Elasticity and Antiferromagnetism of Metallic Antiferromagnetics R

Total Page:16

File Type:pdf, Size:1020Kb

Elasticity and Antiferromagnetism of Metallic Antiferromagnetics R Elasticity and antiferromagnetism of metallic antiferromagnetics R. Street, J.H. Smith To cite this version: R. Street, J.H. Smith. Elasticity and antiferromagnetism of metallic antiferromagnetics. J. Phys. Radium, 1959, 20 (2-3), pp.82-87. 10.1051/jphysrad:01959002002-308200. jpa-00236072 HAL Id: jpa-00236072 https://hal.archives-ouvertes.fr/jpa-00236072 Submitted on 1 Jan 1959 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LE ,TOURNA1. DE PHYSIQUE ET LE RADIUM TOME 20, FÉVRIER 1959, 82 ELASTICITY AND ANTIFERROMAGNETISM OF METALLIC ANTIFERROMAGNETICS By R. STREET and J. H. SMITH, Department of Physics, The University, Sheffield, England. Résumé. 2014 On peut prévoir une variation du module d’Young avec la température au point de Néel sur les substances antiferromagnétiques. Nous donnons ici les résultats des mesures rela- tives aux alliages CuMn(03B3) et aux alliages CuMn à plusieurs phases (03B1 + y) On trouve sur ces derniers la variation prévue due à Mn 03B1 et également une anomalie, vers 130 °K, attribuée à la présence de MnCu y précipité. Cette dernière phase est ferromagnétique au-dessous de 130 °K. Une variation régulière avec la température du module d’Young de Pd confirme le fait qu’aux basses températures Pd ne serait pas antiferromagnétique. Abstract. 2014 If an antiferromagnetic is spontaneously deformed on cooling through the Néel temperature, then the application of an external stress results in a redistribution of domain vectors, e.g. they may rotate or antiferromagnetic domain walls may move. This causes an additional strain component which will be apparent as an anomalous variation of the Young’s modulus with the temperature. The results of measurements of the temperature dependence of Young’s modulus for antiferromagnetic 03B3-CuMn alloys and mixed phase (03B1 + 03B3) CuMn alloys are reported. The (03B1 + y) alloys show (a) a Young’s modulus variation of the expected form which is due to the contained 03B1-Mn, (b) a Young’s modulus anomaly at about 130 °K associated with the preci- pitated 03B3-CuMn (containing 40 atomic percent Mn). It is shown that the latter phase below 130 °K exhibits ferromagnetic characteristics. A smooth temperature variation of Young’s modulus has been obtained for Pd which is consistent with the assumption that Pd is not antiferromagnetic at low temperatures. Introduction. - The dependence of Young’s 1950) and thus exhibit antiferromagnetostriction. modulus on the state of magnetization of ferro- Neutron diffraction studies show that the direc- magnetic materials has been known for many tions of antiferromagnetism generally coincide with years, the phenomenon is known as the AE-effect. crystallographic directions of low order. It is For a ferromagnetic of non-zero magnetostriction therefore possible for boundary walls separating an external stress Z in general affects the distri- domains having different directions of antiferro- bution of the magnetization vectors, by rotating magnetism to move and the directions of antiferro- them away from preferred axes or by domain magnetism to rotate away from preferred direc- boundary movement, and the resultant rate of tions under the influence of an external stress. change of intensity of magnetization with stress Measurements of the temperature variation of (è)l/è)Z)H is equal to the rate of change of magneto- Young’s môdulus of pressed bars of cobalt and strictive deformation with field (è)À/H)z. When nickel oxides show a very pronounced decrease in an external stress is applied, in addition to the modulus near the Néel temperatures of the two normal elastic strain of the lattice, e, there is materials (Street and Lewis, 1951 ;g Fine, 1953). another component of strain, cm, produced by the The object of this communication is to report some magnetostrictive deformation accompanying the observations made recently on the temperature redistribution of the magnetization vectors. At variations of Young’s modulus of metallic antifer- magnetic saturation, the magnetization vectors are romagnetic materials. all aligned along the field direction, hence è)À/è)H = )7/t)Z = 0 and E is the only component Expérimental. - The method of measurement of strain produced by the stress Z. Thus in the was similar to that described by Zacharias (1933). unsaturated state the value of Young’s modulus The specimens, of rectangular cross section ZI(F- + Sjn) is less than its value at magnetic satu- 2.00 mm X 3.00 mm, were cemented to quartz ration. crystals, of identical cross section, which were cut It follows that in zero applied field the Young’s so that longitudinal