Paleontological Contributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Gnathostome Phylogeny Revisited: Multiple Method Consensus
RESEARCH ARTICLE Early Gnathostome Phylogeny Revisited: Multiple Method Consensus Tuo Qiao1, Benedict King2, John A. Long2, Per E. Ahlberg3, Min Zhu1* 1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China, 2 School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia, 3 Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, NorbyvaÈgen, Uppsala, Sweden * [email protected] a11111 Abstract A series of recent studies recovered consistent phylogenetic scenarios of jawed verte- brates, such as the paraphyly of placoderms with respect to crown gnathostomes, and anti- archs as the sister group of all other jawed vertebrates. However, some of the phylogenetic OPEN ACCESS relationships within the group have remained controversial, such as the positions of Ente- Citation: Qiao T, King B, Long JA, Ahlberg PE, Zhu lognathus, ptyctodontids, and the Guiyu-lineage that comprises Guiyu, Psarolepis and M (2016) Early Gnathostome Phylogeny Revisited: Achoania. The revision of the dataset in a recent study reveals a modified phylogenetic Multiple Method Consensus. PLoS ONE 11(9): hypothesis, which shows that some of these phylogenetic conflicts were sourced from a e0163157. doi:10.1371/journal.pone.0163157 few inadvertent miscodings. The interrelationships of early gnathostomes are addressed Editor: Hector Escriva, Laboratoire Arago, FRANCE based on a combined new dataset with 103 taxa and 335 characters, which is the most Received: May 2, 2016 comprehensive morphological dataset constructed to date. This dataset is investigated in a Accepted: September 2, 2016 phylogenetic context using maximum parsimony (MP), Bayesian inference (BI) and maxi- Published: September 20, 2016 mum likelihood (ML) approaches in an attempt to explore the consensus and incongruence between the hypotheses of early gnathostome interrelationships recovered from different Copyright: 2016 Qiao et al. -
Morphology and Histology of Acanthodian Fin Spines from the Late Silurian Ramsasa E Locality, Skane, Sweden Anna Jerve, Oskar Bremer, Sophie Sanchez, Per E
Morphology and histology of acanthodian fin spines from the late Silurian Ramsasa E locality, Skane, Sweden Anna Jerve, Oskar Bremer, Sophie Sanchez, Per E. Ahlberg To cite this version: Anna Jerve, Oskar Bremer, Sophie Sanchez, Per E. Ahlberg. Morphology and histology of acanthodian fin spines from the late Silurian Ramsasa E locality, Skane, Sweden. Palaeontologia Electronica, Coquina Press, 2017, 20 (3), pp.20.3.56A-1-20.3.56A-19. 10.26879/749. hal-02976007 HAL Id: hal-02976007 https://hal.archives-ouvertes.fr/hal-02976007 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Palaeontologia Electronica palaeo-electronica.org Morphology and histology of acanthodian fin spines from the late Silurian Ramsåsa E locality, Skåne, Sweden Anna Jerve, Oskar Bremer, Sophie Sanchez, and Per E. Ahlberg ABSTRACT Comparisons of acanthodians to extant gnathostomes are often hampered by the paucity of mineralized structures in their endoskeleton, which limits the potential pres- ervation of phylogenetically informative traits. Fin spines, mineralized dermal struc- tures that sit anterior to fins, are found on both stem- and crown-group gnathostomes, and represent an additional potential source of comparative data for studying acantho- dian relationships with the other groups of early gnathostomes. -
Pennsylvanian Vertebrate Fauna
VII PENNSYLVANIAN VERTEBRATE FAUNA By ROY LEE MOODIE THE PENNSYLVANIAN VERTEBRATE FAUNA OF KENTUCKY By ROY LEE MOODIE INTRODUCTION The vertebrates which one may expect to find in the Penn- sylvanian of Kentucky are the various types of fishes, enclosed in nodules embedded in shale, as well as in limestone and in coal; amphibians of many types, found heretofore in nodules and in cannel coal; and probably reptiles. A single incomplete skeleton found in Ohio, described below, seems to be a true reptile. Footprints and fragmentary skeletal elements found in Pennsylvania1 in Kansas2 in Oklahoma3, in Texas4 in Illinois5, and other regions, in rocks of late Pennsylvanian or