<<

A

North Atlantic Ocean Baltica Shield 60˚ Oslo Neogene-Quaternary VG MFG Tornquist Zone Paleogene Rockall WCG Through 50˚ North Mesozoic Sea EURASIA Trans-European Suture Zone (TESZ) Paleozoic/ Precambrian basement Major Alpine Western EGU21-12348-GD1.6 normal and reverse Approaches HZ faults Basin AR RM Paleozoic and Mesozoic Bohemian Ca rp faults (with reactivation) Massif a th Bay of Biscay RG i an s Cenozoic magmatism MC Alps Pannonian N.Dobrogea Basin

Pyrenees Apennines Dinarides

Adriatic Sea Moesia Gulf of Lion Iberian Ranges Liguro- IBERIA provençal Basin Hellenides Tyrrhenian Betics Sea Cenozoic mountain building of WesternAlgerian Alboran Sea Basin

Rif m i s Tell C r Aegean a p Meseta Mid. Atlas l n Sea Pelagian a b ri a Saharan Atlas Sea Europe controlled by continentalHigh Atlas lithosphere Ionian Sea M Anti-Atlas e diterra nnean ridge evolution Cyrenaica Reguibat Shield

Precambrian Laurentian nt B o r basement (Scotland) f don le ian a Frédéric Mouthereau & Paul Angrand Grampian arc and allochtonous LAURENTIA Caledonian front C 60°N units of Caledonian (Scandian) orogen BALTICA GET-Univ. Toulouse - France Sveconorwegian Fig. 7 Caledonian front Iapetus Variscan front with its Thor suture reconstructed position AVALONIA o"shore Alpine main faults (Alps, Variscan front Betics , ) ARMORICA Tornquist Rheic Moroccan Hot Line 50°N

Late Variscan shear zones GSB s ne ra CAMP dykes and lava !ows er NPSZ T A N A W EVSZ D ADRIA N O -G ri e p

“Moroccan Hot Line”

Mouthereau et al., 2021 “Cenozoic mountain Variscan front building and topographic evolution in Western Europe: impact of billion years lithosphere evolution and ” submitted 0° 10° Orogenic evolution reflects mantle convection or inherited lithosphere properties ?

whole-mantle drivers

frica/G 80 Ma A ondw ana M W. Europe - Mantle convection Andes - Tethyan slab penetration in Lithosphere-scale processes

lower mantle Baltica −20˚ −10˚ 0˚ 10˚ 20˚ −20˚ −10˚ 0˚ 10˚ 20˚ 30° M: Morondava mantle b 60˚ a plume Baltic Archean-early SVC Africa/Gond North 50 Ma wan Sea EEC a - Decreasing Sea A Europe motion TESZ Europe - Opening of North TESZ Caledonides Andes Altantic GB Neo-Proterozoic 50˚ - Extension North A/RM Baltica BM of Europe Carp. Early Paleozoic Variscides AtlanticA: Afar plume MC Alps mantle I: Iceland plume Pyr Late North Paleozoic 40˚ I Atlantic Betic Africa/Gon Plate boundary 30 Ma dwa na Rif - Slab-driven Europe convection 30˚ Atlas Pan-African Andes - Extension WAC widespread Tuareg Saharan metacraton Reguibat 40 shield 2 Baltica 150 50 45 2 4 1 0 0 c A: Afar plume d 5 5 0 0 60˚ 3 4 0 200 5 2 5 0 200 3 50 5 20 I: Iceland plume0 1 100 1 1 100 0 1 20 0 0 250 250 2 mantle 5 0 0 0 0 5 2 3 01 45 150 250 0 100 North 3 4 10 5 25 5 150 1 1 Atlantic 5 200 0 200 0 I 30 5 150 3 100 0 EEC 100 TESZEEC TESZ 200

10 25 3 200 150 0 0 35 0 5 25 20 0 150 0 2 0 30 5 0 1 4 1 200 2 3 40 150 15000 5 35 50˚ 1 35 1 100 0 1 00 50 5 0 1 5 200 10 1 0 1 0

5 30 30 0 0

0 10 1 20 2 0 150 0 5 3 50 45 50 40 00 1 00 0 30 1 0 0 100 1 3 150 15 0 3 5 0 5 0 1 10 0 50 35 50 100 25 2 150 0 35 2 3 35 5 35 40 0 40 15 5

2 50

20 0 2 20 30 5 3 0 5 5 3 0 2 15 1 0 0 1 5 0 1 40˚ 2 1 5 0 150 5 100 100 1 5 50 0 0 50 0 15 20 50 30 25 25 0 200 25 30 3 200 150 10 20 25 150 50 35 25 50 10 250 1 0

