research, Reviews & Reports Review Article Current Perspectives on Tissue Engineering for the Management of Limbal Stem Cell Deficiency Bakiah Shaharuddin1,2* and Annette Meeson2 1Advanced Medical and Dental Institute, Universiti Sains Abstract Malaysia, Malaysia Limbal Stem Cell Deficiency (LSCD) encompasses a group of eye disorders 2Institute of Genetic Medicine, Faculty of Medical characterized by abnormal maintenance of the limbal stem cells. This painful Sciences, Newcastle University, UK and potentially blinding condition poses a challenge in transplantation biology; *Corresponding author: Bakiah Shaharuddin, whereby whole corneal transplantation would normally fail due to the depletion of Advanced Medical and Dental Institute, Universiti Sains the recipients’ limbal stem cells. The most preferred technique of management is Malaysia, Kepala Batas, 13200 Pulau Pinang, Malaysia transplantation of ex vivo expanded limbal stem cells to the damaged eyes. This and Institute of Genetic Medicine, Newcastle University, article discusses the therapy options for unilateral and bilateral cases of LSCD, International Centre for Life, Newcastle Upon-Tyne, NE1 the clinical outcomes, components of cells and substrates that are currently 3BZ, UK; Email: [email protected] being investigated or have been utilized by this technique, and brings into focus the newer therapy of using a scaffold-free cell delivery system to treat LSCD. Received: June 15, 2015; Accepted: October 01, 2015; Published: October 08, 2015 Keywords: Limbal stem cells; Limbal stem cell deficiency; Tissue engineering; Cell sheet Abbreviations i.e Steven-Johnson syndrome, ocular cicatricial phemphigoid and chronic limbitis. Trauma, surgery and cryotherapy to the limbus, AM: Amniotic Membrane; BM: Bone Marrow; EGF: Epidermal radiation and topical instillation or subconjunctival injection of toxic Growth Factor; ECM: Extracellular Matrix; ESC: Embryonic Stem drugs are some iatrogenic causes.
    [Show full text]
  • View the Abstracts
    SPECIAL TALKS 29 th July, 2018 ST3 KERATOCONUS INTERNATIONAL CONSORTIUM TO COMBAT THE NEED FOR CORNEAL TRANSPLANTATION Srujana Sahebjada University of Melbourne, Melbourne, Victoria, Australia. Keratoconus is a devastating and potentially blinding eye disease affecting 1 in 375 people. It is typically diagnosed during early teenage years and has a significant lifetime burden on an individual. While corneal cross-linking treatment is now available to slow disease progression, poor outcomes still persist due to delay in diagnosis or treatment, or other unknown factors that can ultimately lead to the need for corneal transplantation. Our research team has conducted a pilot study wherein we have recruited 400 subjects from public and private clinics in Melbourne to begin to address these issues. As a result, we have obtained extensive knowledge regarding a range of biomarkers from clinical features, imaging and genetic through to studying its impact on quality of life, economic burden, risk factors and treatment modalities. To take this research further, we established Keratoconus international consortium (KIC), with the main aim to produce a more streamlined and concerted effort for better understanding the condition and ultimately curing keratoconus. This global collaborative initiative is a game-changer- with already on board 15 national and international corneal specialists, willing to collect and share data and thus contribute to expanding our knowledge about keratoconus. KIC will be a first worldwide study in KC that will allow us to undertake a unified analysis to enable better diagnosis of individuals at early risk of disease, explore a therapeutic algorithm, identify biomarkers to be targeted for future therapy and thus potentially avoiding graft surgery.
    [Show full text]
  • Long-Term Results of Allogenic Penetrating Limbo-Keratoplasty
    Eye (2017) 31, 372–378 © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-222X/17 www.nature.com/eye 1 1 2 CLINICAL STUDY Long-term results of SJ Lang , D Böhringer , G Geerling and T Reinhard1 allogenic penetrating limbo-keratoplasty: 20 years of experience Abstract Aim The objective of the study was to in the case of conjunctivalization of the visual evaluate the long-term results of allogenic axis. This may restore a clear corneal centre in penetrating limbo-keratoplasy. This method those cases without the need for stem cells. allows simultaneous transplantation of a Amniotic membrane transplantation is an corneal graft and limbal stem cells of the additional method.3 Total failure of the limbal donor by means of eccentric trephination of stem cells results in severe alteration of the the donor button. corneal surface, and may lead to complete Method The data of 192 consecutive cases of conjunctivalisation of the cornea, with recurrent allogenic penetrating limbo-keratoplasty from ulcerations.4 This results in corneal opacification 1995 to 2015 were reviewed. These had been and visual impairment. There are a multitude of performed exclusively in eyes with complete causes for complete limbal stem cell failure. failure of the limbal stem cells, in Chemical burns can produce severe damage to combination with deep corneal scarring. the corneal limbus, the corneal stroma, and the Indications were predominantly eye burns, anterior ocular segment. Thus, the degree of fl in ammatory conditions, and congenital ischemia and necrosis in limbus, conjunctiva, aniridia. Graft survival and rejection rates and sclera may permit the estimation of the – were assessed using Kaplan Meier analysis.