vibrations along the length of modulus of a ferromagnetic should decrease when the composite oscillator were excited by an alter- cooled through the Curie temperature. Above the nating p.d. applied to electrodes deposited on Curie temperature no spontaneous ferromagnetic opposite side faces of the crystal. The resonant order exists and e;m = 0 ; below the Curie tempe- frequencies of oscillation of the composite oscil- rature e;m =1= 0. lator, f o, are given by the relation X-ray techniques have been employed to show that antiferromagnetic materials are spontaneously deformed when they are heated or cooled through their Néel temperatures (Tombs and Rooksby, where fa, fq are respectively the fundamental fre- Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphysrad:01959002002-308200 83 quencies of resonant longitudinal oscillation of the temperature for two typical alloys of this series are spécimen and the quartz crystal alone ; ms, mq are shown in Figure 1. As expected, these curves the masses of the specimen and the crystal. Experi- show pronounced minima which occur at the tran- mentally f o and f q are measured as functions of sition temperature of the alloys. temperature from which ’ /8 may be calculated. The interpretation of the results obtained is Hence Young’s modulus is determined by the rela- uncertain in view of the fact that Tt TN. tion ’ However, investigations of the stress dependence of the intensity of the (110) (magnetic) neutron dif- fraction et loc. that and were to be peak (Bacon al., cit.) suggests ts f, always arranged very strain nearly equal adjusting the length of the the additional component Em in the antiferro- by speci- state arises from wall move- men and various magnetic boundary by using quartz crystals having from of values of In this the effect of ment rather than rotation domain magne- f q. way, perturbing tization vectors. walls the adhesive at the of the and Only boundary separating junction crystal domains directions of antiferro- specimen was minimized: having digerent will move on the of an The oscillator was mounted in an magnetism application composite external stress. Other domain exist -enclosure which could be evacuated or filled with types may e.g. if a line within a domain the direc- low helium as a heat exchanger and means along spin pressure tions are a wall occur of or was t 1 t 1 t t, boundary may heating cooling were It pos- " provided. domains such that on sible to determine relative values of between " changed-step Young’s wall modulus to within 1 in 104. moving through the the spin directions are part formally represented by t t t t t t t t t. The Results and discussion two domains separated by a boundary of this type have the same antiferromagnetostrictive strain the of stress will Cu-Mn Alloys. - The antiferromagnetic pro- along any direction, application not result directly in wall movement and the perties of single y CuMn alloys containing phase contribution to will be zero. From the more than about 70 atomic of z. expres- percent manganese sions for the modulus summarized have been investigated by Bacon et al. (1957). Young’s change in the it will be seen that when domain Below a transition temperature, Tt, which depends Appendix movements are involved of on the are boundary comparison composition, alloys antiferromagnetic results with theoretical is and have a face-centred tetragonal structure. At experimental predictions difficult as of the area of domain walls the transition temperature the alloys undergo a knowledge and the forces impeding wall movement are requir- ed. (oc + y) CuMn Alloys. - It is of interest to inves- tigate the temperature dependence of Young’s modulus of iI..-Mn as a useful preliminary to the consideration of the antiferromagnetic domain structure of the element. The investigation cannot be undertaken directly using pure oc-Mn samples since the material is extremely brittle and cannot be machined into the required regular shape. The difficulty has been overcome in the following way. Starting materials containing various proportions of copper were prepared by melting in an argon arc furnace and then after heating for extended periods of time at temperatures near the melting point they were rapidly quenched, thus retaining the Fie. 1. - Temperature variation qf Young’s modulus for y solid solution. Materials prepared in this way y-CuMn alloys containing 80 and 85 atomic percentage containing as much as 95 atomic percent of manga- Mn., nese were relatively easy to machine and it was possible to produce specimens of the required form martensitic transformation, above Tt they are no from them. The specimens were then trans- longer antiferromagnetic and have a face-centred formed to the mixed (oc + y) phase by heating for cubic structure.
