Bringing Home a Piece of Our Past

Total Page:16

File Type:pdf, Size:1020Kb

Bringing Home a Piece of Our Past mission control Bringing home a piece of our past The Hayabusa2 spacecraft will soon rendezvous with asteroid Ryugu in order to study its composition using remote sensing, a lander, rovers and sample return, explains Elizabeth Tasker. n 26 February 2018, the Hayabusa2 A firm schedule has to wait until Hayabusa2 spacecraft caught sight of its can clearly observe the structure of Ryugu. Odestination for the first time. The Mobile Asteroid Surface Scout Asteroid Ryugu appeared as no more than (MASCOT) lander was developed by the a bright dot on the image snapped by German Aerospace Centre and French space the onboard telescopic camera, but after agency, CNES — the team behind the Philae three years in space it is great to see you comet lander for the ESA Rosetta mission. are going in the right direction. Meaning The lander will analyse the asteroid’s ‘falcon’ in Japanese, Hayabusa2 is an regolith using an infrared spectrometer, a asteroid sample retrieval mission led by magnetometer, a radiometer and a camera, the Institute of Space and Astronautical while the rovers will explore an innovative Science (ISAS) at the Japan Aerospace method of transportation in a low-gravity Exploration Agency (JAXA). The mission Fig. 1 | An artist’s impression of the environment: rather than drive, the rovers is the successor to Hayabusa, which visited Hayabusa2 spacecraft collecting a sample will ‘hop’ across the surface. MASCOT will asteroid Itokawa in 2005. from asteroid Ryugu. Credit: © JAXA / Akihiro operate for about 15 hours and the rovers for From June 2018 onward, Hayabusa2 will Ikeshita a few days, communicating with the Earth be close enough to Ryugu to begin to resolve via Hayabusa2. the asteroid’s surface features. Then analysis Hayabusa2 is equipped with a set can begin in earnest. One of the first tasks just the solvent to create life, but also the of three cameras, a near-infrared will be to construct a three-dimensional first ingredients. spectrometer for determining mineral model that can be used to select landing sites Hayabusa2 gathers material through a composition, a laser altimeter to measure and to estimate Ryugu’s gravitational field. sampler horn that resembles a long cylinder distance to the surface and a thermal Even though Ryugu is less than 1 km in with a conical end. As the spacecraft touches infrared imager. This suite had a test run diameter, its weak gravity must be carefully down on the asteroid, a bullet will be fired in December 2015, when the spacecraft considered for the spacecraft to descend to into the surface to lift sand, pebbles and flew by the Earth for a gravitational kick the surface safely. fragments of rock into the horn. Should on its journey towards Ryugu. The camera The plan for Hayabusa2 is to gather three this fail for any reason, the mouth of the filters identified regions of plant life on samples from asteroid Ryugu over a period horn is equipped with teeth that will raise Earth while the spectrometer detected the of the subsequent 12 months and return surface material during touchdown. As presence of water. Once at Ryugu, the these to Earth in late 2020: two samples the spacecraft decelerates, this regolith same analysis will be performed to search of the asteroid surface, and a collection will travel up the horn and into the sample for the presence of hydrated minerals of subsurface material exposed during a container. The sample container has three and organic compounds. controlled impact. In addition to sample chambers to store material collected at Hayabusa2 is not the only mission collection, the asteroid will also be explored each landing site on Ryugu. This triple heading to the asteroids. NASA’s OSIRIS- via a suite of remote sensing instruments, touchdown allows the sampling of different REx is en route to collect a sample from a lander and three small rovers. It is an materials that may be present on the asteroid Bennu and will begin its approach ambitious itinerary to tackle an equally asteroid. The third sample collection (Fig. 1) later this year. The two mission teams ambitious science goal: to uncover the will be particularly distinct because this is are working closely together and will original material that initiated life on Earth. when Hayabusa2 will blast a crater on the share samples once the spacecraft return. Ryugu is a C-type asteroid, a class asteroid surface with its Small Carry-on Hayabusa2 is due to return to Earth in of space rock containing carbonaceous Impactor (SCI). By gathering from this 2020, while OSIRIS-REx will arrive three material that is thought to have undergone freshly exposed region, Hayabusa2 will years later. With their arrival, we will minimal alteration since the Solar System have material that has not been subjected to have a sample of our origins to explore first formed. The small celestial body is weathering from the Sun’s radiation. for years to come. ❐ therefore kin to the meteorites that pelted Operations are planned to begin at the the early Earth. This bombardment was asteroid surface in September and October Elizabeth Tasker a likely delivery service for the Earth’s 2018. The current schedule includes the Department of Solar System Science at ISAS/JAXA, oceans, as our proximity to the Sun would release of the lander, one or two of the rovers Tokyo, Japan. have made it too warm to incorporate solid and the first sample collection. The second e-mail: [email protected] ices into the forming planet. Moreover, sample collection is currently planned for primitive organics have been discovered in February 2019 and the third (complete with Published online: 1 June 2018 meteorites that hint at the delivery of not dropping the SCI) will be in April or May. https://doi.org/10.1038/s41550-018-0486-0 502 NATURE ASTRONOMY | VOL 2 | JUNE 2018 | 502 | www.nature.com/natureastronomy © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved..
