Hampton Cove Middle School

Total Page:16

File Type:pdf, Size:1020Kb

Hampton Cove Middle School James Webb Space Telescope (JWST) The First Light Machine Who is James Webb? James E Webb was the first administrator of NASA (1961 to 1968) He supported a program balanced between Science and Human Exploration. credit: NASA What is FIRST LIGHT? End of the dark ages: first light and reionization What are the first luminous objects? What are the first galaxies? How did black holes form and interact with their host galaxies? When did re-ionization of the inter-galactic medium occur? What caused the re-ionization? … to identify the first luminous sources to form and to determine the ionization history of the early universe. Hubble Ultra Deep Field A Brief History of Time Planets, Life & Galaxies Intelligence First Galaxies Evolve Form Atoms & Radiation Particle Physics Big Today Bang 3 minutes 300,000 years 100 million years 1 billion COBE years 13.7 Billion years MAP JWST HST Ground Based Observatories First Light Stars 50-to-100 million years after the Big Bang, the first massive stars started to form from clouds of hydrogen. But, because they were so large, they were unstable and either exploded supernova or collapsed into black holes. These first stars helped ionize the universe and created elements such as He. O-class stars are 25X larger than our sun. ‘First’ stars may have been 1000X larger. The (modern) Morgan–Keenan spectral classification system, with the temperature range of each star class shown above it, in kelvin. The overwhelming majority of stars today are M-class stars, with only 1 known O- or B-class star within 25 parsecs. Our Sun is a G- class star. However, in the early Universe, almost all of the stars were O or B-class stars, with an average mass 25 times greater than average stars today.Wikimedia Commons user LucasVB, additions by E. Siegel Ethan Siegel, FORBES.com, 24 Oct 2018 First Light: Reionization Neutral ‘fog’ was dissolved by very bright 1st Generation Stars. At 780 M yrs after BB the Universe was up to 50% Neutral. But, by 1 B years after BB is was as we see it today. 787 M yr Galaxy confirmed by Neutral Hydrogen method. Redshift Neutral IGM z<zi z~z z>z i i . Lyman Forest Absorption Patchy Absorption Black Gunn-Peterson trough SPACE.com, 12 October 2011 How do we see first light objects? Redshift Blue Green Red + + = 5.8 Gyr 2.2 Gyr 3.3 Gyr 1.8 Gyr 2.2 Gyr 1.0 Gyr Redshift The further away an object is, the more its light is redshifted from the visible into the infrared. To see really far away, we need an infrared telescope. First Galaxy in Hubble Deep Field At 480 M yrs after big bang (z ~ 10) this one of oldest observed galaxy. Discovered using drop-out technique. (current oldest is 420 M yrs after BB, maybe only 200 M yrs) Left image is visible light, and the next three in near-infrared filters. The galaxy suddenly pop up in the H filter, at a wavelength of 1.6 microns (a little over twice the wavelength the eye can detect). (Discover, Bad Astronomy, 26 Jan 2011) JWST Summary • Mission Objective – Study origin & evolution of galaxies, stars & planetary systems – Optimized for near infrared wavelength (0.6 –28 m) – 5 year Mission Life (10 year Goal) • Organization – Mission Lead: Goddard Space Flight Center – International collaboration with ESA & CSA – Prime Contractor: Northrop Grumman Space Technology – Instruments: – Near Infrared Camera (NIRCam) – Univ. of Arizona – Near Infrared Spectrometer (NIRSpec) – ESA – Mid-Infrared Instrument (MIRI) – JPL/ESA – Fine Guidance Sensor (FGS) – CSA – Operations: Space Telescope Science Institute Origins Theme’s Fundamental Questions • How Did We Get Here? • Where Are We Going? • Are We Alone? JWST Science Themes First Light and Re-Ionization Big Bang HHPlanetary-30 MStar-16 Formation Galaxy Formation Life Galaxy Evolution Three Key Facts There are 3 key facts about JWST that enables it to perform is Science Mission: It is a Space Telescope It is an Infrared Telescope It has a Large Aperture Why go to Space Atmospheric Transmission drives the need to go to space. Infrared (mid and far/sub-mm) Telescopes (also uv, x-ray, and gamma-ray) cannot see through the Atmosphere JWST Discovery Space Infrared Light COLD Why Infrared ? Why do we need Large Apertures? Aperture = Sensitivity 1010 Photographic & electronic detection Telescopes alone JWST 8 10 HST CCDs Sensitivity 106 Improvement Photography over the Eye 104 m 102 - Short’s 21.5” Short’s eyepiece Slow f ratios Huygens Galileo Rosse’s 72” 100” WilsonMount 200” PalomarMount Soviet 6 Adapted from Cosmic Herschell’s48” Discovery, M. Harwit 1600 1700 1800 1900 2000 Sensitivity Matters GOODS CDFS – 13 orbits HUDF – 400 orbits JWST will be more Sensitive than Hubble or Spitzer HUBBLE JWST SPITZER 0.8-meter 2.4-meter T ~ 5.5 K T ~ 270 K 6.5-meter 123” x 136” T ~ 40 K λ/D1.6μm~ 0.14” 312” x 312” 324” x 324” λ/D5.6μm~ 2.22” λ/D24μm~ 6.2” JWST 6X more sensitive 132” x 164” 114” x 84” with similar resolution λ/D2μm~ 0.06” λ/D20μm~ 0.64” JWST 44X more sensitive Wavelength Coverage 1 μm 10 μm 100 μm HST JWST Spitzer How big is JWST? 21st National Space Symposium, Colorado Springs, The Space Foundation How JWST Works JWST is folded and stowed for launch Observatory is deployed after launch JWST Orbits the 2nd Lagrange Point (L2) 239,000 miles (384,000km) 930,000 miles (1.5 million km) Earth Moon L2 JWST has 4 Science Instruments (0.6 to 28 micrometers) NIRCam: image the first galaxies NIRSpec: simultaneous spectra of 100 galaxies MIRI: first HD view of infrared universe FGS: sense pointing to 1 millionth degree NIRISS: imagery & spectra of exoplanets JWST Telescope Requirements Optical Telescope Element 25 sq meter Collecting Area 2 micrometer Diffraction Limit < 50K (~35K) Operating Temp Primary Mirror 6.6 meter diameter (tip to tip) < 25 kg/m2 Areal Density < $6 M/m2 Areal Cost 18 Hex Segments in 2 Rings Low (0-5 cycles/aper) 4 nm rms Drop Leaf Wing Deployment CSF (5-35 cycles/aper) 18 nm rms Mid (35-65K Segments cycles/aper) 7 nm rms 1.315 meter Flat to Flat Diameter Micro-roughness <4 nm rms < 20 nm rms Surface Figure Error Fun Fact – Mirror Surface Tolerance Human Hair Approximate scale Diameter is 100,000 nm (typical) PMSA Surface Figure Error < 20 nm (rms) PMSA JWST Mirror Technology History ) 2 300 240 TRL-6 Testing 2006 2004 NAR 200 JWST Mirror Risk Reduction TRL 6 text text 100 JWST Primary Ball Beryllium Optic Technology Complete Goodrich Mirror vibro- Areal Density (Kg/m Density Areal Kodak ULE Mirror Selected - TRL 5.5 60 30 Mirror2002 acoustics Test 15 text 1980 1990 2000 2010 JWST Prime SBMD 2000 Selected JWST Requirement 1998 AMSD