Recommended publications
  • Density of States Information from Low Temperature Specific Heat
    JOURNAL OF RESE ARC H of th e National Bureau of Standards - A. Physics and Chemistry Val. 74A, No.3, May-June 1970 Density of States I nformation from Low Temperature Specific Heat Measurements* Paul A. Beck and Helmut Claus University of Illinois, Urbana (October 10, 1969) The c a lcul ati on of one -electron d ensit y of s tate va lues from the coeffi cient y of the te rm of the low te mperature specifi c heat lin ear in te mperature is compli cated by many- body effects. In parti c ul ar, the electron-p honon inte raction may enhance the measured y as muc h as tw ofo ld. The e nha nce me nt fa ctor can be eva luat ed in the case of supe rconducting metals and a ll oys. In the presence of magneti c mo­ ments, add it ional complicati ons arise. A magneti c contribution to the measured y was ide ntifi e d in the case of dilute all oys and a lso of concentrated a lJ oys wh e re parasiti c antife rromagnetis m is s upe rim­ posed on a n over-a ll fe rromagneti c orde r. No me thod has as ye t bee n de vised to e valu ate this magne ti c part of y. T he separati on of the te mpera ture- li near term of the s pec ifi c heat may itself be co mpli cated by the a ppearance of a s pecific heat a no ma ly due to magneti c cluste rs in s upe rpa ramagneti c or we ak ly ferromagneti c a ll oys.
    [Show full text]
  • Unusual Quantum Criticality in Metals and Insulators T. Senthil (MIT)
    Unusual quantum criticality in metals and insulators T. Senthil (MIT) T. Senthil, ``Critical fermi surfaces and non-fermi liquid metals”, PR B, June 08 T. Senthil, ``Theory of a continuous Mott transition in two dimensions”, PR B, July 08 D. Podolsky, A. Paramekanti, Y.B. Kim, and T. Senthil, ``Mott transition between a spin liquid insulator and a metal in three dimensions”, PRL, May 09 T. Senthil and P. A. Lee, ``Coherence and pairing in a doped Mott insulator: Application to the cuprates”, PRL, Aug 09 Precursors: T. Senthil, Annals of Physics, ’06, T. Senthil. M. Vojta, S. Sachdev, PR B, ‘04 Saturday, October 22, 2011 High Tc cuprates: doped Mott insulators Many interesting phenomena on doping the Mott insulator: Loss of antiferromagnetism High Tc superconductivity Pseudogaps, non-fermi liquid regimes , etc. Stripes, nematics, and other broken symmetries This talk: focus on one (among many) fundamental question. How does a Fermi surface emerge when a Mott insulator changes into a metal? Saturday, October 22, 2011 High Tc cuprates: how does a Fermi surface emerge from a doped Mott insulator? Evolution from Mott insulator to overdoped metal : emergence of large Fermi surface with area set by usual Luttinger count. Mott insulator: No Fermi surface Overdoped metal: Large Fermi surface ADMR, quantum oscillations (Hussey), ARPES (Damascelli,….) Saturday, October 22, 2011 High Tc cuprates: how does a Fermi surface emerge from a doped Mott insulator? Large gapless Fermi surface present even in optimal doped strange metal albeit without Landau quasiparticles . Mott insulator: No Fermi surface Saturday, October 22, 2011 High Tc cuprates: how does a Fermi surface emerge from a doped Mott insulator? Large gapless Fermi surface present also in optimal doped strange metal albeit without Landau quasiparticles .