    [Show full text]
  • Differentiation Induction of Human Stem Cells for Corneal Epithelial
    International Journal of Molecular Sciences Review Differentiation Induction of Human Stem Cells for Corneal Epithelial Regeneration 1, 1, 1 Kasem Theerakittayakorn y , Hong Thi Nguyen y, Jidapa Musika , Hataiwan Kunkanjanawan 2, Sumeth Imsoonthornruksa 1, Sirilak Somredngan 1, Mariena Ketudat-Cairns 1 and Rangsun Parnpai 1,* 1 Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; [email protected] (K.T.); [email protected] (H.T.N.); [email protected] (J.M.); [email protected] (S.I.); [email protected] (S.S.); [email protected] (M.K.-C.) 2 Medeze Research and Development Co., Ltd. 28/9 Moo 8, Phutthamonthon Sai 4 Rd., Krathum Lom, Sam Phran, Nakhon Pathom 73220, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +66-442-242-34 These authors contributed equally to this work. y Received: 25 September 2020; Accepted: 17 October 2020; Published: 22 October 2020 Abstract: Deficiency of corneal epithelium causes vision impairment or blindness in severe cases. Transplantation of corneal epithelial cells is an effective treatment but the availability of the tissue source for those cells is inadequate. Stem cells can be induced to differentiate to corneal epithelial cells and used in the treatment. Multipotent stem cells (mesenchymal stem cells) and pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are promising cells to address the problem. Various protocols have been developed to induce differentiation of the stem cells into corneal epithelial cells. The feasibility and efficacy of both human stem cells and animal stem cells have been investigated for corneal epithelium regeneration.
    [Show full text]
  • Stem Cell Therapy for Ocular Disorders
    SPECIAL ARTICLE Stem Cell Therapy for Ocular Disorders Leonard A. Levin, MD, PhD; Robert Ritch, MD; Julia E. Richards, PhD; Teresa Borra´s, PhD ell injury or degeneration occurs in a number of blinding diseases. Therapy has clas- sically consisted of preventing the initial injury or increasing the resistance of cells to injury (cytoprotection). Recently, it has become possible to repopulate tissue com- partments with stem cells. This article presents a current summary of ocular stem Ccell research and applications to disease. It is based on presentations and discussions from the July 2002 international conference “Stem Cells and Glaucoma” sponsored by the Glaucoma Founda- tion. This meeting, the first of its kind, brought together ophthalmologists, geneticists, immunolo- gists, and developmental biologists working on stem cell development and applications in both human and animal models. Arch Ophthalmol. 2004;122:621-627 Stem cells are undifferentiated cells able sitates that we first gain an understanding to divide indefinitely yet maintain the abil- of their proliferation, migration, differen- ity to differentiate into specific cell types. tiation, immunogenicity, and establish- They are able to survive throughout the ment of functional cell contacts.2 It will also lifetime of the organism, while maintain- be necessary to produce these cells in con- ing their number, producing populations ditions that meet appropriate safety and of daughter cells (transit amplifying cells) effectiveness standards. Our current un- that can proceed down unique pathways derstanding of the critical factors affect- of differentiation. Stem cells may be ob- ing stem cell behavior remains limited. tained from embryonic tissues, umbilical Rapid progress is being made, and some cord blood, and some differentiated adult of the first applications of stem cells to tissues.
    [Show full text]
  • Core Concepts in Stem Cell Biology: 1 Syllabus and Learning Guide
    Core Concepts in Stem Cell Biology: 1 Syllabus and Learning Guide Annotated with Foundational Literature Version 1.0, November 2020 www.isscr.org www.isscr.org 2 ON THE COVER Dopaminergic neurons derived from an embryoid body, a three-dimensional aggregation of pluripotent stem cells Achaete-scute homolog 1 (Ascl1) in red stains a pioneer transcription factor involved in neuronal differentiation, Tyrosine Hydroxylase in green plays an important role in neuronal physiology, and Tubulin Beta 3 Class III (Tubb3) in blue is expressed in axons. Credit: Begum Aydin, Mazzoni Lab, New York University, USA. DISCLAIMER The ISSCR is providing these educational resources to aid in course preparation. It is incumbent upon the individual user to ensure that the material they present is up-to-date and properly presented. These resources are made possible due to the hard work and dedication of the ISSCR Education Committee. If you have any questions or feedback please contact Julie Perlin, PhD, Scientific Communications and Education Manager, at [email protected]. © 2020, International Society for Stem Cell Research. All rights reserved. Core Concepts in Stem Cell Biology: Syllabus and Learning Guide VERSION 1.0 NOVEMBER 2020 future. Stem cell science is an incredibly vibrant and impactful field that is constantly changing. It is the Preface responsibility of the instructor to make sure that the material is up to date and presented properly. As a committee, we will update the content regularly, and we welcome feedback to help us enhance these re- Dear Stem Cell Community and Educators, sources to best serve your needs as a teaching tool.