Recommended publications
  • Hayabusa2 and the Formation of the Solar System PPS02-25
    PPS02-25 JpGU-AGU Joint Meeting 2017 Hayabusa2 and the formation of the Solar System *Sei-ichiro WATANABE1,2, Hayabusa2 Science Team2 1. Division of Earth and Planetary Sciences, Graduate School of Science, Nagoya University, 2. JAXA/ISAS Explorations of small solar system bodies bring us direct and unique information about the formation and evolution of the Solar system. Asteroids may preserve accretion processes of planetesimals or pebbles, a sequence of destructive events induced by the gas-driven migration of giant planets, and hydrothermal processes on the parent bodies. After successful small-body missions like Rosetta to comet 67P/Churyumov-Gerasimenko, Dawn to Vesta and Ceres, and New Horizons to Pluto, two spacecraft Hayabusa2 and OSIRIS-REx are now traveling to dark primitive asteroids.The Hayabusa2 spacecraft journeys to a C-type near-earth asteroid (162173) Ryugu (1999 JU3) to conduct detailed remote sensing observations and return samples from the surface. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on 3 Dec. 2014 by the H-IIA Launch Vehicle and performed an Earth swing-by on 3 Dec. 2015 to set it on a course toward its target. The spacecraft will reach Ryugu in the summer of 2018, observe the asteroid for 18 months, and sample surface materials from up to three different locations. The samples will be delivered to the Earth in Nov.-Dec. 2020. Ground-based observations have obtained a variety of optical reflectance spectra for Ryugu. Some reported the 0.7 μm absorption feature and steep slope in the short wavelength region, suggesting hydrated minerals.
    [Show full text]
  • Matematikken Viser Vej Til Mars
    S •Matematikken The viser vej til Mars Kim Plauborg © The Terma Group 2016 THE BEGINNING Terma has been in Space since man walked on the Moon! © The Terma Group 2016 FROM ESRO TO EXOMARS Terma powered the first comet landing ever! BREAKING NEWS The mission ends today when the Rosetta satellite will set down on the surface In 2014 the Rosetta satellite deployed the small lander Philae, which landed on the cometof 67P morethe than 10 comet years after Rosetta was launched. © The Terma Group 2016 FROM ESRO TO EXOMARS Rosetta Mars Express Technology Venus Express evolution and Galileo enhancement Small GEO BepiColombo ExoMars © The Terma Group 2016 Why go Mars? Getting to and landing on Mars is difficult ! © The Terma Group 2016 THE EXOMARS PROGRAMME Two ESA missions to Mars in cooperation with Roscosmos with the main objective to search for evidence of life 2016 Mission Trace Gas Orbiter Schiaparelli 2020 Mission Rover Surface platform © The Terma Group 2016 EXOMARS 2016 14th March 2016 Launched from Baikonur cosmodrome, Kazakhstan © The Terma Group 2016 EXOMARS 2016 16th October 2016 Separation of Schiaparelli from the orbiter © The Terma Group 2016 SCHIAPARELLI Schiaparelli (EDM) - an entry, descent and landing demonstrator module © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2016 19th October 2016 Landing of Schiaparelli the surface of Mars © The Terma Group 2016 EXOMARS 2020 © The Terma Group 2016 TERMA AND EXOMARS Terma deliveries to the ExoMars 2016 mission • Remote Terminal Power Unit for Schiaparelli • Mission Control System • Spacecraft Simulator • Support for the Launch and Early Orbit Phase © The Terma Group 2016 ExoMars RTPU The RTPU is a central unit in the Schiaparelli lander.