    [Show full text]
  • Chapter 6 Antiferromagnetism and Other Magnetic Ordeer
    Chapter 6 Antiferromagnetism and Other Magnetic Ordeer 6.1 Mean Field Theory of Antiferromagnetism 6.2 Ferrimagnets 6.3 Frustration 6.4 Amorphous Magnets 6.5 Spin Glasses 6.6 Magnetic Model Compounds TCD February 2007 1 1 Molecular Field Theory of Antiferromagnetism 2 equal and oppositely-directed magnetic sublattices 2 Weiss coefficients to represent inter- and intra-sublattice interactions. HAi = n’WMA + nWMB +H HBi = nWMA + n’WMB +H Magnetization of each sublattice is represented by a Brillouin function, and each falls to zero at the critical temperature TN (Néel temperature) Sublattice magnetisation Sublattice magnetisation for antiferromagnet TCD February 2007 2 Above TN The condition for the appearance of spontaneous sublattice magnetization is that these equations have a nonzero solution in zero applied field Curie Weiss ! C = 2C’, P = C’(n’W + nW) TCD February 2007 3 The antiferromagnetic axis along which the sublattice magnetizations lie is determined by magnetocrystalline anisotropy Response below TN depends on the direction of H relative to this axis. No shape anisotropy (no demagnetizing field) TCD February 2007 4 Spin Flop Occurs at Hsf when energies of paralell and perpendicular configurations are equal: HK is the effective anisotropy field i 1/2 This reduces to Hsf = 2(HKH ) for T << TN Spin Waves General: " n h q ~ q ! M and specific heat ~ Tq/n Antiferromagnet: " h q ~ q ! M and specific heat ~ Tq TCD February 2007 5 2 Ferrimagnetism Antiferromagnet with 2 unequal sublattices ! YIG (Y3Fe5O12) Iron occupies 2 crystallographic sites one octahedral (16a) & one tetrahedral (24d) with O ! Magnetite(Fe3O4) Iron again occupies 2 crystallographic sites one tetrahedral (8a – A site) & one octahedral (16d – B site) 3 Weiss Coefficients to account for inter- and intra-sublattice interaction TCD February 2007 6 Below TN, magnetisation of each sublattice is zero.
    [Show full text]
  • Arxiv:2010.01933V2 [Cond-Mat.Quant-Gas] 18 Feb 2021 Tigated in Refs
    Finite temperature spin dynamics of a two-dimensional Bose-Bose atomic mixture Arko Roy,1, ∗ Miki Ota,1, ∗ Alessio Recati,1, 2 and Franco Dalfovo1 1INO-CNR BEC Center and Universit`adi Trento, via Sommarive 14, I-38123 Trento, Italy 2Trento Institute for Fundamental Physics and Applications, INFN, 38123 Povo, Italy We examine the role of thermal fluctuations in uniform two-dimensional binary Bose mixtures of dilute ultracold atomic gases. We use a mean-field Hartree-Fock theory to derive analytical predictions for the miscible-immiscible transition. A nontrivial result of this theory is that a fully miscible phase at T = 0 may become unstable at T 6= 0, as a consequence of a divergent behaviour in the spin susceptibility. We test this prediction by performing numerical simulations with the Stochastic (Projected) Gross-Pitaevskii equation, which includes beyond mean-field effects. We calculate the equilibrium configurations at different temperatures and interaction strengths and we simulate spin oscillations produced by a weak external perturbation. Despite some qualitative agreement, the comparison between the two theories shows that the mean-field approximation is not able to properly describe the behavior of the two-dimensional mixture near the miscible-immiscible transition, as thermal fluctuations smoothen all sharp features both in the phase diagram and in spin dynamics, except for temperature well below the critical temperature for superfluidity. I. INTRODUCTION ing the Popov theory. It is then natural to ask whether such a phase-transition also exists in 2D. The study of phase-separation in two-component clas- It is worth stressing that, in 2D Bose gases, thermal sical fluids is of paramount importance and the role of fluctuations are much more important than in 3D, as they temperature can be rather nontrivial.