0 5 5 5 0 1 0 5 0 2 3 5 30 50 0 2 3 40 20 1 0 0 0 5 0 35 2 0 5 200 0 1 3 10 0 1 40 0 0 0 30˚ 4 1 0 15 50 5 1 0 40 2 0 0 2 35 0 0 WAC WAC 100 50 15 20 0 0 60˚ e SL2013sv (Vs=4.38 km/s) - 110 km f 4 2 30 0 dVs/Vs 20 40

50 80 10 60 0 5 EEC 7 30 EEC 80 10 5060 80 70 7060 TESZ 40 5040 50˚ 20 20 10 30 30 20 10 20 20 10 0

0 % 2 10 10 40˚ 20 20

10

4 0

30˚ -5 0 40 3 WAC Eq. depth a b 60˚ (km)

200 Europe

Stable Archean lithosphere (e.g. WAC) Mobile lithosphere (e.g. Variscan lithosphere 300 Ma) 100 A) 1) coupled crust and mantle B) 1) decoupled crust and mantle 2) high basal shear traction 2) weak basal shear traction Log10 viscosity Log10 viscosity 20 21 Orogenic22 23 24 evolution reflects20 21 mantle22 23 24 25 convection or 50˚ 0 salt 0 0 0 cover “thin-skinned” thrusting upper crust upper crust granite Europe granite 10 Quartzite inherited 10 QuartziteinheritedAfrica lithosphere10 properties ? 10 detachment middle crust middle crust basement 20 Te 20 20 20 Diabase “thick-skinned” thrusting Diabase granulites granulites 30 Moho10 mm/yr 30 30 gabbro 30 MOHO MOHO Geotherm- 300 Ma 40 inherited Gt-pyroxenite 40 40 Moho 40 Calc. Obs. mantle sp-lherzolite 50 50 50 Spinel 50 lherzolite 60 60 60 Olivine 60 mylonites 70 70 70 depleted 70

Depth (km) Depth mantle 80 80 Current80 stress patterns80 harzburgitesin W Europe 40˚ Te 90 Olivine 90 90 90 Lithosphere explained100 by coupled100 convection and 100 100 LAB Asthenosphere 110 110 110 Harzburgites variable0 200 400 600 lithosphere800 1000 1200 1400 properties dunites

120 120 Temperature (°C) Depth (km) Depth 130 130 graphite e.g. Ghosh et al., JGR, 2013

Geotherm 3 Ga diamond 140 140 C) Coupled lithosphere-mantle convection model 150 150 Depleted 160 (WAC) e.g. Variscan lithosphere Craton (Baltica) 30˚ 160 lherzolites 170 170

180 180 24 1023 Pa-s APM AF/EU 10 Pa-s 1024 Pa-s Africa 30 mm/yr 9 mm/yr190 c 190 100 km s" 200 200

210 210 +GPE +GPE Lithosphere −20˚ −10˚ 0˚ 10˚ 20˚ 30˚ 220 Asthenosphere 220 #Vabs "Vabs 20 230 230 10 Pa-s melt- 21 21 10 Pa-s 240 240 metasomatized 10 Pa-s "Vabs> #Vabs mantle 250 250 0 200 400 600 800 1000 1200 1400 LAB 250 km Temperature (°C) mantle !ow Orogenic evolution reflects mantle convection or inherited lithosphere properties ? Apparent correlation between Cenozoic upper crustal exhumation (proxy for topography) and long-term tectono-magmatic evolution How did it work in time and space ? −20˚ −10˚ 0˚ 10˚ 20˚ 30˚ −20˚ −10˚ 0˚ 10˚ 20˚ −20˚ −10˚ 0˚ 10˚ 20˚ 30°

3

a b 0 60˚ 0 60˚ a b 250 60˚ 300

250 250 Archean-early EEC 250 Baltic SVC 250 250 1 300 Proterozoic 5 250 North 1 0 EEC AVALONIA 5 Sea 0 80 150 1 5 Sea 150 0 TESZ 150 80

150 8 TESZ Caledonides TTZ 0 GB 150 50˚ 1 50˚ Neo-Proterozoic 2 A/RM 80 30 150 50˚ BM 30 Carp. 150 80 30 0 3 3 0 Early Paleozoic Variscides 150 30 30 150 Atlantic Alps 80 MC 80 30 30 150150 80 Late 80 80 Pyr 40˚ 80 30 40˚ Paleozoic 150 30 3 150 80 40˚ 30 30 0 Peri-GONDWANA 30 c 80 Betic 800 30 Plate boundary 30 min=1.4 Ma 150 80 600 80 Q1=16 Ma 0 1 150 Rif 15 50 median=58 Ma 250 80 400 Q3=160 Ma 30˚ 30˚ Count max=1027 Ma WAC 200 30˚ Atlas 150 250 Pan-African 150 Age (Ma) WAC GONDWANA n=5440 0 Tuareg Saharan metacraton Re. 0 200 400 600 800 1000 Reguibat 40 shield 2 150 50 −20˚ −10˚ 0˚ 10˚ 20˚ 30˚ 45 2 Data after Herman et al., 2013 and OROGEN project 4 1 0 0 c d 5 5 0 0 60˚ 3 4 0 200 5 2 Age (Ma) 5 0 200 3 50 5 20 0 1 100 1 1 100 0 1 20 0 0 250 250 2 5 0 0 0 0 5 2 3 01 45 150 250 0 100 3 4 10 5 25 5 150 1 1 5 200 0 200 0 30 5 150 3 100 0 EEC 100 TESZEEC TESZ 200