    [Show full text]
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • How a Cartoon Series Helped the Public Care About Rosetta and Philae 13 How a Cartoon Series Helped the Public Care About Rosetta and Philae
    How a Cartoon Series Helped the Public Care about Best Practice Rosetta and Philae Claudia Mignone Anne-Mareike Homfeld Sebastian Marcu Vitrociset Belgium for European Space ATG Europe for European Space Design & Data GmbH Agency (ESA) Agency (ESA) [email protected] [email protected] [email protected] Carlo Palazzari Emily Baldwin Markus Bauer Design & Data GmbH EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) [email protected] [email protected] [email protected] Keywords Karen S. O’Flaherty Mark McCaughrean Outreach, space science, public engagement, EJR-Quartz for European Space Agency (ESA) European Space Agency (ESA) visual storytelling, fairy-tale, cartoon, animation, [email protected] [email protected] anthropomorphising Once upon a time... is a series of short cartoons1 that have been developed as part of the European Space Agency’s communication campaign to raise awareness about the Rosetta mission. The series features two anthropomorphic characters depicting the Rosetta orbiter and Philae lander, introducing the mission story, goals and milestones with a fairy- tale flair. This article explores the development of the cartoon series and the level of engagement it generated, as well as presenting various issues that were encountered using this approach. We also examine how different audiences responded to our decision to anthropomorphise the spacecraft. Introduction internet before the spacecraft came out of exciting highlights to come, using the fairy- hibernation (Bauer et al., 2016). The four tale narrative as a base. The hope was that In late 2013, the European Space Agency’s short videos were commissioned from the video would help to build a degree of (ESA) team of science communicators the cross-media company Design & Data human empathy between the public and devised a number of outreach activ- GmbH (D&D).
    [Show full text]
  • DLR Developments and Application Ideas for Interplanetary Cubesats
    DLR developments and application ideas for interplanetary cubesats iCubeSat, Milano 2019 Jens Biele1, Michael Maibaum1, Caroline Lange2, Thimo Grundmann2, Stephan Ulamec1, Marcus Thomas Knopp3, Frank-Cyrus Roshani3 1DLR German Aerospace Center, RB-MUSC, Cologne, Germany 2DLR German Aerospace Center, Bremen, Germany 3DLR German Aerospace Center, GSOC, Munich, Germany www.DLR.de • Chart 3 > Lecture > Author • Document > Date SKAD-Study [FRANK, MARCUS] • Orbiter as relais station for Mars-Rover • ………. Designs flown or studied (DLR) Hopper(10-25 kg) MASCOT (30, 70 kg) Philae (100 kg) Leonard MASCOT (10 kg) Folie 4 > Vortrag > Autor Folie 5 > Vortrag > Autor Study Flow of MASCOT („how to shrink a lander..“) • December 2008 – September 2009: feasibility study, with CNES, in context of Marco Polo and Hayabusa-2, with common requirements: • 3 iterations of different mass (95kg, 35kg & 10kg) and P/L • Settled on 10 kg lander package including 3 kg of P/L • Ho, T.-M., et al. (2016). "MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission." Space Science Reviews 208(1-4): 339– 374. • ➔ Design of MASCOT 10 kg: a nanosat (30x30*20 cm³) . Could be a 18 U cubesat! Large ~ 95 kg, Philae hertitage Middle ~ 35 kg, Xtra Small ~ 10 kg, No post-landing Up-righting + mobility mobility MASCOT Payload (25% of total mass!) Instrument Science Goals Heritage Institute; PI/IM Mass [kg] MAG magnetization of the NEA MAG of ROMAP on Rosetta TU Braunschweig Lander (Philae), ESA VEX, 0,15 → formation history Themis K.H. Glassmeier / U. Auster mineralogical composition ESA ExoMars, Russia and characterize grains Phobos GRUNT, ESA size and structure of Rosetta, ESA ExoMars IAS Paris µOmega surface soil samples at μ- rover 2018, Rosetta / Philae J.P.