Phase 2 AMSD Phase 1 ProcessMirror Material/Technology improvements\ Risk Selection, Reduction September, 2003 * NASA HST, Chandra, SBMD SIRTF Lessons Learned Onset NGST • •ScheduleBeryllium and chosen Tinsley for technicalstaffing identifiedreasons as 1996 SBMDAMSD Phase– 1996 1 – 1999 - TRL 6 by NAR AMSDJWST(cryogenic risksPhase CTE, 2 – thermal2000 conductance, issues with - Implement an active risk SIRTF Monolithic I70 Be Mirror • 0.535 Vendors m diameter selected for management process early in the Manufacturing • glass,Process •stress3 vendorsimprovements issues (Goodrich, with Be via noted) 6 Kodak,-Sigma Study and •studies20 m ROC Sphere program ( Early investiment) followPrime-Ball)on* Contractor identified Schedule potential Selectionand Tinsley schedule staffing savings NMSD • EDU addedidentified• •BerylliumBall as (Beryllium) key as mirror riskJWST mitigation andrisks ITT/Kodak demonstration• (ULE)CryoDown Null deviceproposedselect Figured to(2003) 4 as mirror to options,along 19 nm with rms AMSD Phase 3 •architecturesProcessGoodrichCoating improvementsAdheasion dropped from (coupon AMSD and .5 meter demonstrations) Based on lessons learned, JWST invested early in mirror technology to address lower areal densities and cryogenic operations Advantages of Beryllium Very High Specific Stiffness – Modulus/Mass Ratio Saves Mass – Saves Money High Conductivity & Below 100K, CTE is virtually zero. Thermal Stability Figure Change: 30-55K Operational Range Beryllium ULE Glass Y Surface Figure Y X With Alignment X Vertex Y Compensation X Gravity Gravity Vertex Y Residual with Y X 36 Zernikes X Removed Vertex 15.0 mm 15.015.015.015.0 mm mm mm mm Gravity Vertex Gravity Mirror Manufacturing Process Blank Fabrication Machining Machining of Web Structure Completed Mirror Blank Machining of Optical Surface Polishing Mirror System Integration Fun Facts – Mirror Manufacturing Before After Finished Be Billet Mirror Segment Be dust which is recycled 250 kgs 21 kgs Over 90% of material is removed to make each mirror segment – want a little mirror with your Be dust? Mirror Processing at Tinsley Tinsley In-Process Metrology Tools Metrology tools provide feedback at every manufacturing stage: Rough Grinding CMM Fine Grinding/Rough Polishing Scanning Shack-Hartmann Final Polishing/Figuring/CNF Interferometry PMSA Interferometer Test Stations included: 2 Center of Curvature CGH Optical Test Stations (OTS1 and OTS2) Auto-Collimation Test Station Data was validated by comparing overlap between tools Independent cross check tests were performed at Tinsley and between Tinsley, Ball and XRCF. Leitz CMM CMM was sized to test PMSA Full Aperture Wavefront Sciences Scanning Shack-Hartmann SSHS provided bridge-data between grind and polish, used until PMSA surface was within capture range of interferometry SSHS provide mid-spatial frequency control: 222 mm to 2 mm Large dynamic range (0 – 4.6 mr surface slope) When not used, convergence rate was degraded. Comparison to CMM (222 - 2 mm spatial periods) 8/1/2006 data Smooth grind SSHS CMM 4.7 µm PV, 0.64 µm RMS 4.8 µm PV, 0.65 µm RMS Point-to-Point Subtraction: SSHS - CMM = 0.27 µm RMS Full Aperture Optical Test Station (OTS) Center of Curvature Null Test measured & controlled: Prescription, Radius & Figure Results are cross-checked between 2 test stations.
