An Introduction to the Theory of Lattice Ý Jinfang Wang £ Graduate School of Science and Technology, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan May 11, 2006 £ Fax: 81-43-290-3663. E-Mail addresses:
[email protected] Ý Partially supported by Grand-in-Aid 15500179 of the Japanese Ministry of Education, Science, Sports and Cul- ture. 1 1 Introduction A lattice1 is a partially ordered set (or poset), in which all nonempty finite subsets have both a supremum (join) and an infimum (meet). Lattices can also be characterized as algebraic structures that satisfy certain identities. Since both views can be used interchangeably, lattice theory can draw upon applications and methods both from order theory and from universal algebra. Lattices constitute one of the most prominent representatives of a series of “lattice-like” structures which admit order-theoretic as well as algebraic descriptions, such as semilattices, Heyting algebras, and Boolean algebras. 2 Semilattice A semilattice is a partially ordered set within which either all binary sets have a supremum (join) or all binary sets have an infimum (meet). Consequently, one speaks of either a join-semilattice or a meet-semilattice. Semilattices may be regarded as a generalization of the more prominent concept of a lattice. In the literature, join-semilattices sometimes are sometimes additionally required to have a least element (the join of the empty set). Dually, meet-semilattices may include a greatest element. 2.1 Definitions Semilattices as posets Ë µ Ü DEFINITION 2.1 (MEET-SEMILATTICE). A poset ´ is a meet-semilattice if for all elements Ë Ü Ý and Ý of , the greatest lower bound (meet) of the set exists.