14 August 2021 Aperto
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constraints on the Timescale of Animal Evolutionary History
Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J. -
(Diapsida: Saurosphargidae), with Implications for the Morphological Diversity and Phylogeny of the Group
Geol. Mag.: page 1 of 21. c Cambridge University Press 2013 1 doi:10.1017/S001675681300023X A new species of Largocephalosaurus (Diapsida: Saurosphargidae), with implications for the morphological diversity and phylogeny of the group ∗ CHUN LI †, DA-YONG JIANG‡, LONG CHENG§, XIAO-CHUN WU†¶ & OLIVIER RIEPPEL ∗ Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, PO Box 643, Beijing 100044, China ‡Department of Geology and Geological Museum, Peking University, Beijing 100871, PR China §Wuhan Institute of Geology and Mineral Resources, Wuhan, 430223, PR China ¶Canadian Museum of Nature, PO Box 3443, STN ‘D’, Ottawa, ON K1P 6P4, Canada Department of Geology, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA (Received 31 July 2012; accepted 25 February 2013) Abstract – Largocephalosaurus polycarpon Cheng et al. 2012a was erected after the study of the skull and some parts of a skeleton and considered to be an eosauropterygian. Here we describe a new species of the genus, Largocephalosaurus qianensis, based on three specimens. The new species provides many anatomical details which were described only briefly or not at all in the type species, and clearly indicates that Largocephalosaurus is a saurosphargid. It differs from the type species mainly in having three premaxillary teeth, a very short retroarticular process, a large pineal foramen, two sacral vertebrae, and elongated small granular osteoderms mixed with some large ones along the lateral most side of the body. With additional information from the new species, we revise the diagnosis and the phylogenetic relationships of Largocephalosaurus and clarify a set of diagnostic features for the Saurosphargidae Li et al. -
Reptilia, Diapsida): New Insights from High-Resolution Ct Scanning of the Holotype
Palaeontologia Electronica http://palaeo-electronica.org THE BRAINCASE OF YOUNGINA CAPENSIS (REPTILIA, DIAPSIDA): NEW INSIGHTS FROM HIGH-RESOLUTION CT SCANNING OF THE HOLOTYPE Nicholas M. Gardner, Casey M. Holliday, and F. Robin O’Keefe Nicholas M. Gardner. Department of Biological Sciences, Marshall University, Huntington, West Virginia. [email protected] Casey M. Holliday. Department of Pathology & Anatomical Sciences, University of Missouri, Columbia, Missouri. [email protected] F. Robin O’Keefe. Department of Biological Sciences, Marshall University, Huntington, West Virginia. [email protected] ABSTRACT Detailed descriptions of braincase anatomy in early diapsid reptiles have been historically rare given the difficulty of accessing this deep portion of the skull, because of poor preservation of the fossils or the inability to remove the surrounding skull roof. Previous descriptions of the braincase of Youngina capensis, a derived stem-diapsid reptile from the Late Permian (250 MYA) of South Africa, have relied on only partially preserved fossils. High resolution X-ray computed tomography (HRXCT) scanning, a new advance in biomedical sciences, has allowed us to examine the reasonably com- plete braincase of the holotype specimen of Youngina capensis for the first time by dig- itally peering through the sandstone matrix that filled the skull postmortem. We present the first detailed 3D visualizations of the braincase and the vestibular system in a Permian diapsid reptile. This new anatomical description is of great comparative and phylogenetic relevance to the study of the structure, function and evolution of the reptil- ian head. KEY WORDS: Youngina capensis, diapsid reptiles, CT scanning, 3D models PE ERRATUM In the paper Gardner et al. -
Tetrapod Phylogeny