    [Show full text]
  • An Overview of Hayabusa2 Mission and Asteroid 162173 Ryugu
    Asteroid Science 2019 (LPI Contrib. No. 2189) 2086.pdf AN OVERVIEW OF HAYABUSA2 MISSION AND ASTEROID 162173 RYUGU. S. Watanabe1,2, M. Hira- bayashi3, N. Hirata4, N. Hirata5, M. Yoshikawa2, S. Tanaka2, S. Sugita6, K. Kitazato4, T. Okada2, N. Namiki7, S. Tachibana6,2, M. Arakawa5, H. Ikeda8, T. Morota6,1, K. Sugiura9,1, H. Kobayashi1, T. Saiki2, Y. Tsuda2, and Haya- busa2 Joint Science Team10, 1Nagoya University, Nagoya 464-8601, Japan ([email protected]), 2Institute of Space and Astronautical Science, JAXA, Japan, 3Auburn University, U.S.A., 4University of Aizu, Japan, 5Kobe University, Japan, 6University of Tokyo, Japan, 7National Astronomical Observatory of Japan, Japan, 8Research and Development Directorate, JAXA, Japan, 9Tokyo Institute of Technology, Japan, 10Hayabusa2 Project Summary: The Hayabusa2 mission reveals the na- Combined with the rotational motion of the asteroid, ture of a carbonaceous asteroid through a combination global surveys of Ryugu were conducted several times of remote-sensing observations, in situ surface meas- from ~20 km above the sub-Earth point (SEP), includ- urements by rovers and a lander, an active impact ex- ing global mapping from ONC-T (Fig. 1) and TIR, and periment, and analyses of samples returned to Earth. scan mapping from NIRS3 and LIDAR. Descent ob- Introduction: Asteroids are fossils of planetesi- servations covering the equatorial zone were performed mals, building blocks of planetary formation. In partic- from 3-7 km altitudes above SEP. Off-SEP observa- ular carbonaceous asteroids (or C-complex asteroids) tions of the polar regions were also conducted. Based are expected to have keys identifying the material mix- on these observations, we constructed two types of the ing in the early Solar System and deciphering the global shape models (using the Structure-from-Motion origin of water and organic materials on Earth [1].
    [Show full text]
  • Argops) Solution to the 2017 Astrodynamics Specialist Conference Student Competition
    AAS 17-621 THE ASTRODYNAMICS RESEARCH GROUP OF PENN STATE (ARGOPS) SOLUTION TO THE 2017 ASTRODYNAMICS SPECIALIST CONFERENCE STUDENT COMPETITION Jason A. Reiter,* Davide Conte,1 Andrew M. Goodyear,* Ghanghoon Paik,* Guanwei. He,* Peter C. Scarcella,* Mollik Nayyar,* Matthew J. Shaw* We present the methods and results of the Astrodynamics Research Group of Penn State (ARGoPS) team in the 2017 Astrodynamics Specialist Conference Student Competition. A mission (named Minerva) was designed to investigate Asteroid (469219) 2016 HO3 in order to determine its mass and volume and to map and characterize its surface. This data would prove useful in determining the necessity and usefulness of future missions to the asteroid. The mission was designed such that a balance between cost and maximizing objectives was found. INTRODUCTION Asteroid (469219) 2016 HO3 was discovered recently and has yet to be explored. It lies in a quasi-orbit about the Earth such that it will follow the Earth around the Sun for at least the next several hundred years providing many opportunities for relatively low-cost missions to the body. Not much is known about 2016 HO3 except a general size range, but its close proximity to Earth makes a scientific mission more feasible than other near-Earth objects. A Request For Proposal (RFP) was provided to university teams searching for cost-efficient mission design solutions to assist in the characterization of the asteroid and the assessment of its potential for future, more in-depth missions and possible resource utilization. The RFP provides constraints on launch mass, bus size as well as other mission architecture decisions, and sets goals for scientific mapping and characterization.