    [Show full text]
  • Semimetallic Antiferromagnetism in the Half-Heusler Compound Cumnsb
    PHYSICAL REVIEW B 71, 184103 ͑2005͒ Semimetallic antiferromagnetism in the half-Heusler compound CuMnSb T. Jeong,1 Ruben Weht,2 and W. E. Pickett1 1Department of Physics, University of California, Davis, California 95616, USA 2Departamento de Física, CNEA, Avda. General Paz y Constituyentes, 1650-San Martín, Argentina ͑Received 17 September 2004; revised manuscript received 5 January 2005; published 20 May 2005͒ The half-Heusler compound CuMnSb, the first antiferromagnet ͑AFM͒ in the Mn-based class of Heuslers and half-Heuslers that contains several conventional and half metallic ferromagnets, shows a peculiar stability of its magnetic order in high magnetic fields. Density functional based studies reveal an unusual nature of its unstable ͑and therefore unseen͒ paramagnetic state, which for one electron less ͑CuMnSn, for example͒ would be a zero gap semiconductor ͑accidentally so͒ between two sets of very narrow, topologically separate bands of Mn 3d character. The extremely flat Mn 3d bands result from the environment: Mn has four tetrahedrally coordinated Cu atoms whose 3d states lie well below the Fermi level, and the other four tetrahedrally coordi- nated sites are empty, leaving chemically isolated Mn 3d states. The AFM phase can be pictured heuristically as a self-doped Cu1+Mn2+Sb3− compensated semimetal with heavy mass electrons and light mass holes, with magnetic coupling proceeding through Kondo and/or anti-Kondo coupling separately through the two carrier types. The ratio of the linear specific heat coefficient and the calculated Fermi level density of states indicates a large mass enhancement m* /mϳ5, or larger if a correlated band structure is taken as the reference.
    [Show full text]
  • Discovery of the Classical Bose–Einstein Condensation of Magnons in Solid Antiferromagnets Yu
    ISSN 00213640, JETP Letters, 2011, Vol. 94, No. 1, pp. 68–72. © Pleiades Publishing, Inc., 2011. Original Russian Text © Yu.M. Bunkov, E.M. Alakshin, R.R. Gazizulin, A.V. Klochkov, V.V. Kuzmin, T.R. Safin, M.S. Tagirov, 2011, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2011, Vol. 94, No. 1, pp. 68–72. Discovery of the Classical Bose–Einstein Condensation of Magnons in Solid Antiferromagnets Yu. M. Bunkova, E. M. Alakshinb, R. R. Gazizulinb, A. V. Klochkovb, V. V. Kuzminb, T. R. Safinb, and M. S. Tagirovb a Institut Néel, CNRS, 25 rue des Martyrs, BP 166, 38042 Grenoble Cedex 9, France b Kazan (Volga region) Federal University, ul. Kremlevskaya 18, Kazan, 420008 Russia Received May 19, 2011 Results of experiments in which the Bose–Einstein condensate of magnons is created in the CsMnF3 easy plane antiferromagnet in a system with coupled nuclear–electron precession with dynamical frequency shift are presented. This condensate is similar to the Bose–Einstein condensate of magnons in superfluid 3HeA in aerogel. DOI: 10.1134/S0021364011130066 Bose–Einstein condensation (BEC) is one of the important difference. In case of the classical BEC pre most striking macroscopic quantum phenomena. A dicted by Einstein, the quantum distribution of parti macroscopic number of particles form a coherent cles changes rather than the vacuum in which they quantum state, which is described by a common wave exist, whereas a phase transition is accompanied by a function. The formation of such a state under certain change in the ground state of the system (vacuum).