© J989 Elsevier Science Publishers B. V. (Biomédical Division) The Hierarchy of Life B. Fernholm, K. Bremer and H. Jörnvall, editors 337 CHAPTER 25 Tetrapod phylogeny JACQUES GAUTHIER', DAVID CANNATELLA^, KEVIN DE QUEIROZ^, ARNOLD G. KLUGE* and TIMOTHY ROWE^ ' Deparlmenl qf Herpelology, California Academy of Sciences, San Francisco, CA 94118, U.S.A., ^Museum of Natural Sciences and Department of Biology, Louisiana State University, Baton Rouge, LA 70803, U.S.A., ^Department of ^oology and Museum of Vertebrate ^oology. University of California, Berkeley, CA 94720, U.S.A., 'Museum of ^oology and Department of Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A. and ^Department of Geological Sciences, University of Texas, Austin, TX 78713, U.S.A. Introduction Early sarcopterygians were aquatic, but from the latter part of the Carboniferous on- ward that group has been dominated by terrestrial forms commonly known as the tet- rapods. Fig. 1 illustrates relationships among extant Tetrápoda [1-4J. As the clado- grams in Figs. 2•20 demonstrate, however, extant groups represent only a small part of the taxonomic and morphologic diversity of Tetrápoda. We hope to convey some appreciation for the broad outlines of tetrapod evolution during its 300+ million year history from late Mississippian to Recent times. In doing so, we summarize trees de- rived from the distribution of over 972 characters among 83 terminal taxa of Tetrápo- da. More than 90% of the terminal taxa we discuss are extinct, but all of the subter- minal taxa are represented in the extant biota. This enables us to emphasize the origins of living tetrapod groups while giving due consideration to the diversity and antiquity of the clades of which they are a part. -
Phylonyms; a Companion to the Phylocode
Pan-Lepidosauria J. A. Gauthier and K. de Queiroz, new clade name Registration Number: 118 2009; Evans and Borsuk-Bialylicka, 2009; Evans and Jones, 2010; but see Müller, 2004; De!nition: !e total clade of the crown clade Jones et al., 2013). More recently, kuehneosaurs Lepidosauria. !is is a crown-based total-clade have been inferred to be stem archosaurs close de"nition. Abbreviated de"nition: total ∇ of to Trilophosaurus buettneri by Pritchard and Lepidosauria. Nesbitt (2017), although Simões et al. (2018) placed them as either stem saurians or stem Etymology: Derived from pan (Greek), here archosaurs depending on the analysis, but in referring to “pan-monophylum,” another term either case only distantly related to T. buettneri. for “total clade,” and Lepidosauria, the name !e Early Triassic Sophineta cracoviensis and the of the corresponding crown clade; hence, “the Middle Jurassic Marmoretta oxoniensis have been total clade of Lepidosauria.” more consistently regarded as stem lepidosaurs, although that inference depends upon cor- Reference Phylogeny: Gauthier et al. (1988) rect association among disarticulated remains Figure 13, where the clade in question is named (Evans, 1991; Waldman and Evans, 1994; Lepidosauromorpha and is hypothesized to Evans, 2009; Evans and Borsuk-Bialylicka, include Younginiformes, which is no longer con- 2009; Evans and Jones, 2010; Jones et al., 2013; sidered part of the clade (see Composition). Renesto and Bernardi, 2014). Depending on the analysis, Simões et al. (2018) inferred S. Composition: Pan-Lepidosauria is composed cracoviensis to be either a stem lepidosaurian of Lepidosauria (Pan-Sphenodon plus Pan- or a stem squamatan, but they consistently Squamata, see entry in this volume) and all inferred M. -
Plesiosaurs from Svalbard