Recommended publications
  • GALEX Helix Nebula Poster
    National Aeronautics and Space Administration The Helix Nebula: What is it? The object shown on the front of this poster is the This “Mountains Helix Nebula. Although this object and others like it are of Creation” image called planetary nebulae (pronounced NEB-u-lee), they was captured by really have nothing to do with planets. They got their name the Spitzer Space ZKHQDVWURQRPHUV¿rst saw them through early telescopes, Telescope in infrared because they looked similar to planets with rings around light. It reveals them, like Saturn. billowing mountains of dust ablaze with A planetary nebula is the ¿res of active star really a shell of glowing gas formation. GALEX and plasma from a star at the can see the new stars end of its life. The star has forming, because they glow brightly in ultraviolet (UV) light. blown off much of its material However, the surrounding dust and gas clouds are cooler and and what is left is a very not so visible to GALEX. compact object called a white dwarf. For a while, the white dwarf is still hot and bright A Tug of War enough to make the material Planetary nebula JnEr1, A star is an amazing from the former star glow, as seen by GALEX. ! Ow! If not for balancing act between two ! * * gravity, my head and that is what we see as a * * would explode! beautiful nebula. Over 10,000 huge forces. On the one * years or so, the gas will drift away and the white dwarf will hand, the crushing force of the star’s own gravity Gravity Heat cool so much that we can no longer see the nebula.
    [Show full text]
  • Poster Abstracts
    Aimée Hall • Institute of Astronomy, Cambridge, UK 1 Neptunes in the Noise: Improved Precision in Exoplanet Transit Detection SuperWASP is an established, highly successful ground-based survey that has already discovered over 80 exoplanets around bright stars. It is only with wide-field surveys such as this that we can find planets around the brightest stars, which are best suited for advancing our knowledge of exoplanetary atmospheres. However, complex instrumental systematics have so far limited SuperWASP to primarily finding hot Jupiters around stars fainter than 10th magnitude. By quantifying and accounting for these systematics up front, rather than in the post- processing stage, the photometric noise can be significantly reduced. In this paper, we present our methods and discuss preliminary results from our re-analysis. We show that the improved processing will enable us to find smaller planets around even brighter stars than was previously possible in the SuperWASP data. Such planets could prove invaluable to the community as they would potentially become ideal targets for the studies of exoplanet atmospheres. Alan Jackson • Arizona State University, USA 2 Stop Hitting Yourself: Did Most Terrestrial Impactors Originate from the Terrestrial Planets? Although the asteroid belt is the main source of impactors in the inner solar system today, it contains only 0.0006 Earth mass, or 0.05 Lunar mass. While the asteroid belt would have been much more massive when it formed, it is unlikely to have had greater than 0.5 Lunar mass since the formation of Jupiter and the dissipation of the solar nebula. By comparison, giant impacts onto the terrestrial planets typically release debris equal to several per cent of the planet’s mass.
    [Show full text]
  • Two Rings but No Fellowship: Lotr 1 and Its Relation to Planetary Nebulae
    Mon. Not. R. Astron. Soc. 000, 1–16 (2013) Printed 17 October 2018 (MN LATEX style file v2.2) Two rings but no fellowship: LoTr 1 and its relation to planetary nebulae possessing barium central stars. A.A. Tyndall1,2⋆, D. Jones2, H.M.J. Boffin2, B. Miszalski3,4, F. Faedi5, M. Lloyd1, J.A. L´opez6, S. Martell7, D. Pollacco5, and M. Santander-Garc´ıa8 1Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL, UK 2European Southern Observatory, Alonso de C´ordova 3107, Casilla 19001, Santiago, Chile 3South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa 4Southern African Large Telescope. PO Box 9, Observatory 7935, South Africa 5Department of Physics, University of Warwick, CV4 7AL, UK 6Instituto de Astronom´ıa, Universidad Nacional Aut´onoma de M´exico, Ensenada, Baja California, C.P. 22800, Mexico 7Australian Astronomical Observatory, North Ryde, 2109 NSW, Australia 8Observatorio Astron´omico National, Madrid, and Centro de Astrobiolog´ıa, CSIC-INTA, Spain Accepted xxxx xxxxxxxx xx. Received xxxx xxxxxxxx xx; in original form xxxx xxxxxxxx xx ABSTRACT LoTr 1 is a planetary nebula thought to contain an intermediate-period binary central star system ( that is, a system with an orbital period, P, between 100 and, say, 1500 days). The system shows the signature of a K-type, rapidly rotating giant, and most likely constitutes an accretion-induced post-mass transfer system similar to other PNe such as LoTr 5, WeBo 1 and A70. Such systems represent rare opportunities to further the investigation into the formation of barium stars and intermediate period post-AGB systems – a formation process still far from being understood.