10 25 3 200 150 0 0 35 0 5 25 20 0 150 0 2 0 30 5 0 1 4 1 200 2 3 40 150 15000 5 35 50˚ 1 35 1 100 0 1 00 50 5 0 1 5 200 10 1 0 1 0

5 30 30 0 0

0 10 1 20 2 0 150 0 5 3 50 45 50 40 00 1 00 0 30 1 0 0 100 1 3 150 15 0 3 5 0 5 0 1 10 0 50 35 50 100 25 2 150 0 35 2 3 35 5 35 40 0 40 15 5

2 50

20 0 2 20 30 5 3 0 5 5 3 0 2 15 1 0 0 1 5 0 1 40˚ 2 1 5 0 150 5 100 100 1 5 50 0 0 50 0 15 20 50 30 25 25 0 200 25 30 3 200 150 10 20 25 150 50 35 25 50 10 250 1 0

0 5 5 5 0 1 0 5 0 2 3 5 30 50 0 2 3 40 20 1 0 0 0 5 0 35 2 0 5 200 0 1 3 10 0 1 40 0 0 0 30˚ 4 1 0 15 50 5 1 0 40 2 0 0 2 35 0 0 WAC WAC 100 50 15 20 0 0 60˚ e SL2013sv (Vs=4.38 km/s) - 110 km f 4 2 30 0 dVs/Vs 20 40

50 80 10 60 0 5 EEC 7 30 EEC 80 10 5060 80 70 7060 TESZ 40 5040 50˚ 20 20 10 30 30 20 10 20 20 10 0

0 % 2 10 10 40˚ 20 20

10

4 0

30˚ -5 0 40 3 WAC A

North Atlantic Ocean Baltica Shield 60˚ Oslo Neogene-Quaternary Rift VG MFG Tornquist Zone Paleogene Rockall WCG Through 50˚ North Mesozoic Sea EURASIA Trans-European Suture Zone (TESZ) Paleozoic/ Precambrian basement Major Alpine Western normal and reverse Approaches HZ faults Basin AR RM Paleozoic and Mesozoic Bohemian Ca rp faults (with reactivation) Massif a th Bay of Biscay RG i an s Cenozoic magmatism MC Alps Pannonian N.Dobrogea Basin

Pyrenees Apennines Dinarides

Adriatic Sea Moesia Gulf of Lion Iberian Ranges Liguro- IBERIA provençal Basin Hellenides Tyrrhenian Betics Sea Alboran Algerian Sea Basin

Rif m i s Tell C r Aegean a p Meseta Mid. Atlas l n Sea Pelagian a b ri a Saharan Atlas Sea High Atlas Ionian Sea M Anti-Atlas e diterra nnean ridge Tindouf Basin AFRICA Cyrenaica Reguibat Shield

Precambrian Laurentian nt B o r basement (Scotland) f don le ian a Grampian arc and allochtonous LAURENTIA Caledonian front C 60°N units of Caledonian (Scandian) orogen BALTICA Sveconorwegian Fig. 7 Caledonian front Iapetus Variscan front with its Thor suture Lithospheric mantle properties result reconstructed position AVALONIA o"shore Alpine main faults (Alps, Variscan front Betics , Rif) ARMORICA Tornquist Rheic Moroccan Hot Line 50°N

Late Variscan shear zones GSB s ne ra CAMP dykes and lava !ows er NPSZ T from depletion events driven by plume, A N A W EVSZ D ADRIA N O -G ri e p subduction and rifting events over 1.8 Gyr “Moroccan Hot Line” Variscan front