    [Show full text]
  • Condensed Matter Option MAGNETISM Handout 1
    Condensed Matter Option MAGNETISM Handout 1 Hilary 2014 Radu Coldea http://www2.physics.ox.ac.uk/students/course-materials/c3-condensed-matter-major-option Syllabus The lecture course on Magnetism in Condensed Matter Physics will be given in 7 lectures broken up into three parts as follows: 1. Isolated Ions Magnetic properties become particularly simple if we are able to ignore the interactions between ions. In this case we are able to treat the ions as effectively \isolated" and can discuss diamagnetism and paramagnetism. For the latter phenomenon we revise the derivation of the Brillouin function outlined in the third-year course. Ions in a solid interact with the crystal field and this strongly affects their properties, which can be probed experimentally using magnetic resonance (in particular ESR and NMR). 2. Interactions Now we turn on the interactions! I will discuss what sort of magnetic interactions there might be, including dipolar interactions and the different types of exchange interaction. The interactions lead to various types of ordered magnetic structures which can be measured using neutron diffraction. I will then discuss the mean-field Weiss model of ferromagnetism, antiferromagnetism and ferrimagnetism and also consider the magnetism of metals. 3. Symmetry breaking The concept of broken symmetry is at the heart of condensed matter physics. These lectures aim to explain how the existence of the crystalline order in solids, ferromagnetism and ferroelectricity, are all the result of symmetry breaking. The consequences of breaking symmetry are that systems show some kind of rigidity (in the case of ferromagnetism this is permanent magnetism), low temperature elementary excitations (in the case of ferromagnetism these are spin waves, also known as magnons), and defects (in the case of ferromagnetism these are domain walls).
    [Show full text]
  • Spin-Glass and Non–Spin-Glass Features of a Geometrically Frustrated Magnet
    EUROPHYSICS LETTERS 10 July 1996 Europhys. Lett., 35 (2), pp. 127-132 (1996) Spin-glass and non–spin-glass features of a geometrically frustrated magnet S.-H. Lee1,C.Broholm1,2, G. Aeppli3, A. P. Ramirez4, T. G. Perring5 C. J. Carlile5,M.Adams5,T.J.L.Jones5 and B. Hessen6 1 Department of Physics and Astronomy, The Johns Hopkins University Baltimore, MD 21218, USA 2 National Institute of Standards and Technology - Gaithersburg, MD 20899, USA 3 NEC - 4 Independence Way, Princeton, NJ 08540, USA 4 AT&AT Bell Laboratories - 600 Mountain Ave., Murray Hill, NJ 07974, USA 5 ISIS Facility, Rutherford Appleton Laboratory Chilton, Didcot, Oxon, OX11 0QX, UK 6 Royal Dutch Shell Laboratories P.O. Box 3003, 1003 AA Amsterdam, The Netherlands (received 9 February 1996; accepted in nal form 24 May 1996) PACS. 75.40Gb – Dynamic properties (dynamic susceptibility, spin waves, spin diusion, dynamic scaling, etc.). PACS. 75.25+z – Spin arrangements in magnetically ordered materials (including neutron and spin-polarized electron studies, synchrotron-source X-ray scattering, etc.). PACS. 75.50Lk – Spin glasses and other random magnets. Abstract. – We use neutron scattering to show that the low-temperature, short-range ordered spin conguration in the geometrically frustrated magnet SrCr9pGa12 9p O19 (p =0.92(5)) is composed of small groups of spins whose dipole moments cancel. The local magnetic uctuation spectrum, 00(ω), vanishes approximately in proportion to ω forhω < 0.5 meV, distinguishing this magnet from conventional spin glasses which display a featureless continuum of excited states. We argue that this behavior results from the absence of local, low-energy excitations in the zero-spin clusters from which the frozen spin conguration is composed.