    [Show full text]
  • The Double Helix Nebula: a Magnetic Torsional Wave Propagating out of the Galactic Centre
    The Double Helix Nebula: a magnetic torsional wave propagating out of the Galactic centre Mark Morris1, Keven Uchida2, and Tuan Do1 1Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095-1547, USA 2Center for Radiophysics and Space Research, Cornell University, Space Sciences Building, Ithaca, NY 14853-6801 Radioastronomical studies have indicated that the magnetic field in the central few hundred parsecs of our Milky Way Galaxy has a dipolar geometry and a strength substantially larger than elsewhere in the Galaxy, with estimates ranging up to a milligauss1-6. A strong, large-scale magnetic field can affect the Galactic orbits of molecular clouds by exerting a drag on them, it can inhibit star formation, and it can guide a wind of cosmic rays away from the central region, so a characterization of the magnetic field at the Galactic center is important for understanding much of the activity there. Here, we report Spitzer Space Telescope observations of an unprecedented infrared nebula having the morphology of an intertwined double helix. This feature is located about 100 pc from the Galaxy’s dynamical centre toward positive Galactic latitude, and its axis is oriented perpendicular to the Galactic plane. The observed segment is about 25 pc in length, and contains about 1.25 full turns of each of the two continuous, helically wound strands. We interpret this feature as a torsional Alfvén wave propagating vertically away from the Galactic disk, driven by rotation of the magnetized circumnuclear gas disk. As such, it offers a new morphological probe of the Galactic center magnetic field.
    [Show full text]
  • Proton! Physics Under the Direction of Guido Energy Physics Under the Direction of We’Ll Even Print Your Abstract! Mueller
    P R O T O N Physics Report on Things of Note January 2006 -- Vol. 5 No. 1 Physics Department Year-End Awards Announced Featured Publication(s) Each December, the Department holds an Awards Ceremony during the Annual Holiday Party, to recognize staff and faculty who have achieved superior perfor- T. S. Nunner, B. M. Ander- mance, and to announce the Graduate Student Awards which recognize outstand- sen, A. Melikyan, and P. J. ing graduate students from the past year. Hirschfeld. “Dopant-Modulated Pair Physics Teacher of the Year (2005) Interaction in Cuprate Super- Stephen Hill conductors.” Phys. Rev. Lett. 95, 177003 (2005). Physics Employee Excellence Awards (2005) Yvonne Dixon and Greg Labbe B. Abbott et al. (LIGO Scien- tific Collaboration). Graduate Student Awards (2005) “Upper Limits on a Stochastic Background of Gravitational Tom Scott Memorial Award : TA of the Year for the Introductory Waves.” James Ira Thorpe Labs : Sung-Soo Kim Phys. Rev. Lett. 95, 221101 (2005) This award is made annually to a se- This award recognizes Sung-Soo’s nior graduate student, in experimental commitment to his students and to the Submit your article to be featured physics, who has shown distinction in educational atmosphere in the labora- in this section. Whether it’s just research. Ira is a 2nd year graduate tory setting. Sung-Soo is a 4th year been submitted or accepted, we’d student working in experimental astro- student working in theoretical high like to feature it in the proton! physics under the direction of Guido energy physics under the direction of We’ll even print your abstract! Mueller.