GONDWANA 0° 10° OROGENIC EVENTS _ ALPINE <80Ma VARISCAN 430-300 Ma CALEDONIAN ~0.5-0.38 Ga

time PAN-AFRICAN/CADOMIAN 620-540 Ma SVECONORWEGIAN/GRENVILLIAN ~1.1-0.9 Ga + GOTHIAN ~1.6-1.8 Ga _ OCEANS & LIPs CAMP 201 Ma ALPINE TETHYS/ATLANTIC 270-100 Ma RHEIC 490-470 Ma

time IAPETUS 616-550 Ma + CIMP 600 Ma Laurentia Reguibat Gondwana Gondwana margin and peri-Gondwanan terranes Avalonia Baltica Iapetus shield/ Alpine Tethys/Pyrenean rift Galicia-Southern Brittany ocean Pan-African Ocean “MOROCCAN HOT LINE” Rheic Sea Tornquist WAC Anti-Atlas High Atlas Jebilet CAMP Variscan meseta Ronda/Beni B. Pyrenees/Alps Massif Central Armorica Sea/TESZ margin CIMP cratonic core 0 0 2.5-3.2 Ga 2 Ga 1.2-1.0 Ga

2.7-3.5 Ga 2 Ga 1.2-0.6 Ga 519-479 Ma 519-479 50 1-2 Ga ~2 Ga 50 1-2 Ga 300 Ma

0.6- Ma 620-540

310-270 Ma 0.8-1 Ga 740-550 Ma 0.8 Ga Ma 330-300 0.3-0.27 Ga 0.8-0.5Ga ~2.5-3 Ga

300 Ma

0.8-1.1 Ga 0.95 Ga

100 630-570 Ma 100 Late variscan delamination and collapse + Permian/Trias Tethys opening 750-540 Ma 0.6 Ga 1.6 Ga

580 Ma

1.75 Ga Neogene Alboran Mouthereau et al., 2021 ~3.3 Ga depth (km) depth

150 Ma 750-650 Eroded subduction/delamination 150 3.4 Ga by edge-driven convection most recent mantleOrdovician depletion rifting and oceanisation ages 200 Late Paleozoic juvenile crust (Galicia-Southern Brittany Ocean) Eroded by 200 dominant between Avalonia andMesozoic Gondwana rift and oceanisation plume Permian basins (early Jurassic-Alpine Tethys/ (Olso rift, German basin) mid Cretaceous-Pyreneean rift) 250 1.8-2 Ga 250 Large Igneous Provinces Calk-alkaline magmatism (pluton)

(CAMP/CIMP) age basal Permian (and Paleo-Proterozoic) Late Carboniferous/Permian granulite ma!c intrusions (lamprophyres dikes, gabbros) basal traction Neogene (20 Ma) partial melting event (Alboran) traction Mantle depletion ages (Gyr) + “Moroccan hot line” 3 2 1 0 most depleted HP metamorphism (dunite/harzburgite) Ophiolitic sutures 2 1 0 less depleted/refertilized (involving shallow refertilized plagioclase-bearing mantle (lherzolite) peridotites; e.g. Betic/Pyrenees/Alps/Rheic) Examples of main thermal, metasomatic and thinning events Metasomatism : backarc extension and 600-500 Ma subduction of Iapetus Peri-Gondwana terranes LAURENTIA GONDWANA LAURENTIA IAPETUS AVALONIA Backarc basins

BALTICA cratonic root IAPETUS a terranes cratonic root ndwan i-Go Per

GONDWANA

30°W 0°E 270 Ma BALTICA LAURENTIA Metasomatism AVALONIA n belt arisca and thermal f V o ARMORICA s Re t erosion: late- m n a n 45°N Variscan PERI-GONDWANA TERRANES delamination NEO-TETHYS Rift propagation

GONDWANA ADRIA and rifting 270 Ma Mouthereau et al., 2021

N. Africa / Gondwana Iberia Europe Baltica Atlas rift P North German Basin

THERMAL EROSION A

North Atlantic Ocean Baltica Shield 60˚ Oslo Neogene-Quaternary Rift VG MFG Tornquist Zone Paleogene Rockall WCG Through 50˚ North Mesozoic Sea EURASIA Trans-European Suture Zone (TESZ) Paleozoic/ Precambrian basement Major Alpine Western normal and reverse Approaches HZ faults Basin AR RM Paleozoic and Mesozoic Bohemian Ca rp faults (with reactivation) Massif a th Bay of Biscay RG i an s Cenozoic magmatism MC Alps Pannonian N.Dobrogea Basin

Pyrenees Apennines Dinarides

Adriatic Sea Moesia Gulf of Lion Iberian Ranges Liguro- IBERIA provençal Basin Hellenides Tyrrhenian Betics Sea Alboran Algerian Sea Basin

Rif m i s Tell C r Aegean a p Meseta Mid. Atlas l n Sea Pelagian a b ri a Saharan Atlas Sea High Atlas Ionian Sea M Anti-Atlas e diterra nnean ridge Tindouf Basin AFRICA Cyrenaica Reguibat Shield