    [Show full text]
  • Observation of Superficial Antiferromagnetism in Co3o4
    Materials Research Express PAPER Related content - Antiferromagnetism induced by oxygen Observation of superficial antiferromagnetism in vacancies in V2O5 polycrystals synthesized by the Pechini method D Dreifus, M P F Godoy, A C Rabelo et al. Co3O4 polycrystals - Effects of Cu doping on the electronic structure and magnetic properties of To cite this article: Driele von Dreifus et al 2015 Mater. Res. Express 2 116102 MnCo2O4 nanostructures Prativa Pramanik, Subhash Thota, Sobhit Singh et al. - Origin of intrinsic ferromagnetism in undoped antiferromagnetic NiO thin films View the article online for updates and enhancements. Vikram Verma and Monica Katiyar Recent citations - Theoretical approach for determining the relation between the morphology and surface magnetism of Co 3 O 4 R.A.P. Ribeiro et al - Probing core and shell contributions to exchange bias in Co/Co3O4 nanoparticles of controlled size D. De et al This content was downloaded from IP address 200.136.226.167 on 20/03/2019 at 18:09 Mater. Res. Express 2 (2015) 116102 doi:10.1088/2053-1591/2/11/116102 PAPER Observation of superficial antiferromagnetism in Co3O4 polycrystals RECEIVED 25 August 2015 Driele von Dreifus1,2, Ernesto Chaves Pereira1 and Adilson Jesus Aparecido de Oliveira2 REVISED 6 October 2015 1 Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, São Paulo, Brazil 2 ACCEPTED FOR PUBLICATION Departamento de Física, Universidade Federal de São Carlos, CP 676, São Carlos, São Paulo, Brazil 12 October 2015 E-mail: [email protected] PUBLISHED 3 November 2015 Keywords: antiferromagnetic phase transition, spinel, magnetization process Abstract We report on a systematic study about the magnetic properties of Co3O4 polycrystals with large size distribution (100–1200 nm) and the crystallite size of 68(4) nm on average.
    [Show full text]
  • Incommensurate Antiferromagnetism in a Pure Spin System Via Cooperative Organization of Local and Itinerant Moments
    Incommensurate antiferromagnetism in a pure spin system via cooperative organization of local and itinerant moments Yejun Fenga,b,1, Jiyang Wangb, D. M. Silevitchb, B. Mihailac, J. W. Kima, J.-Q. Yand,e, R. K. Schulzec, Nayoon Woob, A. Palmerb, Y. Rena, Jasper van Wezelf,2, P. B. Littlewoodb,g, and T. F. Rosenbaumb,1 aThe Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439; bThe James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637; cMaterials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545; dDepartment of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996; eMaterials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; fMaterials Science Division, Argonne National Laboratory, Argonne, IL 60439; and gPhysical Sciences and Engineering, Argonne National Laboratory, Argonne, IL 60439 Edited by Susan N. Coppersmith, University of Wisconsin, Madison, WI, and approved January 17, 2013 (received for review October 4, 2012) Materials with strong correlations are prone to spin and charge materials one must always have a finite coupling strength be- instabilities, driven by Coulomb, magnetic, and lattice interactions. cause perfect nesting never occurs in more than one dimension. In materials that have significant localized and itinerant spins, it In the case of CDWs, this coupling is normally provided by is not obvious which will induce order. We combine electrical phonons, because electrons can transition between nested transport, X-ray magnetic diffraction, and photoemission studies states by scattering off lattice distortions. For SDWs in the with band structure calculations to characterize successive anti- presence of nearly perfect nesting conditions, such as in ele- ferromagnetic transitions in GdSi.