early Permian age, and often spoken of as Permo- Carboniferous, indicate types of vertebrates, some of which may be reptiles. No skeletal remains or other evidences of Pennsylvanian vertebrates have so far been found in Kentucky, but there is no reason why they cannot confidently be expected to occur. A single printed reference points to such vertebrate remains6. As shown by the map, Kentucky lies immediately adjacent to regions where Pennsylvanian vertebrates have been found. That important discoveries may still be made is indicated by Carman's recent find7. Ohio where important discoveries of 1Case, E. C. Description of vertebrate fossils from the vicinity of Pittsburgh, Pa: Annals of the Carnegie Museum, IV, Nos. III-IV, pp. 234-241. pl. LIX, 1908. 2Williston, S. W. Some vertebrates from the Kansas Permian: Kansas Univ. Quart., ser. A, VI, No.1, pp. 53. fig., 1897. 3Case, E. C., On some vertebrate fossils from the Permian beds of Oklahoma. -
Dental Diversity in Early Chondrichthyans
1 Supplementary information 2 3 Dental diversity in early chondrichthyans 4 and the multiple origins of shedding teeth 5 6 Dearden and Giles 7 8 9 This PDF file includes: 10 Supplementary figures 1-5 11 Supplementary text 12 Supplementary references 13 Links to supplementary data 14 15 16 Supplementary Figure 1. Taemasacanthus erroli left lower jaw NHMUK PV 17 P33706 in (a) medial; (b) dorsal; (c) lateral; (d) ventral; (e) posterior; and (f) 18 dorsal and (g) dorso-medial views with tooth growth series coloured. Colours: 19 blue, gnathal plate; grey, Meckel’s cartilage. 20 21 Supplementary Figure 2. Atopacanthus sp. right lower or left upper gnathal 22 plate NHMUK PV P.10978 in (a) medial; (b) dorsal;, (c) lateral; (d) ventral; and 23 (e) dorso-medial view with tooth growth series coloured. Colours: blue, 24 gnathal plate. 25 26 Supplementary Figure 3. Ischnacanthus sp. left lower jaw NHMUK PV 27 P.40124 (a,b) in lateral view superimposed on digital mould of matrix surface 28 with Meckel’s cartilage removed in (b); (c) in lateral view; and (d) in medial 29 view. Colours: blue, gnathal plate; grey, Meckel’s cartilage. 30 Supplementary Figure 4. Acanthodopsis sp. right lower jaw NHMUK PV 31 P.10383 in (a,b) lateral view with (b) mandibular splint removed; (c) medial 32 view; (d) dorsal view; (e) antero-medial view, and (f) posterior view. Colours: 33 blue, teeth; grey, Meckel’s cartilage; green, mandibular splint. 34 35 Supplementary Figure 5. Acanthodes sp. Left and right lower jaws in 36 NHMUK PV P.8065 (a) viewed in the matrix, in dorsal view; (b) superimposed 37 on the digital mould of the matrix’s surface, in ventral view; and (c,d) the left 38 lower jaw isolated in (c) medial, and (d) lateral view. -
Fish and Tetrapod Communities Across a Marine to Brackish
Palaeontology Fish and tetrapod communities across a marine to brackish salinity gradient in the Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and their palaeoecological and palaeogeographic implications Journal: Palaeontology Manuscript ID PALA-06-16-3834-OA.R1 Manuscript Type: Original Article Date Submitted by the Author: 27-Jun-2016 Complete List of Authors: Ó Gogáin, Aodhán; Earth Sciences Falcon-Lang, Howard; Royal Holloway, University of London, Department of Earth Science Carpenter, David; University of Bristol, Earth Sciences Miller, Randall; New Brunswick Museum, Curator of Geology and Palaeontology Benton, Michael; Univeristy of Bristol, Earth Sciences Pufahl, Peir; Acadia University, Earth and Environmental Science Ruta, Marcello; University of Lincoln, Life Sciences; Davies, Thoams Hinds, Steven Stimson, Matthew Pennsylvanian, Fish communities, Salinity gradient, Euryhaline, Key words: Cosmopolitan, New Brunswick Palaeontology Page 1 of 121 Palaeontology 1 2 3 4 1 5 6 7 1 Fish and tetrapod communities across a marine to brackish salinity gradient in the 8 9 2 Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and 10 3 their palaeoecological and palaeogeographic al implications 11 12 4 13 14 5 by AODHÁN Ó GOGÁIN 1, 2 , HOWARD J. FALCON-LANG 3, DAVID K. CARPENTER 4, 15 16 6 RANDALL F. MILLER 5, MICHAEL J. BENTON 1, PEIR K. PUFAHL 6, MARCELLO 17 18 7 RUTA 7, THOMAS G. DAVIES 1, STEVEN J. HINDS 8 and MATTHEW R. STIMSON 5, 8 19 20 8 21 22 9 1 School of Earth Sciences, University -