    [Show full text]
  • High Resolution Search for Dark Matter Axions in Milky Way Halo Substructure
    HIGH RESOLUTION SEARCH FOR DARK MATTER AXIONS IN MILKY WAY HALO SUBSTRUCTURE By LEANNE DELMA DUFFY A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006 ACKNOWLEDGMENTS This work is based on research performed by the Axion Dark Matter eX- periment (ADMX). I am grateful to my ADMX collaborators for their efforts, particularly in running the experiment and providing the high resolution data. Without these efforts, this work would not have been possible. I thank my advisor, Pierre Sikivie, for his support and guidance thoughout graduate school. It has been a priviege to collaborate with him on this and other projects. I also thank Dave Tanner for his assistance and advice on this work. I would like to thank the other members of my advisory committee, Jim Fry, Guenakh Mitselmakher, Pierre Ramond, Richard Woodard and Fred Hamann, for their roles in my progress. I am also grateful to the other members of the University of Florida Physics Department who have contributed to my graduate school experience. I am especially grateful to my family and friends, both near and far, who have supported me through this long endeavor. Special thanks go to Lisa Everett and Ethan Siegel. ii TABLE OF CONTENTS page ACKNOWLEDGMENTS ............................. ii LIST OF TABLES ................................. v LIST OF FIGURES ................................ vi ABSTRACT .................................... viii CHAPTER 1 INTRODUCTION .............................. 1 2 AXIONS .................................... 7 2.1 Introduction ............................... 7 2.2 The Strong CP Problem ........................ 7 2.3 The Axion ................................ 11 2.3.1 Introduction ........................... 11 2.3.2 The Peccei-Quinn Solution to the Strong CP Problem ...
    [Show full text]
  • & General Relativityin 2020
    Now available on WorldSciNet New & Bestselling Textbooks in Astrophysics & General Relativity in 2020 About Stars Essential Textbooks in Physics Their Formation, Evolution, Compositions, Locations and Companions Introduction to General Relativity and Cosmology by (University College London, UK) by Michael M Woolfson (University of York, UK) Christian G Böhmer “The book gives a clear and precise introduction into general relativity and On a clear and moonless night, myriads of stars cover the sky. The stars are cosmology ... The author writes in a light tone and conveys the beauty of laboratories in which matter behaves in ways that cannot be reproduced on the theory. A very big advantage of this book is that all exercise are solved Earth. So, in finding out about stars, we complement scientific knowledge in detail.” gained from earthbound experimentation. zbMATH This textbook describes the means — some very ingenious — by which to This is an undergraduate text dealing with the fundamental ideas behind explore the properties, locations and planetary companions of stars, and the geometric theory of gravitation and spacetime. Through pointers on provides a sound foundation for further study. how to modify and generalise Einstein’s theory of relativity to enhance understanding, it acts as a link between standard textbook content and Readership: Undergraduate physics major, educated laypeople, or those current research in the field. with a general interest. 288pp Dec 2016 388pp Aug 2019 978-1-78634-117-4 US$70 £58 978-1-78634-712-1 US$88 £75 978-1-78634-118-1(pbk) US$38 £32 978-1-78634-725-1(pbk) US$38 £35 Advanced Textbooks in Physics Advanced Textbooks in Physics Astronomical Spectroscopy (3rd Edition) An Introduction to Particle Dark Matter by Stefano Profumo (UC Santa Cruz & Santa Cruz Institute for Particle An Introduction to the Atomic and Molecular Physics of Astronomical Physics, USA) Spectroscopy The paradigm of dark matter is one of the foundations of the standard by Jonathan Tennyson (University College London, UK) cosmological model.