Plesiosaurs from Svalbard by Bård H. Andreassen Cand. Scient. thesis in palaeontology at Universitetets naturhistoriske museer og botaniske hage Seksjon for geologi, Universitetet i Oslo 2004. Contents Abstract .............................................................................................................................. 2 Introduction......................................................................................................................... 3 The fossil history of the Plesiosauria ................................................................................. 3 Taxonomical history of the Plesiosauria .................................................................. 5 Origin of the Plesiosaurs ........................................................................................ 10 Systematics ............................................................................................................. 13 About adaptation to the sea .............................................................................................. 18 Material and methods........................................................................................................ 23 Historical information regarding the fossil specimen A 27745............................... 23 Description of the specimen PMO A 27745......................................................................27 Systematic paleontology .................................................................................................. 28 Class Reptilia ........................................................................................................ -
1 Youngoides Romeri and the Origin of the Archosauriformes DAVID
Youngoides romeri and the origin of the Archosauriformes DAVID PETERS Independent researcher 311 Collinsville Avenue, Collinsville, IL U.S.A. [email protected] 1 ABSTRACT—Prior workers reported that all specimens attributed to Youngopsis and Youngoides could not be distinguished from the holotype of Youngina capensis. Others considered all specimens attributed to Proterosuchus, Chasmatosaurus, and Elaphrosuchus conspecific. In both cases distinct skull shapes were attributed to taphonomic variations due to distortion pressure or allometric growth. Here a large phylogenetic analysis of the Amniota (401 taxa) tests those hypotheses. The resulting tree recovers a den of small Youngina specimens preceding the Protorosauria. Another specimen nests at the base of the Protorosauria. Six others nest between the Protorosauria and the Archosauriformes. The most derived of these bears a nascent antorbital fenestra. Two other putative Youngina specimens nest at unrelated nodes. In like fashion, the various specimens assigned to Proterosuchus are recovered in distinct clades. One leads to the Proterochampsidae, Parasuchia and Choristodera. The latter lost the antorbital fenestra. Another clade leads to all higher archosauriforms. The present analysis reveals an evolutionary sequence shedding new light on the origin and radiation of early archosauriforms. Taphonomic distortion pressure and allometry during ontogeny were less of a factor than previously assumed. The splitting of several specimens currently considered Youngina and Proterosuchus into distinct genera and species is supported here. INTRODUCTION The Archosauriformes is a widely recognized monophyletic clade that includes, by definition, the most recent common ancestor of Proterosuchidae, Erythrosuchidae, 2 Proterochampsidae, and Archosauria (Gauthier, 1986). Later studies (e.g., Sereno, 1991; Parrish, 1993; Juul, 1994; Ezcurra, 2010; Nesbitt, 2011) have universally rooted their archosauriform clades on Proterosuchidae or Proterosuchus. -
Reptile Family Tree Peters 2021 1909 Taxa, 235 Characters