    [Show full text]
  • SWIFTS and SWIFTS-LA: Two Concepts for High Spectral Resolution Static Micro-Imaging Spectrometers
    EPSC Abstracts Vol. 9, EPSC2014-439-1, 2014 European Planetary Science Congress 2014 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2014 SWIFTS and SWIFTS-LA: two concepts for high spectral resolution static micro-imaging spectrometers E. Le Coarer(1), B. Schmitt(1), N. Guerineau (2), G. Martin (1) S. Rommeluere (2), Y. Ferrec (2) F. Simon (1) F. Thomas (1) (1) Univ. UGA ,CNRS, Lab. IPAG, Grenoble, France. (2) ONERA/DOTA Palaiseau France ([email protected] grenoble.fr). Abstract All these instruments use either optical gratings, Fourier transform or AOTF spectrometers. The two SWIFTS (Stationary-Wave Integrated Fourier first types need moving mirrors to scan spectrally Transform Spectrometer) represents a family of very thus adding complexity and failure risk in space. The compact spectrometers based on detection of interesting solution of AOTF, without moving part standing waves for which detectors play itself a role (only piezo) is however limited in resolution to a few in the interferential detection mechanism. The aim of cm-1 due to limitation in monocrystal size (fragile). this paper is to illustrate how these spectrometers can Strong limitations of these instruments in terms of be used to build efficient imaging spectrometers for performances (spectral & spatial resolution and range, planetary exploration inside dm3 instrumental volume. S/N ratio) come from their already large mass, The first mode (SWIFTS) is devoted to high spectral volume, and power consumption. Further increasing resolving power imaging (R~10000-50000) for one of these characteristics will be at the cost of even 40x40 pixels field of view. The second mode bigger instruments.
    [Show full text]
  • 7'Tie;T;E ~;&H ~ T,#T1tmftllsieotog
    7'tie;T;e ~;&H ~ t,#t1tMftllSieotOg, UCLA VOLUME 3 1986 EDITORIAL BOARD Mark E. Forry Anne Rasmussen Daniel Atesh Sonneborn Jane Sugarman Elizabeth Tolbert The Pacific Review of Ethnomusicology is an annual publication of the UCLA Ethnomusicology Students Association and is funded in part by the UCLA Graduate Student Association. Single issues are available for $6.00 (individuals) or $8.00 (institutions). Please address correspondence to: Pacific Review of Ethnomusicology Department of Music Schoenberg Hall University of California Los Angeles, CA 90024 USA Standing orders and agencies receive a 20% discount. Subscribers residing outside the U.S.A., Canada, and Mexico, please add $2.00 per order. Orders are payable in US dollars. Copyright © 1986 by the Regents of the University of California VOLUME 3 1986 CONTENTS Articles Ethnomusicologists Vis-a-Vis the Fallacies of Contemporary Musical Life ........................................ Stephen Blum 1 Responses to Blum................. ....................................... 20 The Construction, Technique, and Image of the Central Javanese Rebab in Relation to its Role in the Gamelan ... ................... Colin Quigley 42 Research Models in Ethnomusicology Applied to the RadifPhenomenon in Iranian Classical Music........................ Hafez Modir 63 New Theory for Traditional Music in Banyumas, West Central Java ......... R. Anderson Sutton 79 An Ethnomusicological Index to The New Grove Dictionary of Music and Musicians, Part Two ............ Kenneth Culley 102 Review Irene V. Jackson. More Than Drumming: Essays on African and Afro-Latin American Music and Musicians ....................... Norman Weinstein 126 Briefly Noted Echology ..................................................................... 129 Contributors to this Issue From the Editors The third issue of the Pacific Review of Ethnomusicology continues the tradition of representing the diversity inherent in our field.