Unravelling the Ontogeny of a Devonian Early Gnathostome, The
Unravelling the ontogeny of a Devonian early gnathostome, the “acanthodian” Triazeugacanthus affinis (eastern Canada) Marion Chevrinais, Jean-Yves Sire, Richard Cloutier To cite this version: Marion Chevrinais, Jean-Yves Sire, Richard Cloutier. Unravelling the ontogeny of a Devonian early gnathostome, the “acanthodian” Triazeugacanthus affinis (eastern Canada). PeerJ, PeerJ, 2017, 5, pp.e3969. 10.7717/peerj.3969. hal-01633978 HAL Id: hal-01633978 https://hal.sorbonne-universite.fr/hal-01633978 Submitted on 13 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Unravelling the ontogeny of a Devonian early gnathostome, the ``acanthodian'' Triazeugacanthus affinis (eastern Canada) Marion Chevrinais1, Jean-Yves Sire2 and Richard Cloutier1 1 Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Canada 2 CNRS—UMR 7138-Evolution Paris-Seine IBPS, Université Pierre et Marie Curie, Paris, France ABSTRACT The study of vertebrate ontogenies has the potential to inform us of shared devel- opmental patterns and processes among organisms. However, fossilised ontogenies of early vertebrates are extremely rare during the Palaeozoic Era. A growth series of the Late Devonian ``acanthodian'' Triazeugacanthus affinis, from the Miguasha Fossil-Fish Lagerstätte, is identified as one of the best known early vertebrate fossilised ontogenies given the exceptional preservation, the large size range, and the abundance of specimens. -
Family-Group Names of Fossil Fishes
© European Journal of Taxonomy; download unter http://www.europeanjournaloftaxonomy.eu; www.zobodat.at European Journal of Taxonomy 466: 1–167 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.466 www.europeanjournaloftaxonomy.eu 2018 · Van der Laan R. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:1F74D019-D13C-426F-835A-24A9A1126C55 Family-group names of fossil fi shes Richard VAN DER LAAN Grasmeent 80, 1357JJ Almere, The Netherlands. Email: [email protected] urn:lsid:zoobank.org:author:55EA63EE-63FD-49E6-A216-A6D2BEB91B82 Abstract. The family-group names of animals (superfamily, family, subfamily, supertribe, tribe and subtribe) are regulated by the International Code of Zoological Nomenclature. Particularly, the family names are very important, because they are among the most widely used of all technical animal names. A uniform name and spelling are essential for the location of information. To facilitate this, a list of family- group names for fossil fi shes has been compiled. I use the concept ‘Fishes’ in the usual sense, i.e., starting with the Agnatha up to the †Osteolepidiformes. All the family-group names proposed for fossil fi shes found to date are listed, together with their author(s) and year of publication. The main goal of the list is to contribute to the usage of the correct family-group names for fossil fi shes with a uniform spelling and to list the author(s) and date of those names. No valid family-group name description could be located for the following family-group names currently in usage: †Brindabellaspidae, †Diabolepididae, †Dorsetichthyidae, †Erichalcidae, †Holodipteridae, †Kentuckiidae, †Lepidaspididae, †Loganelliidae and †Pituriaspididae. -
The Early Devonian Acanthodian Euthacanthus Macnicoli Powrie, 1864 from the Midland Valley of Scotland
The Early Devonian acanthodian Euthacanthus macnicoli Powrie, 1864 from the Midland Valley of Scotland Michael J. NEWMAN Vine Lodge, Vine Road, Johnston, Haverfordwest, Pembrokeshire, SA62 3NZ (United Kingdom) [email protected] Carole J. BURROW Ancient Environments, Queensland Museum, 122 Gerler Road, Hendra 4011, Queensland (Australia) [email protected] Jan L. DEN BLAAUWEN University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands) [email protected] Robert G. DAVIDSON 35 Millside Road, Peterculter, Aberdeen, AB14 0WG (United Kingdom) [email protected] Newman M. J., Burrow C. J., Den Blaauwen J. L. & Davidson R. G. 2014. — The Early Devo- nian acanthodian Euthacanthus macnicoli Powrie, 1864 from the Midland Valley of Scotland. Geodiversitas 