    [Show full text]
  • Stars, Constellations, and Dsos [50 Pts]
    Reach for the Stars B – KEY Bonus (+1) TRAPPIST-1 Part I: Stars, Constellations, and DSOs [50 pts] 1. Kepler’s SNR 2. Tycho’s SNR 3. M16 (Eagle Nebula) 4. Radiation pressure (wind) from young stars 5. Cas A 6. Extinction (from interstellar dust) 7. 30 Dor 8. [T10] Tarantula Nebula 9. LMC 10. Sgr A* 11. Gravitational interaction with orbiting stars (based on movement over time) 12. M42 (Orion Nebula) 13. [T8] Trapezium 14. (Charles) Messier 15. NGC 7293 (Helix Nebula) –OR– M57 (Ring Nebula) 16. TP-AGB (thermal pulse AGB) 17. Binary system –OR– stellar winds –OR– stellar rotation –OR– magnetic fields 18. Geminga 19. [T4] Jets from pulsar spin poles 20. X-ray 21. NGC 3603 22. Among the most massive & luminous stars known 23. T Tauri 24. FUors (FU Orionis stars) 25. NGC 602 26. Open cluster 27. LMC –AND– SMC 28. Irregular 29. Tidal forces –OR– gravity of MW 30. M1 (Crab Nebula) 31. PWN (pulsar wind nebula) 32. X-ray 33. M17 (Omega Nebula) 34. Omega Nebula –OR– Swan Nebula –OR– Checkmark Nebula –OR– Horseshoe Nebula 35. NGC 6618 36. Zeta Ophiuchi 37. Bow shock (from moving quickly through the ISM) 38. It “wobbles” across the sky (moves perpendicular to overall proper motion) 39. Procyon (α CMi) 40. Mizar –AND– Alcor 41. Mizar 42. Pollux (β Gem) 43. [T5] High rotational velocity 44. Altair (α Aql) –OR– Regulus (α Leo) –OR– Vega (α Lyr) 45. Polaris (α UMi) 46. Precession 47. Binary with observed Doppler shift of spectral lines 48. Beta Cephei variable (β Cep) 49.
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]
  • Astronomy Magazine 2011 Index Subject Index
    Astronomy Magazine 2011 Index Subject Index A AAVSO (American Association of Variable Star Observers), 6:18, 44–47, 7:58, 10:11 Abell 35 (Sharpless 2-313) (planetary nebula), 10:70 Abell 85 (supernova remnant), 8:70 Abell 1656 (Coma galaxy cluster), 11:56 Abell 1689 (galaxy cluster), 3:23 Abell 2218 (galaxy cluster), 11:68 Abell 2744 (Pandora's Cluster) (galaxy cluster), 10:20 Abell catalog planetary nebulae, 6:50–53 Acheron Fossae (feature on Mars), 11:36 Adirondack Astronomy Retreat, 5:16 Adobe Photoshop software, 6:64 AKATSUKI orbiter, 4:19 AL (Astronomical League), 7:17, 8:50–51 albedo, 8:12 Alexhelios (moon of 216 Kleopatra), 6:18 Altair (star), 9:15 amateur astronomy change in construction of portable telescopes, 1:70–73 discovery of asteroids, 12:56–60 ten tips for, 1:68–69 American Association of Variable Star Observers (AAVSO), 6:18, 44–47, 7:58, 10:11 American Astronomical Society decadal survey recommendations, 7:16 Lancelot M. Berkeley-New York Community Trust Prize for Meritorious Work in Astronomy, 3:19 Andromeda Galaxy (M31) image of, 11:26 stellar disks, 6:19 Antarctica, astronomical research in, 10:44–48 Antennae galaxies (NGC 4038 and NGC 4039), 11:32, 56 antimatter, 8:24–29 Antu Telescope, 11:37 APM 08279+5255 (quasar), 11:18 arcminutes, 10:51 arcseconds, 10:51 Arp 147 (galaxy pair), 6:19 Arp 188 (Tadpole Galaxy), 11:30 Arp 273 (galaxy pair), 11:65 Arp 299 (NGC 3690) (galaxy pair), 10:55–57 ARTEMIS spacecraft, 11:17 asteroid belt, origin of, 8:55 asteroids See also names of specific asteroids amateur discovery of, 12:62–63
    [Show full text]
  • Modelling the Warm H2 Infrared Emission of the Helix Nebula