    [Show full text]
  • Process Development and Safety Evaluation of ABCB5+ Limbal Stem Cells As Advanced-Therapy Medicinal Product to Treat Limbal Stem
    Norrick et al. Stem Cell Research & Therapy (2021) 12:194 https://doi.org/10.1186/s13287-021-02272-2 RESEARCH Open Access Process development and safety evaluation of ABCB5+ limbal stem cells as advanced- therapy medicinal product to treat limbal stem cell deficiency Alexandra Norrick1†, Jasmina Esterlechner1†, Elke Niebergall-Roth1†, Ulf Dehio2, Samar Sadeghi1, Hannes M. Schröder2, Seda Ballikaya1, Nicole Stemler1, Christoph Ganss1,2, Kathrin Dieter2, Ann-Kathrin Dachtler2, Patrick Merz3,4, Saadettin Sel4, James Chodosh5, Claus Cursiefen6,7, Natasha Y. Frank8,9,10,11, Gerd U. Auffarth3,4, Bruce Ksander12, Markus H. Frank10,11,13,14† and Mark A. Kluth1,2*† Abstract Background: While therapeutic success of the limbal tissue or cell transplantation to treat severe cases of limbal stem cell (LSC) deficiency (LSCD) strongly depends on the percentage of LSCs within the transplanted cells, prospective LSC enrichment has been hampered by the intranuclear localization of the previously reported LSC marker p63. The recent identification of the ATP-binding cassette transporter ABCB5 as a plasma membrane- spanning marker of LSCs that are capable of restoring the cornea and the development of an antibody directed against an extracellular loop of the ABCB5 molecule stimulated us to develop a novel treatment strategy based on the utilization of in vitro expanded allogeneic ABCB5+ LSCs derived from human cadaveric limbal tissue. Methods: We developed and validated a Good Manufacturing Practice- and European Pharmacopeia-conform production and quality-control process, by which ABCB5+ LSCs are derived from human corneal rims, expanded ex vivo, isolated as homogenous cell population, and manufactured as an advanced-therapy medicinal product (ATMP).
    [Show full text]
  • Stem Cells in Regenerative Medicine – from Laboratory to Clinical Application – the Eye
    Review paper DOI: https://doi.org/10.5114/ceji.2017.69360 Stem cells in regenerative medicine – from laboratory to clinical application – the eye ANNA M. DĄBROWSKA1, PIOTR SKOPIŃSKI1,2 1Department of Ophthalmology, Second Faculty of Medicine, Warsaw Medical University, Poland 2Department of Histology and Embriology, Biostructure Center, Warsaw Medical University, Poland Abstract Stem cells are currently one of the most researched and explored subject in science. They consstitue a very promising part of regenerative medicine and have many potential clinical applications. Harness- ing their ability to replicate and differentiate into many cell types can enable successful treatment of diseases that were incurable until now. There are numerous types of stem cells (e.g. ESCs, FSCs, ASCs, iPSCs) and many different methods of deriving and cultivating them in order to obtain viable materi- al. The eye is one of the most interesting targets for stem cell therapies. In this article we summarise different aspects of stem cells, discussing their characteristics, sources and methods of culture. We also demonstrate the most recent clinical applications in ophthalmology based on an extensive current literature review. Tissue engineering techniques developed for corneal limbal stem cell deficiency, age-related macular degeneration (AMD) and glaucoma are among those presented. Both laboratory and clinical aspects of stem cells are discussed. Key words: stem cells, tissue engineering, regenerative medicine, eye, biomarkers, AMD, glaucoma, limbal stem cell deficiency, ophthalmology. (Cent Eur J Immunol 2017; 42 (2):173-180) Introduction otent, derived from the inner cell mass of the blastocyst, a stage of the pre-implantation embryo, 5-6 days post-fer- Stem cells present multiple potential applications in re- tilization [2].
    [Show full text]