Precambrian Laurentian nt B o r basement (Scotland) f don le ian a Grampian arc and allochtonous LAURENTIA Caledonian front C 60°N units of Caledonian (Scandian) orogen BALTICA Sveconorwegian Fig. 7 Caledonian front Iapetus Variscan front with its Thor suture reconstructed position AVALONIA OROGENIC EVENTS o"shore Alpine main faults (Alps, Variscan front Betics , Rif) ARMORICA Tornquist _ Rheic Implications for mantle-plateALPINE <80Ma Moroccan Hot Line 50°N Late Variscan shear zones VARISCAN 430-300 Ma GSB s ne ra CAMP dykes and lava !ows er CALEDONIAN ~0.5-0.38 Ga NPSZ T A N time A PAN-AFRICAN/CADOMIAN 620-540W EVSZ Ma D ADRIA N O SVECONORWEGIAN/GRENVILLIAN ~1.1-0.9 Ga G and crust-mantle coupling - CRATON i- r e + GOTHIAN ~1.6-1.8 Ga p _ OCEANS & LIPs “Moroccan Hot Line” CAMP 201 Ma Variscan front ALPINE TETHYS/ATLANTIC 270-100 Ma GONDWANA RHEIC 490-470 Ma 0° 10°

time Stable Archean lithosphere (e.g. WAC) IAPETUS 616-550 MaMobile lithosphere (e.g. Variscan lithosphere 300 Ma) + A) 1) coupled crust and mantle CIMP 600 Ma B) 1) decoupled crust and mantle 2) high basal shear traction Laurentia 2) weak basal shear traction Reguibat Gondwana Gondwana margin and peri-GondwananLog10 viscosity terranes Avalonia BalticaLog10 viscosity 20 21 22 23 24 20 21 22 23 24 25 0Iapetus salt shield/ Pan-African Ocean “MOROCCAN HOT LINE” Alpine Tethys/Pyrenean0 rift Galicia-Southern Brittany ocean 0 0 cover “thin-skinned” thrusting Rheic Sea Tornquist upper crust upper crust granite granite inherited Anti-Atlas High Atlas Jebilet Variscan meseta Ronda/Beni B. Pyrenees/Alps Massif Central Armorica 10 margin Quartzitecratonic core WAC CAMP 10 Quartzite 10 Sea/TESZ CIMP 10 detachment 0 middle crust 0 middle crust basement 20 Te 20 2.5-3.2 Ga 20 20 1.2-1.0 Ga Diabase “thick-skinned” thrusting Diabase 2 Ga granulites granulites 2.7-3.5 Ga 2 Ga 1.2-0.6 Ga 30 Moho 30 30 gabbro Depleted 30 MOHO MOHO

519-479 Ma 519-479 Geotherm- 300 Ma 40 inherited 40 Gt-pyroxenite 50 40 1-2 Ga 40 ~2 Ga Moho50 1-2 Ga 300 Ma mantle sp-lherzolite

0.6- Ma 620-540 50

310-270 Ma 0.8-1 Ga 50 740-550 Ma Spinel 50

330-300 Ma 330-300 50 strong,0.8 Ga thick 0.3-0.27 Ga 0.8-0.5Ga ~2.5-3 Ga

lherzolite 300 Ma 60 60 mylonites 60 60 0.8-1.1 Ga Olivine 0.95 Ga

100 630-570 Ma 100

cratonicLate variscan mantle delamination and collapse + Permian/Trias70 Tethys opening 70 750-540 Ma 0.6 Ga70 1.6 Ga depleted 70 Depth (km) Depth

580 Ma mantle 80 80 80 80 harzburgites 1.75 Ga Neogene Alboran Mouthereau etTe al., 2021 ~3.3 Ga depth (km) depth 90 90 90 150 Ma 750-650 coupledEroded to subduction/delamination90 Olivine 150 3.4 Ga Lithosphere by edge-driven 100 100 100 LAB 100 convection Asthenosphere Ordovician110 rifting and oceanisation 110 110 Harzburgites 200 asthenosphereLate Paleozoic juvenile crust 0 200 400 600 800 1000 12002001400 (Galicia-Southern Brittanydunites Ocean) Eroded by dominant 120 120 Temperature (°C) Depth (km) Depth Mesozoic rift and oceanisation plume Permian basins (early Jurassic-Alpine130 Tethys/ and crust(Olso rift, German basin) 130 graphite mid Cretaceous-Pyreneean rift) Geotherm 3 Ga diamond 1.8-2 Ga 250 140 140 250 Large Igneous Provinces Calk-alkaline magmatism (pluton) (CAMP/CIMP) C) Coupled lithosphere-mantle convection model 150 age 150 basal Permian (and Paleo-Proterozoic) Late Carboniferous/PermianDepleted granulite basal ma!c intrusions (lamprophyres160 dikes, gabbros) 160 lherzolites Craton (WAC) e.g. Variscan lithosphere Craton (Baltica) traction Neogene (20 Ma) partial melting event (Alboran) traction Mantle depletion ages (Gyr) 170 + “Moroccan170 hot line” 3 2 1 0 most depleted HP metamorphism180 24 23 180 10 Pa-s 10 Pa-s 24 (dunite/harzburgite) Ophiolitic sutures 10 Pa-s 2 1 190 0 190 less depleted/refertilized (involving shallow refertilized plagioclase-bearing 100 km s" 200 mantle (lherzolite) peridotites;200 e.g. Betic/Pyrenees/Alps/Rheic)

