Performance Evaluation of Uplink Multiple Access Techniques in LTE Mobile Communication System

Total Page:16

File Type:pdf, Size:1020Kb

Performance Evaluation of Uplink Multiple Access Techniques in LTE Mobile Communication System MEE10:33 Performance Evaluation of Uplink Multiple Access Techniques in LTE Mobile Communication System Ashraf AwadElkarim Widaa Ahmed Ahmed Hamza Ibrahim Makki This thesis is presented as part of Degree of Master of Science in Electrical Engineering Blekinge Institute of Technology May 2010 Blekinge Institute of Technology School of Engineering Department of Applied Signal Processing Supervisor: Prof. Abbas Mohammed Examiner: Prof. Abbas Mohammed ** This page is left blank ** Blekinge Tekniska Högskola SE–371 79 Karlskrona Tel.vx 0455-38 50 00 Fax 0455-38 50 57 II Abstract The User Equipments (UE) nowadays are able to provide various internet applications and services that raise the demand for high speed data transfer and Quality of Service (QoS). Accordingly, next generation mobile communication systems driven by these demands are expected to provide higher data rates and better link quality compared to the existing systems. Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) are strong multiple access candidates for the uplink of the International Mobile Telecommunications-Advanced (IMT-Advanced). These multiple access techniques in combination with other promising technologies such as multi-hops transmission and Multiple-Input-Multiple-Output (MIMO) will be utilized to reach the targeted IMT-Advanced system performance. In this thesis, OFDMA and SC-FDMA are adopted and studied in the uplink of Long Term Evolution (LTE). Two transmission scenarios are considered, namely the single hop transmission and the relay assisted transmission (two hops). In addition, a hybrid multiple access technique that combines the advantages of OFDMA and SC-FDMA in term of low Peak-to-Average Power Ratio (PAPR) and better link performance (in terms of Symbol Error Rate (SER)) has been proposed in relay assisted transmission scenario. Simulation results show that the proposed hybrid technique achieves better end-to-end link performance in comparison to the pure SC-FDMA technique and maintains the same PAPR value in access link. In addition, a lower PAPR is achieved compared to OFDMA case, which is an important merit in the uplink transmission due to the UE’s power resources constraint (limited battery power). Keywords: IMT-Advanced, LTE, LTE-Advanced, OFDMA, SC-FDMA, Multi-hop transmission, PAPR. Blekinge Tekniska Högskola SE–371 79 Karlskrona Tel.vx 0455-38 50 00 Fax 0455-38 50 57 III ** This page is left blank ** Blekinge Tekniska Högskola SE–371 79 Karlskrona Tel.vx 0455-38 50 00 Fax 0455-38 50 57 IV Acknowledgement All thank is due ALLAH, the most merciful, beneficent and the most gracious, who provided us with strength and ability to complete this work. We would like to thank Prof. Abbas Mohammed for giving us the opportunity to do our thesis work under his supervision, and for his constant support and guidance through the research work, without his help and expert guidance, this thesis would have never been finished. In addition, we would like to thank BTH staff for giving us the opportunity to join such a program. Blekinge Tekniska Högskola SE–371 79 Karlskrona Tel.vx 0455-38 50 00 Fax 0455-38 50 57 V Dedication To our families and friends for their encouragement and continued support, Blekinge Tekniska Högskola SE–371 79 Karlskrona Tel.vx 0455-38 50 00 Fax 0455-38 50 57 VI Contents Abstract ............................................................................................................................................... III Acknowledgement .............................................................................................................................. V Dedication ........................................................................................................................................... VI List of Figures ..................................................................................................................................... XI List of Tables .................................................................................................................................... XIV List of Acronyms ............................................................................................................................. XVI CHAPTER 1 .......................................................................................................................................... 1 Introduction .......................................................................................................................................... 1 1.1 Introduction .......................................................................................................................... 1 1.2 Thesis scope and contribution ............................................................................................ 2 1.3 Thesis report outline ............................................................................................................ 2 CHAPTER 2 .......................................................................................................................................... 4 2 An Overview of LTE and LTE-Advanced Systems ................................................................. 4 2.1 Introduction .......................................................................................................................... 4 2.2 The Trends in LTE-Advanced Standardization Process ................................................. 5 2.2.1 Networks Architecture of LTE Releases 8 ................................................................ 5 2.2.2 Key Technologies in LTE Radio Access Network ................................................... 7 2.2.3 Key Technologies Trends towards LTE- Advanced ................................................ 8 2.3 Relaying Technology in LTE/LTE-Advanced ............................................................... 10 2.3.1 Amplify and Forward Relay Strategy ..................................................................... 11 2.3.2 Decode and Forward Relay Strategy ....................................................................... 11 2.3.3 Demodulate and Forward (Detect and Forward) Relay Strategy ....................... 