Turinia Enoplus Chondrichtyes Jagorina Gemuendina Manta Chordata Loganellia Ginglymostoma Rhincodon Branchiostoma Tristychius Pikaia Tetronarce = Torpedo Palaeospondylus Craniata Aquilolamna Tamiobatis Myxine Sphyrna Metaspriggina Squalus Arandaspis Pristis Poraspis Rhinobatos Drepanaspis Cladoselache Pteromyzon adult Promissum Chlamydoselachus Pteromyzon hatchling Aetobatus Jamoytius Squatina Birkenia Heterodontus Euphanerops Iniopteryx Drepanolepis Helodus Callorhinchus Haikouichthys Scaporhynchus Belantsea Squaloraja Hemicyclaspis Chimaera Dunyu CMNH 9280 Mitsukurina Rhinochimaera Tanyrhinichthys Isurus Debeerius Thelodus GLAHM–V8304 Polyodon hatchling Cetorhinus Acipenser Yanosteus Oxynotus Bandringa PF8442 Pseudoscaphirhynchus Isistius Polyodon adult Daliatus Bandringa PF5686 Gnathostomata Megachasma Xenacanthus Dracopristis Akmonistion Ferromirum Strongylosteus Ozarcus Falcatus Reptile Family Tree Chondrosteus Hybodus fraasi Hybodus basanus Pucapampella Osteichthyes Orodus Peters 2021 1943 taxa, 235 characters Gregorius Harpagofututor Leptolepis Edestus Prohalecites Gymnothorax funebris Doliodus Gymnothorax afer Malacosteus Eurypharynx Amblyopsis Lepidogalaxias Typhlichthys Anableps Kryptoglanis Phractolaemus Homalacanthus Acanthodes Electrophorus Cromeria Triazeugacanthus Gymnotus Gorgasia Pholidophorus Calamopleurus Chauliodus Bonnerichthys Dactylopterus Chiasmodon Osteoglossum Sauropsis Synodus Ohmdenia Amia Trachinocephalus BRSLI M1332 Watsonulus Anoplogaster Pachycormus Parasemionotus Aenigmachanna Protosphyraena Channa Aspidorhynchus -
A Reevaluation of Early Amniote Phylogeny
Zoological Journal of the Linnean Society (1995), 113: 165–223. With 9 figures A reevaluation of early amniote phylogeny MICHEL LAURIN AND ROBERT R. REISZ* Department of Zoology, Erindale Campus, University of Toronto, Mississauga, Ontario, Canada L5L 1C6 Received February 1994, accepted for publication July 1994 A new phylogenetic analysis of early amniotes based on 124 characters and 13 taxa (including three outgroups) indicates that synapsids are the sister-group of all other known amniotes. The sister-group of Synapsida is Sauropsida, including Mesosauridae and Reptilia as its two main subdivisions. Reptilia is divided into Parareptilia and Eureptilia. Parareptilia includes Testudines and its fossil relatives (Procolophonidae, Pareiasauria and Millerettidae), while Eureptilia includes Diapsida and its fossil relatives (Paleothyris and Captorhinidae). Parts of the phylogeny are robust, such as the sister-group relationship between procolophonids and testudines, and between pareiasaurs and the testudinomorphs (the clade including procolophonids and testudines). Other parts of the new tree are not so firmly established, such as the position of mesosaurs as the sister-group of reptiles. The new phylogeny indicates that three major clades of amniotes extend from the present to the Palaeozoic. These three clades are the Synapsida (including Mammalia), Parareptilia (including Testudines), and Eureptilia (including Sauria). In addition, the Procolophonidae, a group of Triassic parareptiles, are the sister-group of Testudines. ADDITIONAL KEY WORDS:—Amniota – Sauropsida – Mesosauridae – Reptilia – Parareptilia – Eureptilia – Testudines – phylogenetics – evolution – Palaeozoic. CONTENTS Introduction . 166 Methods . 169 Results . 171 Amniote taxonomy . 172 Cotylosauria Cope 1880 . 173 Diadectomorpha Watson 1917 . 173 Amniota Haeckel 1866 . 177 Synapsida Osborn 1903 . 179 Sauropsida Huxley 1864 . -
Enigmatic Basal Archosauromorph from the Late Triassic of Poland
Enigmatic basal archosauromorph from the Late Triassic of Poland Olja Toljagic Degree project in biology, Master of science (2 years), 2012 Examensarbete i biologi 30 hp till masterexamen, 2012 Biology Education Centre and Department of Organismal Biology, Uppsala University Supervisor: Per E. Ahlberg External opponent: Karoline Fritzsche Table of Contents ABSTRACT ............................................................................................................................. 2 INTRODUCTION ...................................................................................................................... 3 Choristodera ................................................................................................................ 5 Basal Archosauromorpha ............................................................................................ 6 Geological age of the Lipie Śląskie-Lisowice locality…………………………..