210 210 +GPE +GPE Lithosphere 220 Asthenosphere 220 #Vabs "Vabs 20 230 230 10 Pa-s melt- 21 21 10 Pa-s 240 240 metasomatized 10 Pa-s "Vabs> #Vabs mantle 250 250 0 200 400 600 800 1000 1200 1400 LAB 250 km Temperature (°C) mantle !ow A

North Atlantic Ocean Baltica Shield 60˚ Oslo Neogene-Quaternary Rift VG MFG Tornquist Zone Paleogene Rockall WCG Through 50˚ North Mesozoic Sea EURASIA Trans-European Suture Zone (TESZ) Paleozoic/ Precambrian basement Major Alpine Western normal and reverse Approaches HZ faults Basin AR RM Paleozoic and Mesozoic Bohemian Ca rp faults (with reactivation) Massif a th Bay of Biscay RG i an s Cenozoic magmatism MC Alps Pannonian N.Dobrogea Basin

Pyrenees Apennines Dinarides

Adriatic Sea Moesia Gulf of Lion Iberian Ranges Liguro- IBERIA provençal Basin Hellenides Tyrrhenian Betics Sea Alboran Algerian Sea Basin

Rif m i s Tell C r Aegean a p Meseta Mid. Atlas l n Sea Pelagian a b ri a Saharan Atlas Sea High Atlas Ionian Sea M Anti-Atlas e diterra nnean ridge Tindouf Basin AFRICA Cyrenaica Reguibat Shield

Precambrian Laurentian nt B o r basement (Scotland) f don le ian a Grampian arc and allochtonous LAURENTIA Caledonian front C 60°N units of Caledonian (Scandian) orogen BALTICA Sveconorwegian Fig. 7 Caledonian front Iapetus Variscan front with its Thor suture Implications for mantle-plate reconstructed position AVALONIA OROGENIC EVENTS o"shore Alpine main faults (Alps, Variscan front Betics , Rif) ARMORICA Tornquist _ Rheic ALPINE <80Ma Moroccan Hot Line 50°N

Late Variscan shear zones VARISCAN 430-300 Ma GSB s ne ra CAMP dykes and lava !ows er and crust-mantle coupling - CALEDONIAN ~0.5-0.38 Ga NPSZ T A N time A PAN-AFRICAN/CADOMIAN 620-540W EVSZ Ma D ADRIA N O SVECONORWEGIAN/GRENVILLIAN ~1.1-0.9 Ga -G ri e + GOTHIAN ~1.6-1.8 Ga p PALEOZOIC_ EUROPE LITHOSPHEREOCEANS & LIPs “Moroccan Hot Line” CAMP 201 Ma Variscan front ALPINE TETHYS/ATLANTIC 270-100 Ma GONDWANA RHEIC 490-470 Ma 0° 10°

time IAPETUS 616-550 Ma + CIMP 600 Ma Laurentia Reguibat Gondwana Gondwana margin and peri-Gondwanan terranes Avalonia Baltica Iapetus shield/ Alpine Tethys/Pyrenean rift Galicia-Southern Brittany ocean Pan-African Ocean “MOROCCAN HOT LINE” Rheic Sea Tornquist WAC Anti-Atlas High Atlas Jebilet CAMP Variscan meseta Ronda/Beni B. Pyrenees/Alps Massif Central Armorica Sea/TESZ margin CIMP cratonic core 0 0 2.5-3.2 Ga 2 Ga 1.2-1.0 Ga

2.7-3.5 Ga 2 Ga 1.2-0.6 Ga 519-479 Ma 519-479 50 1-2 Ga ~2 Ga 50 1-2 Ga 300 Ma

0.6- Ma 620-540

310-270 Ma 0.8-1 Ga 740-550 Ma 0.8 Ga Ma 330-300 0.3-0.27 Ga 0.8-0.5Ga ~2.5-3 Ga

300 Ma

0.8-1.1 Ga 0.95 Ga

100 630-570 Ma 100 Late variscan delamination and collapse + Permian/Trias Tethys opening 750-540 Ma 0.6 Ga 1.6 Ga