11 CHAPTER 3 ........................................................................................................................................ 12 3 Wireless Channel Characteristics and Multicarrier Modulation Techniques ................... 12 3.1 Introduction ........................................................................................................................ 12 3.2 Wireless Channel Characteristics ..................................................................................... 12 3.2.1 Path-Loss and Shadowing ........................................................................................ 13 3.2.2 Multipath Fading ....................................................................................................... 13 3.2.3 Doppler Shift ............................................................................................................... 14 Blekinge Tekniska Högskola SE–371 79 Karlskrona Tel.vx 0455-38 50 00 Fax 0455-38 50 57 VII 3.2.4 Flat Fading and Frequency-Selective Fading ......................................................... 14 3.2.5 Standard Models for Wireless Channel .................................................................. 14 3.3 Orthogonal Frequency Division Multiplexing (OFDM) ............................................... 15 3.3.1 OFDM Transmitter ..................................................................................................... 16 3.3.2 OFDM Receiver .......................................................................................................... 17 3.3.3 Important Parameters in OFDM based Wireless System ..................................... 17 3.4 Single Carrier Frequency Domain Equalization (SC-FDE) .......................................... 18 CHAPTER 4 ........................................................................................................................................ 20 4 Multiple Access Techniques in LTE ........................................................................................ 20 4.1 Introduction ........................................................................................................................ 20 4.2 Orthogonal Frequency Division Multiple Access (OFDMA) ...................................... 20 4.3 Single Carrier Frequency Division Multiple Access (SC-FDMA) ............................... 21 4.4 OFDMA and SC-FDMA implementation in LTE .......................................................... 22 4.4.1 Generic Frame Structure ........................................................................................... 22 4.4.2 Physical Resource Block Parameters ....................................................................... 24 4.5 Subcarriers Mapping Schemes ......................................................................................... 26 4.5.1 Localized Subcarriers Mapping Scheme ................................................................... 26 4.5.2 Distributed/Interleaved Subcarriers Mapping Scheme ......................................... 26 4.5.3 Comparison between the Localized Scheme and the Interleaved Scheme ........ 26 4.6 Peak to Average Power Ratio (PAPR) ............................................................................. 27 4.6.1 PAPR Properties of
Recommended publications
  • Unlicensed Lte Interference to Wi-Fi When Operating Co-Channel
    UNLICENSED LTE INTERFERENCE TO WI-FI WHEN OPERATING CO-CHANNEL Christopher Szymanski 1 | © 2016 Broadcom Limited. All rights reserved. WI-FI DEMAND EVER-INCREASING Wi-Fi Cumulative Product Shipments and Installed Base of Products 2000-2020 35,000.0 Installed Base 30,000.0 Cumulative Shipments Approaching 15 billion cumulative shipments and 7.5 billion Wi-Fi install base 25,000.0 20,000.0 15,000.0 10,000.0 5,000.0 - 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Source: ABI Research: Cumulative Wi-Fi-enabled Product Shipments and Installed Base of Wi-Fi-enabled Products World Market, Forecast: 2000 to 2020. 2 | © 2016 Broadcom Limited. All rights reserved. WI-FI IS PREDOMINATE WAY FOR PEOPLE TO ACCESS INTERNET; IN SOME INSTANCES THE ONLY WAY • Cisco: Mobile data traffic increased 74% in 2015, reaching 3.7 exabytes per month [1] • Over 80% of mobile data traffic goes over Wi-Fi – Strategy Analytics’ Telemetry Intelligence Platform: From 2H13 to 1H15 Wi-Fi traffic grew at over 2X the rate of cellular traffic, accounting for ~83% of wireless traffic [2] – Analysys Mason: 81% of smart phone traffic is carried over Wi-Fi [3] – Mobidia: “Wi-Fi dominating monthly data usage” [4] – iOS users consume 82% of wireless data over Wi-Fi – Android users consume 78% of wireless data over Wi-Fi • Pew Internet Research: In-home Broadband access decreasing, increasing number of “smartphone-only” adults (13% of Americans are smartphone-only, and shift most pronounced among lower income households) [5]
    [Show full text]
  • Long Term Evolution (LTE)
    IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735. Volume 7, Issue 3 (Sep. - Oct. 2013), PP 36-42 www.iosrjournals.org Long Term Evolution (LTE) 1 2 3 4 Emad Kazi , Rajan Pillai , Uzair Qureshi , Awab Fakih 1,2,3,4 (Electronics and Telecommunication, Anjuman-I-Islam’s Kalsekar technical campus (AIKTC), Mumbai University, India) Abstract:The number of people using mobile phone in the world has exceeded 4.5 billion and this figure is continuing to grow. For the past several years, mobile data traffic such as internet access, the downloading of music and video communication has been nearly tripling every year. With the popularity of smartphones, mobile data traffic will increase 200 times in the 7 to 8 years upto 2020.There are high expectations that Long Term Evolution (LTE) which is known as 3.9G wireless system will be a new service platform that can support a huge amount of mobile data traffic. This paper describes the features, technology and network architecture of LTE & also provides an overview of next generation telecommunication network LTE, which is started commercially in December 2010 in Japan (started by DOCOMO), realizing high speed wireless access. It also outlines the further trends towards a further speed increase. Keywords-Circuit Switching, GSM, HSPA, LTE, Packet Switching, WiMAX I. Introduction In times when mobile devices are getting more popular the mobile network are becoming more and more important too. Websites are not same they used to be 10 years ago. They consist of with quality pictures, animation, flash application and more.