    Mon. Not. R. Astron. Soc. 000, 1–12 (2011) Printed 17 July 2018 (MN LATEX style file v2.2) Modelling the Warm H2 Infrared Emission of the Helix Nebula Cometary Knots Isabel Aleman1,2⋆, Albert A. Zijlstra1, Mikako Matsuura3,4, Ruth Gruenwald2, and Rafael K. Kimura2 1Jodrell Bank Centre for Astrophysics, The Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK 2IAG-USP, Universidade de S˜ao Paulo, Cidade Universit´aria, Rua do Mat˜ao 1226, S˜ao Paulo, SP, 05508-090, Brazil 3Institute of Origins, Astrophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK 4Institute of Origins, Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, UK Accepted 2011 May 17. Received 2011 May 16; in original form 2010 September 28 ABSTRACT Molecular hydrogen emission is commonly observed in planetary nebulae. Images taken in infrared H2 emission lines show that at least part of the molecular emission is produced inside the ionised region. In the best-studied case, the Helix nebula, the H2 emission is produced inside cometary knots (CKs), comet-shaped structures believed to be clumps of dense neutral gas embedded within the ionised gas. Most of the H2 emission of the CKs seems to be produced in a thin layer between the ionised diffuse gas and the neutral material of the knot, in a mini photodissociation region (PDR). However, PDR models published so far cannot fully explain all the characteristics of the H2 emission of the CKs.
    [Show full text]
  • MESS (Mass-Loss of Evolved Stars), a Herschel Key Program
    Astronomy & Astrophysics manuscript no. overview c ESO 2018 October 1, 2018 MESS (Mass-loss of Evolved StarS), a Herschel Key Program⋆ M.A.T. Groenewegen1, C. Waelkens2, M.J. Barlow3, F. Kerschbaum4, P. Garcia-Lario5, J. Cernicharo6, J.A.D.L. Blommaert2, J. Bouwman7, M. Cohen8, N. Cox2, L. Decin2,9, K. Exter2, W.K. Gear10, H.L. Gomez10, P.C. Hargrave10, Th. Henning7, D. Hutsem´ekers15, R.J. Ivison11, A. Jorissen16, O. Krause7, D. Ladjal2, S.J. Leeks12, T.L. Lim12, M. Matsuura3,18, Y. Naz´e15, G. Olofsson13, R. Ottensamer4,19, E. Polehampton12,17, T. Posch4, G. Rauw15, P. Royer2, B. Sibthorpe7, B.M. Swinyard12, T. Ueta14, C. Vamvatira-Nakou15, B. Vandenbussche2 , G.C. Van de Steene1, S. Van Eck16, P.A.M. van Hoof1, H. Van Winckel2, E. Verdugo5, and R. Wesson3 1 Koninklijke Sterrenwacht van Belgi¨e, Ringlaan 3, B–1180 Brussel, Belgium 2 Institute of Astronomy, University of Leuven, Celestijnenlaan 200D, B–3001 Leuven, Belgium 3 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT 4 University of Vienna, Department of Astronomy, T¨urkenschanzstrasse 17, A–1180 Wien, Austria 5 Herschel Science Centre, European Space Astronomy Centre, Villafranca del Castillo. Apartado de Correos 78, E–28080 Madrid, Spain 6 Astrophysics Dept, CAB (INTA-CSIC), Crta Ajalvir km4, 28805 Torrejon de Ardoz, Madrid, Spain 7 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, D–69117 Heidelberg, Germany 8 Radio Astronomy Laboratory, University of California at Berkeley, CA 94720, USA 9 Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Kruislaan 403, NL–1098 Amsterdam, The Netherlands 10 School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff, Wales CF24 3YB, UK 11 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 12 Space Science and Technology Department, Rutherford Appleton Laboratory, Oxfordshire, OX11 0QX, UK 13 Dept of Astronomy, Stockholm University, AlbaNova University Center, Roslagstullsbacken 21, 10691 Stockholm, Sweden 14 Dept.
    [Show full text]