Stable Archean lithosphere (e.g. WAC) 580 Ma Mobile lithosphere (e.g. Variscan lithosphere 300 Ma) 1) coupled crust and mantle 1.75 Ga 1) decoupledNeogene crust Alboran and mantle Mouthereau et al., 2021 ~3.3 Ga A) (km) depth B) 150 Ma 750-650 Eroded subduction/delamination 150 2) high basal shear traction 3.4 Ga by edge-driven 2) weak basal shear traction Log10 viscosity convection Log10 viscosity Ordovician rifting and oceanisation 20 21 22 23 24 20 21 22 23 24 25 200 0 Late Paleozoic juvenile crust salt (Galicia-Southern Brittany Ocean) Eroded by 200 0 0 dominant 0 cover “thin-skinned” thrusting upper crust Mesozoic rift and oceanisation plume upper crust granite Permian basins granite inherited 10 10 Quartzite 10 (early Jurassic-Alpine Tethys/ Quartzite 10 (Olso rift, German basin) detachmentmid Cretaceous-PyreneeanLess rift) depleted middle crust 1.8-2 Ga middle crust 250 20 basement 250 20 20 Te Large Igneous Provinces 20 Calk-alkaline magmatism (pluton) Diabase (CAMP/CIMP) “thick-skinned” thrusting Diabase granulites granulites age 30 Moho 30 Permian (and Paleo-Proterozoic) 30 gabbro weak, thin 30 basal MOHOLate Carboniferous/Permian granulite ma!c intrusions (lamprophyres dikes, gabbros) basal MOHO Geotherm- 300 Ma 40 inherited Gt-pyroxenite 40 40 traction Moho 40 Neogene (20 Ma) partial melting event (Alboran) traction Mantle depletion ages (Gyr) mantle sp-lherzolite + “Moroccan hot line”phanerozoic mantle 50 3 2 1 0 50 50 50 Spinel most depleted HP metamorphism lherzolite (dunite/harzburgite) 60 60 mylonites Ophiolitic sutures 60 60 2 1 0 Olivine less depleted/refertilized (involving shallowdecoupled refertilized plagioclase-bearing from 70 70 70 depleted mantle70 (lherzolite) peridotites; e.g. Betic/Pyrenees/Alps/Rheic)

Depth (km) Depth mantle 80 80 80 80 harzburgites asthenosphere Te 90 Olivine 90 90 90 Lithosphere 100 100 and crust 100 100 LAB Asthenosphere 110 110 110 Harzburgites 0 200 400 600 800 1000 1200 1400 dunites

120 120 Temperature (°C) Depth (km) Depth 130 130 graphite

Geotherm 3 Ga diamond 140 140 C) Coupled lithosphere-mantle convection model 150 150 Depleted 160 160 lherzolites Craton (WAC) e.g. Variscan lithosphere Craton (Baltica) 170 170

180 180 24 1023 Pa-s 10 Pa-s 1024 Pa-s 190 190 100 km s" 200 200

210 210 +GPE +GPE Lithosphere 220 Asthenosphere 220 #Vabs "Vabs 20 230 230 10 Pa-s melt- 21 21 10 Pa-s 240 240 metasomatized 10 Pa-s "Vabs> #Vabs mantle 250 250 0 200 400 600 800 1000 1200 1400 LAB 250 km Temperature (°C) mantle !ow SE Massif Central Pyrenees Cameros Sardinia 66 Ma 48 Ma 20 Ma 28 Ma Resolving periods of 51.5 Ma 75.5 Ma 31.5 Ma 26 Ma 85 Ma 40 Ma 57.5 Ma 34.5 Ma fast exhumation - 70.5 Ma 95 Ma 48.5 Ma 44.5 Ma 52 Ma 81 Ma Low-temperature data as 105 Ma 53 Ma Age (Ma) proxy for uplift −6˚ −4˚ −2˚ 0˚ 2˚ 4˚ 6˚ 8˚ 10˚ 300 46˚ 46˚

Fast exhumation ages MC according to thermal 44˚ 44˚ modelling Pyrenees 200 −10˚ −8˚ −6˚ −4˚ −2˚ 0˚ Betic 38˚ 2 Ma 42˚ Cameros 42˚ 5 Ma Betics 7 Ma 100 15 Ma TASZ 40˚ Sardinia 40˚ 36˚ 20 Ma