    [Show full text]
  • Evolution of High Speed Download Packet Access (HSDPA) Networks
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 2 Issue 11, November - 2013 Evolution of High Speed Download Packet Access (HSDPA) Networks Dhruv Singh Thakur Krishnakant Nayak Rohini Piplewar Assistant Prof. ECE Department HOD. ECE Department Mtech. Digital Communication BIST Bhopal (M.P.) India BIST Bhopal (M.P.) India BIST Bhopal (M.P.) India Abstract: HSDPA (High Speed Downlink Packet Access) is 3. The Uplink High Speed Dedicated Physical a data communication technology which is considered as an Control Channel (HS-DPCCH) carries acknowledgment extension of the 3G technology and specified in the 3rd information and current Channel Quality Indicator (CQI) of Generation Partnership Project (3GPP) release 5; it supports the user which is used as feedback to adaptively select the speed of up to 14 megabits per second, although it is increased up proper modulation and coding rate. to 336Mbps in 11th release this is sufficient for mobile TV streaming, and other high-end data transfers. HSDPA requires a different hardware and protocol than GSM or GPRS for working 4. The High Speed Physical Downlink Shared hence to use with any device (like phone) it must support the Channel (HS-PDSCH), the channel on which the above HS- technology. HSDPA is based on common channel sharing DSCH transport channel is associated with that carrying the transmission and its main features include multi-code actual user data. transmission, higher order modulation, short transmission time (TTI), fast link adaptation and scheduling with the fast Hybrid On the complementary for this HSUPA (High Speed Automatic Repeat Request (HARQ). This paper presents a review Uplink Packet Access) is developed, if even for mobile on the evolution from different variants of the HSDPA system devices is rarely mentioned are considered more important with their functionality.
    [Show full text]
  • A Guide to Wireless & Mobile Industry Terms & Definitions
    and present: A Guide to Wireless & Mobile Industry Terms & Definitions Whitepaper Published: Fourth Quarter, 2012 Version 1.0 iGR Inc. 12400 W. Hwy 71 Suite 350 PMB 341 Austin TX 78738 Table of Contents Definitions .................................................................................................................. 1 General ..............................................................................................................................1 Device Types ......................................................................................................................1 Services .............................................................................................................................2 Network Technology ..........................................................................................................3 About iGR ................................................................................................................... 7 Disclaimer ..........................................................................................................................7 This research is provided as a member benefit for the exclusive use of members of PCIA – The Wireless Infrastructure Association. It is made available by a partnership between PCIA and iGR. Distribution of this report outside of your company or organization is strictly prohibited. Copyright © 2012 iGillottResearch Inc. Definitions General . ARPU (Average Revenue Per User): The average amount of money a subscriber spends each month
    [Show full text]
  • A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna
    International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 685 ISSN 2229-5518 A Survey on Mobile Wireless Networks Nirmal Lourdh Rayan, Chaitanya Krishna Abstract— Wireless communication is a transfer of data without using wired environment. The distance may be short (Television) or long (radio transmission). The term wireless will be used by cellular telephones, PDA’s etc. In this paper we will concentrate on the evolution of various generations of wireless network. Index Terms— Wireless, Radio Transmission, Mobile Network, Generations, Communication. —————————— —————————— 1 INTRODUCTION (TECHNOLOGY) er frequency of about 160MHz and up as it is transmitted be- tween radio antennas. The technique used for this is FDMA. In IRELESS telephone started with what you might call W terms of overall connection quality, 1G has low capacity, poor 0G if you can remember back that far. Just after the World War voice links, unreliable handoff, and no security since voice 2 mobile telephone service became available. In those days, calls were played back in radio antennas, making these calls you had a mobile operator to set up the calls and there were persuadable to unwanted monitoring by 3rd parties. First Gen- only a Few channels were available. 0G refers to radio tele- eration did maintain a few benefits over second generation. In phones that some had in cars before the advent of mobiles. comparison to 1G's AS (analog signals), 2G’s DS (digital sig- Mobile radio telephone systems preceded modern cellular nals) are very Similar on proximity and location. If a second mobile telephone technology. So they were the foregoer of the generation handset made a call far away from a cell tower, the first generation of cellular telephones, these systems are called DS (digital signal) may not be strong enough to reach the tow- 0G (zero generation) itself, and other basic ancillary data such er.