36 (3): 321-348. http://dx.doi.org/10.5252/g2014n3a1 ABSTRACT The five species of genus Euthacanthus Powrie, 1864 are reduced to two spe- cies on morphological and stratigraphical evidence. Euthacanthus macnicoli Powrie, 1864 and Euthacanthus grandis Powrie, 1870 are here synonymised in the type species E. macnicoli Powrie, 1864. In a previous article, Eutha canthus gracilis Powrie, 1870 and Euthacanthus elegans Powrie, 1870 were combined in the species E. gracilis, and the fifth species, Euthacanthus curtus Powrie, 1870, was reassigned to Uraniacanthus curtus (Powrie, 1870). In this work, we give an in-depth study of the full range of morphological and his- tological structure of scales over the body of E. macnicoli, as well as of fin KEY WORDS Lochkovian, spine structure. Our study reveals new features of E. macnicoli, including Acanthodii, a large ornamented dorsal sclerotic bone, ornament on the branchiostegal Euthacanthidae, plates, a separate series of gular rays, calcified cartilage forming the jaws, Euthacanthus, scale histology, and a postbranchial protruding spinose plate rather than the flat prepectoral fin spine histology. -
'Acanthodian'-Chondrichthyan Divide
AMERICAN MUSEUM NOVITATES Number 3875, 15 pp. March 10, 2017 Pectoral morphology in Doliodus: bridging the ‘acanthodian’-chondrichthyan divide JOHN G. MAISEY,1 RANDALL MILLER,2 ALAN PRADEL,3 JOHN S.S. DENTON1 ALLISON BRONSON1, 4 AND PHILIPPE JANVIER3 ABSTRACT Doliodus problematicus (NBMG 10127), from the Lower Devonian of New Brunswick, Canada (approx. 397–400 Mya) is the earliest sharklike jawed vertebrate (gnathostome) in which the pectoral girdle and fins are well preserved. Its pectoral endoskeleton included shark- like expanded paired coracoids, but Doliodus also possessed an “acanthodian-like” array of dermal spines, described here for the first time. Doliodus provides the strongest anatomical evidence to date that chondrichthyans arose from “acanthodian” fishes by exhibiting an ana- tomical mosaic of “acanthodian” and sharklike features. INTRODUCTION The pectoral complex is a critical anatomical region both for osteichthyan and chondrich- thyan systematics, yet it is almost completely unknown in the earliest chondrichthyans, con- straining our ability to infer relationships in this clade (which is coeval with comparatively better-known bony fishes). Major vertebrate evolutionary transitions, such as “fin to limb” and “dinosaur to bird,” are substantiated by numerous fossil discoveries. By contrast, the much earlier rise of sharklike fishes (chondrichthyans) within jawed vertebrates (gnathostomes) is poorly documented. Although this “fish to fish” transition involved less profound anatomical 1 Division of Paleontology, American Museum of Natural History. 2 Natural Science Department, New Brunswick Museum. 3 Sorbonne Universités, Muséum national d’Histoire naturelle. 4 Richard Gilder Graduate School, American Museum of Natural History. Copyright © American Museum of Natural History 2017 ISSN 0003-0082 2 AMERICAN MUSEUM NOVITATES NO. -
The Kinney Brick Quarry Lagerstätte, Late Pennsylvanian of New Mexico, Usa: Introduction and Overview
Lucas, S. G., DiMichele, W. A. and Allen, B. D., eds., 2021, Kinney Brick Quarry Lagerstätte. New Mexico Museum of Natural History and Science Bulletin 84. 1 THE KINNEY BRICK QUARRY LAGERSTÄTTE, LATE PENNSYLVANIAN OF NEW MEXICO, USA: INTRODUCTION AND OVERVIEW SPENCER G. LUCAS1, WILLIAM A. DIMICHELE2 AND BRUCE D. ALLEN3 1New Mexico Museum of Natural History, 1801 Mountain Road N.W., Albuquerque, New Mexico 87104; email: [email protected]; 2Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; 3New Mexico Bureau of Geology and Mineral Resources, 801 Leroy Place, Socorro, New Mexico 87801 Abstract—The Kinney Brick Quarry, located in the Manzanita Mountains of central New Mexico, is a world-famous fossil locality in deposits of a marine embayment of Late Pennsylvanian age. The quantity and quality of fossil preservation identify Kinney as a Konservat Lagerstätte. This volume presents the results of recent research on the Kinney rocks and fossils, as well as new research based on older collections. Here, we provide a review of