38˚ 38˚ Rif High-Atlas 0 −6˚ −4˚ −2˚ 0˚ 2˚ 4˚ 6˚ 8˚ 10˚ 5 Ma 34˚ Mouthereau et al., 2021 8 Ma 6˚ 8˚ 10˚ 12˚ 14˚ 16˚ 18˚ Harz 54˚ 70 Ma 22.5Ma Age 77 Ma 0 100 200 300 83 Ma 32˚ High Atlas Meseta 36 Ma Variscan front Sudetes 52˚ Harz Anti-Atlas 55 Ma 55.5Ma 30˚ 51 Ma Sudetes 56 Ma RM 58 Ma Anti-Atlas 50˚ 5 Ma Tindouf Basin Bohemian 75Ma 28˚ 12.2 Ma Massif Vosges/ V. Reguibat Shield 21 Ma BF 48˚ Black Forest 26˚ Alpine front 49 Ma 34.5 Ma 54 Ma 59.5 Ma −10˚ −8˚ −6˚ −4˚ −2˚ 0˚ 49 Ma 46˚ 67.5 Ma Age (Ma) 6˚ 8˚ 10˚ 12˚ 14˚ 16˚ 18˚ 0 100 200 300 75 Ma Topographic evolution of W Europe

Onset of AF/EU convergence. All W-Europe is deformed but uplift recorded only in weakly extended domains (Atlas, North Germany)

Deep mantle convection is the far-field driver but inherited lithosphere properties controls topography 80 Ma salt-based inverted basin (Pyrenees)Lithosphere-scale processes Topography

Onset of collision Late Cretaceous Contraction 80-60 Ma Anti-Atlas High Atlas Atlantic-Tethys rift Cameros Basin Pyrenean rift Massif Central Vosges Harz Montains North German Basin

CAMP Mouthereau et al., 2021 frica/G 80 Ma A ondw ana Topography M W. Europe - Mantle Contraction Onset of WERconvection

Anti-Atlas High Atlas Proto-BeticAndes Cameros Basin Pyrenees Massif Central Vosges- Tethyan Harzslab Montains North German Basin Growth of penetration in orogenic whole-mantle drivers topography lower mantle Early Eocene Baltica 50 Ma M: Morondava Large wavelength uplift mantle Topography plume

Contraction/back-arc extension + magmatism WER : Extension + magmatism

Anti-Atlas High Atlas Rif Betic Cameros Basin Pyrenees Massif Central Vosges Harz Montains Tectonic North German Basin reorganisation opening of W-Mediterranean Oligocene-Present Since 30 Ma salt-based inverted basin Topographic evolution(Pyrenees) of W Europe Topography

Onset of collision Onset of N Atlantic spreading/Icelandic plume and extension in West Late Cretaceous European Rift Contraction 80-60 Ma Anti-Atlas High Atlas Atlantic-Tethys rift Cameros Basin Pyrenean rift Massif Central Vosges Harz Montains North German Basin Uplift focuses in southern Europe as hyper-extended domains are

50 MaCAMP sutured - Inheritance is the main driver of topography Lithosphere-scale processes Topography

Contraction Onset of WER

Anti-Atlas High Atlas Proto-Betic Cameros Basin Pyrenees Massif Central Vosges Harz Montains North German Basin Growth of orogenic topography Early Eocene 50 Ma

Large wavelength uplift Topography Africa/Gon 50 Ma dwa na - Decreasing Contraction/back-arc extension + magmatismA WEREurope : Extension motion + magmatism Europe Anti-Atlas High Atlas Rif Betic Cameros Basin Pyrenees Massif Central Vosges Harz Montains Tectonic - Opening of North North German Basin reorganisation Andes Altantic opening of whole-mantleW-Mediterranean drivers - Extension North Oligocene-Present Baltica Since 30 Ma of Europe A: Afar plume

mantle I: Iceland plume North I Atlantic salt-based inverted basin (Pyrenees) Topography

Onset of collision Late Cretaceous Contraction 80-60 Ma Anti-Atlas High Atlas Atlantic-Tethys rift Cameros Basin Pyrenean rift Massif Central Vosges Harz Montains North German Basin

TopographicCAMP evolution of W Europe

W-Mediterranean kinematic reorganisation, shortening and Topography delamination in S-Iberia in the most thinned part, extension and magmatismContraction in West European Rift Onset of WER Anti-Atlas High Atlas Proto-Betic Cameros Basin Pyrenees Massif Central Vosges Harz Montains North German Basin Growth< 30 of Ma orogenic topography Small-scale convection controls changes of lithosphere properties Early Eocene 50 Ma (magmatism) which in turn controls uplift

Large wavelength uplift Lithosphere-scale processes Topography

~300 km Contraction/back-arc extension + magmatism WER : Extension + magmatism

Anti-Atlas High Atlas Rif Betic Cameros Basin Pyrenees Massif Central Vosges Harz Montains Tectonic North German Basin reorganisation opening of W-Mediterranean Oligocene-Present frica/G Since 30 Ma 30 Ma A ondw ana - Slab-driven Europe convection

Andes - Extension widespread

whole-mantle drivers Baltica A: Afar plume I: Iceland plume

mantle North I Atlantic