    [Show full text]
  • A Survey of Resource Allocation Techniques for Cellular Network's
    electronics Review A Survey of Resource Allocation Techniques for Cellular Network’s Operation in the Unlicensed Band Mohammedhusen Manekiya 1 , Abhinav Kumar 2 , Ashish Yadav 3 and Massimo Donelli 1,* 1 Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy; [email protected] 2 Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India; [email protected] 3 Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA; [email protected] * Correspondence: [email protected]; Tel.: +39-3297-00-4115 Received: 1 August 2020; Accepted: 27 August 2020; Published: 7 September 2020 Abstract: With an ever increasing demand for data, better and efficient spectrum operation has become crucial in cellular networks. In this paper, we present a detailed survey of various resource allocation schemes that have been considered for the cellular network’s operation in the unlicensed spectrum. The key channel access mechanisms for cellular network’s operation in the unlicensed bands are discussed. The various channel selection techniques are explored and their operation explained. The prime issue of fairness between cellular and Wi-Fi networks is discussed, along with suitable resource allocation techniques that help in achieving this fairness. We analyze the coverage, capacity, and impact of coordination in LTE-U systems. Furthermore, we study and discuss the impact and discussed the impact of various traffic type, environments, latency, handover, and scenarios on LTE-U’s performance. The new upcoming 5G New Radio and MulteFire is briefly described along with some of the critical aspects of LTE-U which require further research.
    [Show full text]
  • HD Voice Annex C Minimum Requirements with GSM/UMTS/LTE
    GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Version 1.1 22nd March 2013 Security Classification – NON CONFIDENTIAL GSMA MATERIAL Copyright Notice Copyright © 2013 GSM Association. Antitrust Notice The information contain herein is in full compliance with the GSM Association’s antitrust compliance policy. Version 1.1 Page 1 of 18 GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA Table of Contents INTRODUCTION ..................................................................................................................... 3 ANNEX C: MINIMUM REQUIREMENTS FOR MOBILE NETWORKS AND TERMINALS FOR THE USAGE OF THE ‘HD VOICE’ LOGO WITH GSM/UMTS/LTE............................................................................................................... 3 DOCUMENT MANAGEMENT ............................................................................................... 18 Document History .................................................................................................................. 18 Other Information ................................................................................................................... 18 Version 1.1 Page 2 of 18 GSM Association Non-Confidential Minimum Technical Requirements for use of the HD Voice Logo with GSM/UMTS/LTE issued by GSMA INTRODUCTION
    [Show full text]
  • AT&T 3G Sunset
    Product Change Notification AT&T 3G Sunset - Impacts on 4G Devices LTE Category 1, Category 3 and Select Category 4 Models Date: March 9, 2021 I. Product Change Notification Number (PCN) PCN 03092021-02 II. Overview The purpose of this PCN is to avoid service interruption for certain MultiTech 4G products impacted by the impending AT&T 3G network sunset. 4G/LTE Category 1, 3 and 4 devices in the U.S. may no longer attach to the AT&T network after their 3G network sunset, scheduled for late February 2022. Voice-capable cellular modules integrated into several MultiTech products are configured for voice-centric signaling by default. These devices are likely to arrive at a No Service condition after 3G sunset -- even for data-only applications. This is a result of the module requiring a voice signal to connect to networks configured to leverage a combined attach (3G and LTE) for LTE device registration. The MultiTech products detailed in this PCN will be impacted by the 3G sunset. A software configuration change in the cellular module in these products is required in order to avoid a No Service condition. The only exception is for products with cellular modules supporting the IMS service Voice over LTE (VoLTE) and an accompanying VoLTE subscription from your service provider. MultiTech will immediately implement a software configuration change in our manufacturing process to include the required AT command to set a new permanent module default for its User Equipment (“UE”) settings. Note: future module firmware updates may impact this setting. Current default: CEMODE=1 (Voice centric) New default: CEMODE=2 (Data centric) For devices already deployed in the field, you must implement the above mentioned software- configuration change in each device to ensure continued service following the 3G sunset.