…..9 Aims of the current work …………………………………………………….........12 Institutional abbreviations……………………… …………………………………13 Anatomical abbreviations used in the text and figures...……………………...……13 SYSTEMATIC PALAEONTOLOGY……………………………………………………….14 Referred specimens………………………………………………………………...14 Type horizon and locality……………………………………………………….…14 Description: two femur bones…………………………………………………..…15 Remarks…………………………………………………………………………….20 Comparison with other choristoders………………………………………………..21 Comparison with Trilophosauria and Rhynchosauria…………………………...…22 BONE HISTOLOGY…………………………………………………………………………26 DISCUSSION…………………………………………………………………………...……30 -
The Braincase of Youngina Capensis (Reptilia, Diapsida): New Insights from High-Resolution Ct Scanning of the Holotype
Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 11-2010 The rB aincase of Youngina Capensis (Reptilia, Diapsida): New Insights from High-Resolution CT Scanning of the Holotype Nicholas M. Gardner Marshall University Casey M. Holliday F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Sciences Commons Recommended Citation Gardner, Nicholas M., Holliday, Casey M. , and O’Keefe, F. Robin, 2010. The rB aincase of Youngina capensis (Reptilia, Dipsida): New Insights from High-Resolution CT Scanning of the Holotype Palaeontologia Electronica Vol. 13, Issue 3; 19A:16p; http://palaeo- electronica.org/2010_3/217/index.html This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Palaeontologia Electronica http://palaeo-electronica.org THE BRAINCASE OF YOUNGINA CAPENSIS (REPTILIA, DIAPSIDA): NEW INSIGHTS FROM HIGH-RESOLUTION CT SCANNING OF THE HOLOTYPE Nicholas M. Gardner, Casey M. Holliday, and F. Robin O’Keefe Nicholas M. Gardner. Department of Biological Sciences, Marshall University, Huntington, West Virginia. [email protected] Casey M. Holliday. Department of Pathology & Anatomical Sciences, University of Missouri, Columbia, Missouri. [email protected] F. Robin O’Keefe. Department of Biological Sciences, Marshall University, Huntington, West Virginia. [email protected] ABSTRACT Detailed descriptions of braincase anatomy in early diapsid reptiles have been historically rare given the difficulty of accessing this deep portion of the skull, because of poor preservation of the fossils or the inability to remove the surrounding skull roof. -
ENGLISH - CHINESE English-Chinese- Pinyin Dictionary
ENGLISH - CHINESE English-Chinese- Pinyin Dictionary English Chinese Pinyin a priori 先验的 xiānyànde a priori 先验地 xiānyàndì A-, ab- (prefix) 分开 fēnkāi a-, an- 不bù a-, an- 无wú Aardvark 土豚 tǔtún Aardvark 土猪 tǔzhū abdomen 腹fù abdominal air sac 腹气囊 fùqìnáng abdominal muscle 腹[部]诸肌 fù[bù]zhūjī abdominal pectoralis muscle 胸腹肌 xiōngfùjī abdominal plate 腹板 fùbǎn abdominal scute 腹[角]板fù[jiǎo]bǎn abdominal transverse muscle 腹横肌 fùhéngjī abductor 展肌 zhǎnjī abductor muscle [外]展肌 [wài] zhǎnjī abductor muscle 外展神经孔 wàizhǎnshénjīngkǒng aberrant 异常的 yìchángde aberration 变型 biànxíng Abo Formation 阿博组 ābózǔ aboral 远口侧 yuǎnkǒucè aboral auricular muscle 耳后肌 ěrhòujī aboral palatine fenestra 腭口侧 èkǒucè aboriginal 土著的 tǔzhùde abortion 流产 liúchǎn abrasion 磨蚀 móshí absolute age 绝对年龄 juéduìniánlíng absolute dating (radiometric dating) 绝对年代 juéduìniándài absolute ranking 绝对级别 juéduìjíbié absorbance 吸光率 xīguānglǜ absorbent 吸收剂 xīshōujì absorption spectrometry 吸收光谱测定(法) xīshōuguāngpǔcèdìng(fǎ) abundance 丰度 fēngdù 2 English-Chinese- Pinyin Dictionary abundance zone 富集带 fùjídài abyssal 深海底的 shēnhǎidǐde abyssal plain 深海平原 shēnhǎipíngyuán acacia 阿拉伯(树)胶 ālābó(shù)jiāo Academia Sinica 中国科学院 zhōngguókēxuéyuàn Academy of Science 科学院 kēxuéyuàn Acanthoclinidae 棘盖鱼科 jígàiyúkē Acanthodes 棘鱼属 jíyúshǔ Acanthodidae 棘鱼科 jíyúkē Acanthodiformes 棘鱼目 jíyúmù Acanthodii 棘鱼纲 jíyúgāng Acanthopterygii 刺鳍鱼超目 cìqíyúchāomù Acanthopterygii 棘鳍目 jíqímù Acanthuridae 刺尾鱼科 cìwěiyúkē Acanthuroidei 刺尾鱼亚目 cìwěiyúyàmù accelerator 促进剂 cùjìnjì acceptor RNA 受体 (RNA) ((RNA) 受体) shòutǐ, (RNA) ((RNA) shòutǐ)