previous work and of the context within which to understand the Kinney Quarry Lagerstätte and the articles in this volume. A new look at Kinney, the environment, the animals, plants, and ichnofauna preserved there, was initiated by a controlled excavation carried out in 2014. This excavation revealed additional, more refined information about the sedimentology of the Kinney deposits, and additional information about the distribution of organisms during the period of accumulation. INTRODUCTION Fossils were discovered at the Kinney Brick Quarry in the The Kinney Brick Quarry (Figs. 1-3), located in the early 1960s by two University of New Mexico (UNM) students Manzanita Mountains of central New Mexico, is a clay pit who went on to careers in paleontology, Sidney R. -
Some Fishes of the Wild Cow Formation (Pennsylvanian) Manzanita Mountains, New Mexico
Circular 135 1975 Some Fishes of the Wild Cow Formation (Pennsylvanian) Manzanita Mountains, New Mexico by Jiri Zidek New Mexico Bureau of Mines & Mineral Resources A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY Circular 135 New Mexico Bureau of Mines & Mineral Resources A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY Some Fishes of the Wild Cow Formation (Pennsylvanian) Manzanita Mountains, New Mexico by Jiri Zidek University of Oklahoma SOCORRO 1975 ii First edition, 1975 Published by Authority of State of New Mexico, NMSA 1953 Sec. 63-1-4 Printed by University of New Mexico Printing Plant, December, 1975 Available from New Mexico Bureau of Mines & Mineral Resources, Socorro, NM 87801 Price $3.00 Contents ABSTRACT iv INTRODUCTION 5 GEOLOGICAL SETTING 5 SYSTEMATIC DESCRIPTIONS 7 CLASS CHONDRICHTHYES 7 Genus Ctenoptychius 7 G e n u s C l a d o d u s 7 Genus Listracanthus 7 Remarks on Elasmobranchs 7 CLASS ACANTHODII 12 Genus Acanthodes 12 Remarks on Acanthodes 15 CLASS DIPNOI 17 Genus Proceratodus 17 Proceratodus hlavini, n. sp. 17 CLASS CROSSOPTERYGII 18 Family Coelacanthidae 18 REFERENCES 21 FIGURES 1—Ctenoptychius, sp. indet., Cladodus, sp. indet, Listracanthus eliasi 6 2 —Acanthodes 10 3—Proceratodus hlavini, n. sp. 17 4—Coelacanthidae indet. 19 PLATES 1 — Acanthodes 8 2 — Acanthodes 9 iv Abstract The fish fauna in the shales of the Pine Shadow Member of the Wild Cow Formation (early Virgilian) in the Manzanita Mountains, New Mexico, has been known for over ten years but has not been described. Although this fauna includes representatives of all the higher taxa of fish known from the Late Paleozoic, few specimens can be identified generically. -
Unravelling the Ontogeny of a Devonian Early Gnathostome, the ‘‘Acanthodian’’ Triazeugacanthus Affinis (Eastern Canada)
Unravelling the ontogeny of a Devonian early gnathostome, the ``acanthodian'' Triazeugacanthus affinis (eastern Canada) Marion Chevrinais1, Jean-Yves Sire2 and Richard Cloutier1 1 Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Canada 2 CNRS—UMR 7138-Evolution Paris-Seine IBPS, Université Pierre et Marie Curie, Paris, France ABSTRACT The study of vertebrate ontogenies has the potential to inform us of shared devel- opmental patterns and processes among organisms. However, fossilised ontogenies of early vertebrates are extremely rare during the Palaeozoic Era. A growth series of the Late Devonian ``acanthodian'' Triazeugacanthus affinis, from the Miguasha Fossil-Fish Lagerstätte, is identified as one of the best known early vertebrate fossilised ontogenies given the exceptional preservation, the large size range, and the abundance of specimens. Morphological, morphometric, histological and chemical data are gathered on a growth series of Triazeugacanthus ranging from 4 to 52 mm in total length. The developmental trajectory of this Devonian ``acanthodian'' is characteristic of fishes showing a direct development with alternating steps and thresholds. Larvae show no squamation but a progressive appearance of cartilaginous neurocranial and vertebral elements, and appendicular elements, whereas juveniles progress in terms of ossification and squamation. The presence of cartilaginous and bony tissues, discriminated on histological and chemical signatures, shows a progressive mineralisation of neurocranial