    [Show full text]
  • Spatial Infrastructure for the OSIRIS-Rex Sample Return Mission March 23, 2016
    Spatial Infrastructure for the OSIRIS-REx Sample Return Mission March 23, 2016 Dani DellaGiustina O.S. Barnouin, M.C. Nolan, C.A. Johnson, L. Le Corre, and D.S. Lauretta Lunar & Planetary Sciences Conference The Woodlands, Texas OSIRIS-REX DEFINED • Origins . Return and analyze a sample of pristine carbonaceous asteroid regolith • Spectral Interpretation . Provide ground truth for telescopic data of the entire asteroid population • Resource Identification . Map the chemistry and mineralogy of a primitive carbonaceous asteroid • Security . Measure the Yarkovsky effect on a potentially hazardous asteroid • Regolith Explorer . Document the regolith at the sampling site at scales down to the sub-cm 1 OUR PAYLOAD PERFORMS EXTENSIVE CHARACTERIZATION AT GLOBAL AND SAMPLE-SITE-SPECIFIC SCALES SamCam images the sample site, documents sample OCAMS (UA) acquisition, and images TAGSAM to evaluate sampling success MapCam performs filter photometry, maps the surface, and images the sample site PolyCam acquires Bennu from >500K-km range, performs star- field OpNav, and performs high-resolution imaging of the surface OLA (CSA) provides ranging data out to 7 km and maps the asteroid shape and surface topography 2 OUR PAYLOAD PERFORMS EXTENSIVE CHARACTERIZATION AT GLOBAL AND SAMPLE-SITE-SPECIFIC SCALES OVIRS (GSFC) maps the reflectance albedo and spectral properties from 0.4 – 4.3 µm OTES (ASU) maps the thermal flux and spectral properties from 5 – 50 µm REXIS (MIT) trains the next generation of scientists and engineers and maps the elemental abundances
    [Show full text]
  • Exploration of Mars by the European Space Agency 1
    Exploration of Mars by the European Space Agency Alejandro Cardesín ESA Science Operations Mars Express, ExoMars 2016 IAC Winter School, November 20161 Credit: MEX/HRSC History of Missions to Mars Mars Exploration nowadays… 2000‐2010 2011 2013/14 2016 2018 2020 future … Mars Express MAVEN (ESA) TGO Future ESA (ESA- Studies… RUSSIA) Odyssey MRO Mars Phobos- Sample Grunt Return? (RUSSIA) MOM Schiaparelli ExoMars 2020 Phoenix (ESA-RUSSIA) Opportunity MSL Curiosity Mars Insight 2020 Spirit The data/information contained herein has been reviewed and approved for release by JPL Export Administration on the basis that this document contains no export‐controlled information. Mars Express 2003-2016 … First European Mission to orbit another Planet! First mission of the “Rosetta family” Up and running since 2003 Credit: MEX/HRSC First European Mission to orbit another Planet First European attempt to land on another Planet Original mission concept Credit: MEX/HRSC December 2003: Mars Express Lander Release and Orbit Insertion Collission trajectory Bye bye Beagle 2! Last picture Lander after release, release taken by VMC camera Insertion 19/12/2003 8:33 trajectory Credit: MEX/HRSC Beagle 2 was found in January 2015 ! Only 6km away from landing site OK Open petals indicate soft landing OK Antenna remained covered Lessons learned: comms at all time! Credit: MEX/HRSC Mars Express: so many missions at once Mars Mission Phobos Mission Relay Mission Credit: MEX/HRSC Mars Express science investigations Martian Moons: Phobos & Deimos: Ionosphere, surface,
    [Show full text]
  • Initial Analysis Team Introduction
    Summary and contents of the press conference Overview • Since the return of the sample in December of last year, curation activities have been conducted for the initial analysis of the sample. • Curation activities are aimed at cataloguing the sample without compromising the scientific value in order to provide information that contributes to further detailed scientific analysis. • Today’s report is that part of the catalogued sample is ready for delivery. Contents 1. Report from the curation team (T. Usui, E. Nakamura, M. Ito) 2. Report from the initial analysis teamS. TachibanaH. YurimotoT. Nakamura T. NoguchiR. OkazakiH. YabutaH. Naraoka 2021/6/17 Hayabusa2 reporter briefing 2 Report from the curation team Tomohiro USUIJAXA Eizo NAKAMURAOkayama University Motoo ITOJAMSTEC Ryugu sample curation work The initial description of the Ryugu sample was performed without removing the sample from the clean chamber, in order to avoid contamination from the global environment CC3-1 Opening the sample container under vacuum environment CC3-2 Sample collection under vacuum CC3-3 Transition from vacuum to nitrogen environment CC4-1 Handling of submillimeter-sized particles CC4-2 Handling / observation / sorting of relatively large particles (> mm) 2021/6/17 Hayabusa2 reporter briefing 4 Achievement of the world’s first sample collection and storage of asteroid samples under vacuum conditions Samples collected under vacuum on December 15, 2020 will not be distributed at this time, but continued to be stored under vacuum (CC3-2) for future
    [Show full text]