    [Show full text]
  • LTE-Advanced
    Table of Contents INTRODUCTION........................................................................................................ 5 EXPLODING DEMAND ............................................................................................... 8 Smartphones and Tablets ......................................................................................... 8 Application Innovation .............................................................................................. 9 Internet of Things .................................................................................................. 10 Video Streaming .................................................................................................... 10 Cloud Computing ................................................................................................... 11 5G Data Drivers ..................................................................................................... 11 Global Mobile Adoption ........................................................................................... 11 THE PATH TO 5G ..................................................................................................... 15 Expanding Use Cases ............................................................................................. 15 1G to 5G Evolution ................................................................................................. 17 5G Concepts and Architectures ................................................................................ 20 Information-Centric
    [Show full text]
  • Topic Research Data Transmission Standards Over GSM/UMTS Networks
    Slavik Bryksin [email protected] CSE237a Fall 08 Topic research Data transmission standards over GSM/UMTS networks 1. Introduction There are a lot of emerging and existing standards that are used for data transmission over cellular networks. This paper is focused on the GSM/UMTS networks technologies that are marketed as 2G through 3G, their underlying technologies and concepts (channel access methods, duplexing, coding schemes, etc), data transmission rates, benefits and limitations. The generation that preceded 2G GSM was analog, whereas all following generations are digital. Generation labeling is mostly for marketing purposes, thus some technologies that existed in 2G are carried over and labeled 3G (i.e. EDGE versions), moreover, the timeline of adoption of the protocols and their inclusion under the umbrella of a certain generation might not align with the technology inception and certification. 2. (2G) Technologies 2.1. GSM (Global System for Mobile communications) GSM data transmission protocol is circuit switched with a fixed rate of 9.6Kbps and uses TDMA (Time Division Multiple Access) to assign static downlink and uplink timeslots for data.[16] The fact that data rate is fixed leads to inefficient usage of the available bandwidth due to the bursty network traffic.[1] 2.2. GPRS (General Packet Radio Service) GPRS standard is marketed as 2.5G and was the next step after circuit switched GSM standards. It is packet switched, which implies better bandwidth utilization, however packetization of data incurs the cost of extra information included in the packet, and the overhead of negotiation of transmission with the base station.
    [Show full text]
  • ETSI TS 123 101 V8.0.0 (2009-01) Technical Specification
    ETSI TS 123 101 V8.0.0 (2009-01) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; General UMTS Architecture (3GPP TS 23.101 version 8.0.0 Release 8) 3GPP TS 23.101 version 8.0.0 Release 8 1 ETSI TS 123 101 V8.0.0 (2009-01) Reference RTS/TSGS-0223101v800 Keywords LTE, UMTS ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • Multefire Release 1.1 Technical Overview White Paper Radio Spectrum
    MulteFire Release 1.1 Technical Overview White Paper radio spectrum. MulteFire Release 1.0 builds on 3GPP I. Introduction standards and is targeted for operation in the global 5 GHz unlicensed spectrum band but can be used MulteFire® is an innovative technology that enables for any band that needs over-the-air contention. It new wireless networks by operating cellular-based is designed to efficiently coexist with other spectrum technology standalone in unlicensed or shared users, such as Wi-Fi or Licensed Assisted Access spectrum. MulteFire 1.0, and its enhancements (LAA), using Listen-Before-Talk (LBT). in 1.1, is an LTE-based technology that operates standalone in unlicensed spectrum, with a roadmap The Release 1.1 specification, completed in December to future solutions based on 5G New Radio (NR). By 2018, brings new optimizations especially for IoT, removing the requirement for licensed spectrum, such as support for NB-IoT and eMTC in unlicensed MulteFire allows anyone to deploy and operate spectrum; support for new bands such as 1.9 GHz their own private network, targeting areas such as focusing on Japan and lower bands 800/900; and Industrial IoT or enterprises. MulteFire can also be general enhancements to Release 1.0. As Release configured as a neutral host network, e.g. for an 1.0 establishes the foundation for the Release 1.1 enterprise or venues, to serve users from multiple specification, this paper starts with a brief Release operators. 1.0 overview. Release 1.0 defines an end-to-end architecture design and radio air interface to deliver The LTE-based MulteFire Release 1.0 specification key performance advantages over alternative was completed in January 2017 by the MulteFire solutions in unlicensed spectrum, such as coverage, Alliance, which is an open, international organization capacity and mobility.
    [Show full text]