    [Show full text]
  • The Quantum Theory of Antiferromagnetism
    i "' .... i of-t, Technology | #9 THE QUANTUM THEORY OF ANTIFERROMAGNETISM R. J. HARRISON CoPr 10873 TECHNICAL REPORT NO. 172 AUGUST 31, 1950 RESEARCH LABORATORY OF ELECTRONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY The research reported in this document was made possible through support extended the Massachusetts Institute of Tech- nology, Research Laboratory of Electronics, jointly by the Army Signal Corps, the Navy Department (Office of Naval Research) and the Air Force (Air Materiel Command), under Signal Corps Contract No. W36-039-sc-32037, Project No. 102B; Department of the Army Project No. 3-99-10-022. MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS Technical Report No.. 172 August 31, 1950 THE QUANTUM THEORY OF ANTIFERROMAGNETISM* R. J. Harrison Abstract Recent neutron diffraction experiments on antiferromagnetic crystals at low tem- peratures indicate the existence of a long range correlation in direction of the spin mag- netic moments. Although the Ising model predicts such a correlation, a consideration of the uncertainty relationships for spin shows that in the correct quantum description of an antiferromagnet, the ordering cannot be the simple type given by this semiclassical model. The problem of determining the lowest quantum state of an antiferromagnet is much the same as the quantum chemical problem of determining the state of a large molecule. The short range correlation of spin moments is measured by a quantity called the "bond order" in molecular problems. This assumes its maximum in the lowest eigenstate. In an attempt to make progress in solving the general quantum mechanical problem, a new method of approximation has been developed and applied to the linear antiferro- magnetic chain.
    [Show full text]
  • Specific Heat Provides New Evidence for Bose-Einstein Condensation Of
    Specific heat provides new evidence for Bose-Einstein condensation of magnons in quantum magnets Bose-Einstein condensation of magnons in Cs2CuCl4 Phys. Rev. Lett. 95, 127202 (2005) Authors: T. Radu, H. Wilhelm, V. Yushankhai, D. Kovrizhin, R. Coldea, Z. Tylczynski, T. L¨uhmann, and F. Steglich and Bose-Einstein Condensation of S = 1 Ni spin degrees of freedom in NiCl2-4SC(NH2)2 http://arXiv.org/ cond-mat/0505562 Authors: V.S. Zapf, D. Zocco, M. Jaime, N. Harrison, A. Lacerda, C.D. Batista, and A. Paduan-Filho Recommended and a commentary by S. Paschen, Institute of Solid State Physics, TU Vienna, Austria The experimental realization of Bose-Einstein condensation (BEC) in ul- tracold dilute atomic gases has recently triggered experimental investigations on analogs of Bose condensation in quantum magnets. As early as 1956 it was shown by Matsubara and Matsuda that a quantum spin system can be mapped onto an interacting Bose gas and that the off-diagonal long-range order of the Bose-Einstein condensate corresponds to long-range magnetic or- der in the spin system. Recent theoretical work has specified the conditions for the analogy. Not all condensation of magnons (or any other Bosons) is a BEC. The critical exponents should be the same as for BEC. This in practise means that for magnetic transitions, it should be possible to map the model to an x-y aniferromagnet and if it is a quantum phase transition, the dynami- cal exponent z should be 2 chararcteristic of the Landau-Ginzburg-Pitaevskii dynamics. Compounds currently under investigation in the context of search for analogs of Bose condensation contain either a lattice of dimerized S = 1/2 2+ Cu ions (e.g., BaCuSiO6, KCuCl3, TlCuCl3), a two-dimensional anisotropic 2+ triangular lattice of S = 1/2 Cu ions (Cs2CuCl4), or S = 1 Ni chains (e.g., Ni(C5H14N2)2N3ClO4, NiCl2-4SC(NH2)2) and it is not always clear whether the requisite conditions of isotropy in the x-y plane and the correct dynamics 1 are met.
    [Show full text]